8 image.c - implements most of the basic functions of Imager and much of the rest
14 c = i_color_new(red, green, blue, alpha);
22 image.c implements the basic functions to create and destroy image and
23 color objects for Imager.
25 =head1 FUNCTION REFERENCE
27 Some of these functions are internal.
38 #define minmax(a,b,i) ( ((a>=i)?a: ( (b<=i)?b:i )) )
40 /* Hack around an obscure linker bug on solaris - probably due to builtin gcc thingies */
41 void fake(void) { ceil(1); }
43 static int i_ppix_d(i_img *im, int x, int y, i_color *val);
44 static int i_gpix_d(i_img *im, int x, int y, i_color *val);
45 static int i_glin_d(i_img *im, int l, int r, int y, i_color *vals);
46 static int i_plin_d(i_img *im, int l, int r, int y, i_color *vals);
47 static int i_ppixf_d(i_img *im, int x, int y, i_fcolor *val);
48 static int i_gpixf_d(i_img *im, int x, int y, i_fcolor *val);
49 static int i_glinf_d(i_img *im, int l, int r, int y, i_fcolor *vals);
50 static int i_plinf_d(i_img *im, int l, int r, int y, i_fcolor *vals);
51 static int i_gsamp_d(i_img *im, int l, int r, int y, i_sample_t *samps, const int *chans, int chan_count);
52 static int i_gsampf_d(i_img *im, int l, int r, int y, i_fsample_t *samps, const int *chans, int chan_count);
53 /*static int i_psamp_d(i_img *im, int l, int r, int y, i_sample_t *samps, int *chans, int chan_count);
54 static int i_psampf_d(i_img *im, int l, int r, int y, i_fsample_t *samps, int *chans, int chan_count);*/
57 =item ICL_new_internal(r, g, b, a)
59 Return a new color object with values passed to it.
61 r - red component (range: 0 - 255)
62 g - green component (range: 0 - 255)
63 b - blue component (range: 0 - 255)
64 a - alpha component (range: 0 - 255)
70 ICL_new_internal(unsigned char r,unsigned char g,unsigned char b,unsigned char a) {
73 mm_log((1,"ICL_new_internal(r %d,g %d,b %d,a %d)\n", r, g, b, a));
75 if ( (cl=mymalloc(sizeof(i_color))) == NULL) m_fatal(2,"malloc() error\n");
80 mm_log((1,"(%p) <- ICL_new_internal\n",cl));
86 =item ICL_set_internal(cl, r, g, b, a)
88 Overwrite a color with new values.
90 cl - pointer to color object
91 r - red component (range: 0 - 255)
92 g - green component (range: 0 - 255)
93 b - blue component (range: 0 - 255)
94 a - alpha component (range: 0 - 255)
100 ICL_set_internal(i_color *cl,unsigned char r,unsigned char g,unsigned char b,unsigned char a) {
101 mm_log((1,"ICL_set_internal(cl* %p,r %d,g %d,b %d,a %d)\n",cl,r,g,b,a));
103 if ( (cl=mymalloc(sizeof(i_color))) == NULL)
104 m_fatal(2,"malloc() error\n");
109 mm_log((1,"(%p) <- ICL_set_internal\n",cl));
115 =item ICL_add(dst, src, ch)
117 Add src to dst inplace - dst is modified.
119 dst - pointer to destination color object
120 src - pointer to color object that is added
121 ch - number of channels
127 ICL_add(i_color *dst,i_color *src,int ch) {
130 tmp=dst->channel[i]+src->channel[i];
131 dst->channel[i]= tmp>255 ? 255:tmp;
138 Dump color information to log - strictly for debugging.
140 cl - pointer to color object
146 ICL_info(i_color *cl) {
147 mm_log((1,"i_color_info(cl* %p)\n",cl));
148 mm_log((1,"i_color_info: (%d,%d,%d,%d)\n",cl->rgba.r,cl->rgba.g,cl->rgba.b,cl->rgba.a));
154 Destroy ancillary data for Color object.
156 cl - pointer to color object
162 ICL_DESTROY(i_color *cl) {
163 mm_log((1,"ICL_DESTROY(cl* %p)\n",cl));
168 =item i_fcolor_new(double r, double g, double b, double a)
172 i_fcolor *i_fcolor_new(double r, double g, double b, double a) {
175 mm_log((1,"i_fcolor_new(r %g,g %g,b %g,a %g)\n", r, g, b, a));
177 if ( (cl=mymalloc(sizeof(i_fcolor))) == NULL) m_fatal(2,"malloc() error\n");
182 mm_log((1,"(%p) <- i_fcolor_new\n",cl));
188 =item i_fcolor_destroy(i_fcolor *cl)
192 void i_fcolor_destroy(i_fcolor *cl) {
197 =item IIM_base_8bit_direct (static)
199 A static i_img object used to initialize direct 8-bit per sample images.
203 static i_img IIM_base_8bit_direct =
205 0, /* channels set */
206 0, 0, 0, /* xsize, ysize, bytes */
209 i_direct_type, /* type */
212 { 0, 0, NULL }, /* tags */
215 i_ppix_d, /* i_f_ppix */
216 i_ppixf_d, /* i_f_ppixf */
217 i_plin_d, /* i_f_plin */
218 i_plinf_d, /* i_f_plinf */
219 i_gpix_d, /* i_f_gpix */
220 i_gpixf_d, /* i_f_gpixf */
221 i_glin_d, /* i_f_glin */
222 i_glinf_d, /* i_f_glinf */
223 i_gsamp_d, /* i_f_gsamp */
224 i_gsampf_d, /* i_f_gsampf */
228 NULL, /* i_f_addcolors */
229 NULL, /