sub scale {
my $self=shift;
- my %opts=(scalefactor=>0.5,'type'=>'max',qtype=>'normal',@_);
+ my %opts=('type'=>'max',qtype=>'normal',@_);
my $img = Imager->new();
my $tmp = Imager->new();
-
- my $scalefactor = $opts{scalefactor};
+ my ($x_scale, $y_scale);
unless (defined wantarray) {
my @caller = caller;
return undef;
}
+ if ($opts{'xscalefactor'} && $opts{'yscalefactor'}) {
+ $x_scale = $opts{'xscalefactor'};
+ $y_scale = $opts{'yscalefactor'};
+ }
+ elsif ($opts{'xscalefactor'}) {
+ $x_scale = $opts{'xscalefactor'};
+ $y_scale = $opts{'scalefactor'} || $x_scale;
+ }
+ elsif ($opts{'yscalefactor'}) {
+ $y_scale = $opts{'yscalefactor'};
+ $x_scale = $opts{'scalefactor'} || $y_scale;
+ }
+ else {
+ $x_scale = $y_scale = $opts{'scalefactor'} || 0.5;
+ }
+
# work out the scaling
if ($opts{xpixels} and $opts{ypixels} and $opts{'type'}) {
my ($xpix, $ypix)=( $opts{xpixels} / $self->getwidth() ,
$opts{ypixels} / $self->getheight() );
if ($opts{'type'} eq 'min') {
- $scalefactor = _min($xpix,$ypix);
+ $x_scale = $y_scale = _min($xpix,$ypix);
}
elsif ($opts{'type'} eq 'max') {
- $scalefactor = _max($xpix,$ypix);
+ $x_scale = $y_scale = _max($xpix,$ypix);
+ }
+ elsif ($opts{'type'} eq 'nonprop' || $opts{'type'} eq 'non-proportional') {
+ $x_scale = $xpix;
+ $y_scale = $ypix;
}
else {
$self->_set_error('invalid value for type parameter');
return undef;
}
} elsif ($opts{xpixels}) {
- $scalefactor = $opts{xpixels} / $self->getwidth();
+ $x_scale = $y_scale = $opts{xpixels} / $self->getwidth();
}
elsif ($opts{ypixels}) {
- $scalefactor = $opts{ypixels}/$self->getheight();
+ $x_scale = $y_scale = $opts{ypixels}/$self->getheight();
}
elsif ($opts{constrain} && ref $opts{constrain}
&& $opts{constrain}->can('constrain')) {
# we've been passed an Image::Math::Constrain object or something
# that looks like one
+ my $scalefactor;
(undef, undef, $scalefactor)
= $opts{constrain}->constrain($self->getwidth, $self->getheight);
unless ($scalefactor) {
$self->_set_error('constrain method failed on constrain parameter');
return undef;
}
+ $x_scale = $y_scale = $scalefactor;
}
if ($opts{qtype} eq 'normal') {
- $tmp->{IMG} = i_scaleaxis($self->{IMG}, $scalefactor, 0);
+ $tmp->{IMG} = i_scaleaxis($self->{IMG}, $x_scale, 0);
if ( !defined($tmp->{IMG}) ) {
$self->{ERRSTR} = 'unable to scale image';
return undef;
}
- $img->{IMG}=i_scaleaxis($tmp->{IMG}, $scalefactor, 1);
+ $img->{IMG}=i_scaleaxis($tmp->{IMG}, $y_scale, 1);
if ( !defined($img->{IMG}) ) {
$self->{ERRSTR}='unable to scale image';
return undef;
return $img;
}
elsif ($opts{'qtype'} eq 'preview') {
- $img->{IMG} = i_scale_nn($self->{IMG}, $scalefactor, $scalefactor);
+ $img->{IMG} = i_scale_nn($self->{IMG}, $x_scale, $y_scale);
if ( !defined($img->{IMG}) ) {
$self->{ERRSTR}='unable to scale image';
return undef;
}
return $img;
}
+ elsif ($opts{'qtype'} eq 'mixing') {
+ my $new_width = int(0.5 + $self->getwidth * $x_scale);
+ my $new_height = int(0.5 + $self->getheight * $y_scale);
+ $new_width >= 1 or $new_width = 1;
+ $new_height >= 1 or $new_height = 1;
+ $img->{IMG} = i_scale_mixing($self->{IMG}, $new_width, $new_height);
+ unless ($img->{IMG}) {
+ $self->_set_error(Imager->_error_as_meg);
+ return;
+ }
+ return $img;
+ }
else {
$self->_set_error('invalid value for qtype parameter');
return undef;
float scx
float scy
+Imager::ImgRaw
+i_scale_mixing(im, width, height)
+ Imager::ImgRaw im
+ int width
+ int height
+
Imager::ImgRaw
i_haar(im)
Imager::ImgRaw im
samples/samp-tags.html Form for samp-tags.cgi
samples/slant_text.pl Using $font->transform() to slant text
samples/tk-photo.pl
+scale.c Newer scaling code
spot.perl For making an ordered dither matrix from a spot function
stackmach.c
stackmach.h
regmach.o trans2.o quant.o error.o convert.o
map.o tags.o palimg.o maskimg.o img16.o rotate.o
bmp.o tga.o rgb.o color.o fills.o imgdouble.o limits.o hlines.o
- imext.o);
+ imext.o scale.o);
$Recommends{Imager} =
{ 'Parse::RecDescent' => 0 };
fallback for read/write_multi to read/write
-pnmscale based alternative scale method
+pnmscale based alternative scale method (done)
rubthrough 4 on 4
+replace dummy test script in dynfilt with a real one
+
BEFORE 0.50:
skip t82inline.t tests if directory has spaces in name
i_img * i_scaleaxis(i_img *im, float Value, int Axis);
i_img * i_scale_nn(i_img *im, float scx, float scy);
+i_img * i_scale_mixing(i_img *src, int width, int height);
i_img * i_haar(i_img *im);
int i_count_colors(i_img *im,int maxc);
$newimg = $img->scale(xpixels=>400,ypixels=>400); # 560x400
$newimg = $img->scale(xpixels=>400,ypixels=>400,type=>'min'); # 400x285
+ $newimg = $img->scale(xpixels=>400, ypixels=>400),type=>'nonprop'); # 400x400
+
$newimg = $img->scale(scalefactor=>0.25); 175x125
$newimg = $img->scale(); # 350x250
=item *
-xpixels, ypixels - desired size of the scaled image. The resulting
-image is always scaled proportionally. The C<type> parameter controls
-whether the larger or smaller of the two possible sizes is chosen.
+xpixels, ypixels - desired size of the scaled image. The C<type>
+parameter controls whether the larger or smaller of the two possible
+sizes is chosen, or if the image is scaled non-proportionally.
=item *
=item *
-scalefactor - if none of xpixels, ypixels or constrain is supplied
-then this is used as the ratio to scale by. Default: 0.5.
+scalefactor - if none of xpixels, ypixels, xscalefactor, yscalefactor
+or constrain is supplied then this is used as the ratio to scale by.
+Default: 0.5.
+
+=item *
+
+xscalefactor, yscalefactor - if both are supplied then the image is
+scaled as per these parameters, whether this is proportionally or not.
+New in Imager 0.54.
=item *
max - the larger of the 2 sizes. This is the default.
+=item *
+
+nonprop - non-proportional scaling. New in Imager 0.54.
+
=back
scale() will fail if C<type> is set to some other value.
=item *
-normal - high quality scaling. This is the default.
+C<normal> - high quality scaling. This is the default.
=item *
-preview - lower quality.
+C<preview> - lower quality. When scaling down this will skip input
+pixels, eg. scaling by 0.5 will skip every other pixel. When scaling
+up this will duplicate pixels.
+
+=item *
+
+C<mixing> - implements the mixing algorithm implemented by pnmscale.
+This retains more detail when scaling down than C<normal>. When
+scaling down this proportionally accumulates sample data from the
+pixels, resulting in a proportional mix of all of the pixels. When
+scaling up this will mix pixels when the sampling grid crosses a pixel
+boundary but will otherwise copy pixel values.
=back
my $scaled = $img->scaleX(pixels=>400)->scaleY(pixels=>200);
+From Imager 0.54 you can scale without maintaining proportions either
+by supplying both the xscalefactor and yscalefactor arguments:
+
+ my $scaled = $img->scale(xscalefactor => 0.5, yscalefactor => 0.67);
+
+or by supplying C<xpixels> and C<ypixels> and setting C<type> to
+"nonprop":
+
+ my $scaled = $im->scale(xpixels => 200, ypixels => 200, type => 'nonprop');
+
Returns the scaled image on success.
Returns false on failure, check the errstr() method for the reason for
# to half size
my $low = $image->scale(qtype => 'preview');
+ # mixing method scale
+ my $mixed = $image->scale(qtype => 'mixing', scalefactor => 0.1);
+
# using an Image::Math::Constrain object
use Image::Math::Constrain;
my $constrain = Image::Math::Constrain->new(800, 600);
--- /dev/null
+#include "imager.h"
+
+/*
+ * i_scale_mixing() is based on code contained in pnmscale.c, part of
+ * the netpbm distribution. No code was copied from pnmscale but
+ * the algorthm was and for this I thank the netpbm crew.
+ *
+ * Tony
+ */
+
+/* pnmscale.c - read a portable anymap and scale it
+**
+** Copyright (C) 1989, 1991 by Jef Poskanzer.
+**
+** Permission to use, copy, modify, and distribute this software and its
+** documentation for any purpose and without fee is hereby granted, provided
+** that the above copyright notice appear in all copies and that both that
+** copyright notice and this permission notice appear in supporting
+** documentation. This software is provided "as is" without express or
+** implied warranty.
+**
+*/
+
+
+static void
+zero_row(i_fcolor *row, int width, int channels);
+static void
+accum_output_row(i_fcolor *accum, double fraction, i_fcolor const *in,
+ int width, int channels);
+static void
+horizontal_scale(i_fcolor *out, int out_width,
+ i_fcolor const *in, int in_width,
+ int channels);
+
+/*
+=item i_scale_mixing
+
+Returns a new image scaled to the given size.
+
+Unlike i_scale_axis() this does a simple coverage of pixels from
+source to target and doesn't resample.
+
+Adapted from pnmscale.
+
+=cut
+*/
+i_img *
+i_scale_mixing(i_img *src, int x_out, int y_out) {
+ i_img *result;
+ i_fcolor *in_row = NULL;
+ i_fcolor *xscale_row = NULL;
+ i_fcolor *accum_row = NULL;
+ int y;
+ int in_row_bytes, out_row_bytes;
+ double rowsleft, fracrowtofill;
+ int rowsread;
+ double y_scale;
+
+ mm_log((1, "i_scale_mixing(src %p, x_out %d, y_out %d)\n",
+ src, x_out, y_out));
+
+ i_clear_error();
+
+ if (x_out <= 0) {
+ i_push_errorf(0, "output width %d invalid", x_out);
+ return NULL;
+ }
+ if (y_out <= 0) {
+ i_push_errorf(0, "output height %d invalid", y_out);
+ return NULL;
+ }
+
+ in_row_bytes = sizeof(i_fcolor) * src->xsize;
+ if (in_row_bytes / sizeof(i_fcolor) != src->xsize) {
+ i_push_error(0, "integer overflow allocating input row buffer");
+ return NULL;
+ }
+ out_row_bytes = sizeof(i_fcolor) * x_out;
+ if (out_row_bytes / sizeof(i_fcolor) != x_out) {
+ i_push_error(0, "integer overflow allocating output row buffer");
+ return NULL;
+ }
+
+ if (x_out == src->xsize && y_out == src->ysize) {
+ return i_copy(src);
+ }
+
+ y_scale = y_out / (double)src->ysize;
+
+ result = i_sametype_chans(src, x_out, y_out, src->channels);
+ if (!result)
+ return NULL;
+
+ in_row = mymalloc(in_row_bytes);
+ accum_row = mymalloc(in_row_bytes);
+ xscale_row = mymalloc(out_row_bytes);
+
+ rowsread = 0;
+ rowsleft = 0.0;
+ for (y = 0; y < y_out; ++y) {
+ if (y_out == src->ysize) {
+ i_glinf(src, 0, src->xsize, y, accum_row);
+ }
+ else {
+ fracrowtofill = 1.0;
+ zero_row(accum_row, src->xsize, src->channels);
+ while (fracrowtofill > 0) {
+ if (rowsleft <= 0) {
+ if (rowsread < src->ysize) {
+ i_glinf(src, 0, src->xsize, rowsread, in_row);
+ ++rowsread;
+ }
+ /* else just use the last row read */
+
+ rowsleft = y_scale;
+ }
+ if (rowsleft < fracrowtofill) {
+ accum_output_row(accum_row, rowsleft, in_row, src->xsize,
+ src->channels);
+ fracrowtofill -= rowsleft;
+ rowsleft = 0;
+ }
+ else {
+ accum_output_row(accum_row, fracrowtofill, in_row, src->xsize,
+ src->channels);
+ rowsleft -= fracrowtofill;
+ fracrowtofill = 0;
+ }
+ }
+ /* we've accumulated a vertically scaled row */
+ if (x_out == src->xsize) {
+ /* no need to scale */
+ i_plinf(result, 0, x_out, y, accum_row);
+ }
+ else {
+ horizontal_scale(xscale_row, x_out, accum_row, src->xsize,
+ src->channels);
+ i_plinf(result, 0, x_out, y, xscale_row);
+ }
+ }
+ }
+
+ myfree(in_row);
+ myfree(accum_row);
+ myfree(xscale_row);
+
+ return result;
+}
+
+static void
+zero_row(i_fcolor *row, int width, int channels) {
+ int x;
+ int ch;
+
+ /* with IEEE floats we could just use memset() but that's not
+ safe in general under ANSI C */
+ for (x = 0; x < width; ++x) {
+ for (ch = 0; ch < channels; ++ch)
+ row[x].channel[ch] = 0.0;
+ }
+}
+
+static void
+accum_output_row(i_fcolor *accum, double fraction, i_fcolor const *in,
+ int width, int channels) {
+ int x, ch;
+
+ for (x = 0; x < width; ++x) {
+ for (ch = 0; ch < channels; ++ch) {
+ accum[x].channel[ch] += in[x].channel[ch] * fraction;
+ }
+ }
+}
+
+static void
+horizontal_scale(i_fcolor *out, int out_width,
+ i_fcolor const *in, int in_width,
+ int channels) {
+ double frac_col_to_fill, frac_col_left;
+ int in_x;
+ int out_x;
+ double x_scale = (double)out_width / in_width;
+ int ch;
+ double accum[MAXCHANNELS] = { 0 };
+
+ frac_col_to_fill = 1.0;
+ out_x = 0;
+ for (in_x = 0; in_x < in_width; ++in_x) {
+ frac_col_left = x_scale;
+ while (frac_col_left >= frac_col_to_fill) {
+ for (ch = 0; ch < channels; ++ch)
+ accum[ch] += frac_col_to_fill * in[in_x].channel[ch];
+
+ for (ch = 0; ch < channels; ++ch) {
+ out[out_x].channel[ch] = accum[ch];
+ accum[ch] = 0;
+ }
+ frac_col_left -= frac_col_to_fill;
+ frac_col_to_fill = 1.0;
+ ++out_x;
+ }
+
+ if (frac_col_left > 0) {
+ for (ch = 0; ch < channels; ++ch) {
+ accum[ch] += frac_col_left * in[in_x].channel[ch];
+ }
+ frac_col_to_fill -= frac_col_left;
+ }
+ }
+
+ if (out_x < out_width-1 || out_x > out_width) {
+ i_fatal(3, "Internal error: out_x %d out of range (width %d)", out_x, out_width);
+ }
+
+ if (out_x < out_width) {
+ for (ch = 0; ch < channels; ++ch) {
+ accum[ch] += frac_col_to_fill * in[in_width-1].channel[ch];
+ out[out_x].channel[ch] = accum[ch];
+ }
+ }
+}
#!perl -w
use strict;
use lib 't';
-use Test::More tests => 68;
+use Test::More tests => 213;
BEGIN { use_ok(Imager=>':all') }
ok($scaleimg->write(file=>'testout/t40scale2.ppm',type=>'pnm'),
"write preview scaled image") or print "# ",$img->errstr,"\n";
+$scaleimg = $img->scale(scalefactor => 0.25, qtype => 'mixing');
+ok($scaleimg, "scale it (mixing)") or print "# ", $img->errstr, "\n";
+ok($scaleimg->write(file=>'testout/t40scale3.ppm', type=>'pnm'),
+ "write mixing scaled image") or print "# ", $img->errstr, "\n";
+
{
# check for a warning when scale() is called in void context
my $warning;
$out = $img->scale(scalefactor=>0.00001, qtype => 'preview');
is($out->getwidth, 1, "min scale width (preview)");
is($out->getheight, 1, "min scale height (preview)");
+
+ $out = $img->scale(scalefactor=>0.00001, qtype => 'mixing');
+ is($out->getwidth, 1, "min scale width (mixing)");
+ is($out->getheight, 1, "min scale height (mixing)");
}
{ # error handling - NULL image
scale_test($im, 'scale', 120, 72, "72 height",
ypixels => 72);
+ # new scaling parameters in 0.54
+ scale_test($im, 'scale', 80, 48, "xscale 0.5",
+ xscalefactor => 0.5);
+ scale_test($im, 'scale', 80, 48, "yscale 0.5",
+ yscalefactor => 0.5);
+ scale_test($im, 'scale', 40, 48, "xscale 0.25 yscale 0.5",
+ xscalefactor => 0.25, yscalefactor => 0.5);
+ scale_test($im, 'scale', 160, 48, "xscale 1.0 yscale 0.5",
+ xscalefactor => 1.0, yscalefactor => 0.5);
+ scale_test($im, 'scale', 160, 48, "xpixels 160 ypixels 48 type nonprop",
+ xpixels => 160, ypixels => 48, type => 'nonprop');
+ scale_test($im, 'scale', 160, 96, "xpixels 160 ypixels 96",
+ xpixels => 160, ypixels => 96);
+ scale_test($im, 'scale', 80, 96, "xpixels 80 ypixels 96 type nonprop",
+ xpixels => 80, ypixels => 96, type => 'nonprop');
+
# scaleX
scale_test($im, 'scaleX', 80, 96, "defaults");
scale_test($im, 'scaleX', 40, 96, "0.25 scalefactor",
my ($in, $method, $exp_width, $exp_height, $note, @parms) = @_;
print "# $note: @parms\n";
- SKIP:
- {
- my $scaled = $in->$method(@parms);
- ok($scaled, "$method $note")
- or skip("failed to scale", 2);
- is($scaled->getwidth, $exp_width, "check width");
- is($scaled->getheight, $exp_height, "check height");
+ for my $qtype (qw(normal preview mixing)) {
+ SKIP:
+ {
+ my $scaled = $in->$method(@parms, qtype => $qtype);
+ ok($scaled, "$method $note qtype $qtype")
+ or skip("failed to scale", 2);
+ is($scaled->getwidth, $exp_width, "check width");
+ is($scaled->getheight, $exp_height, "check height");
+ }
}
}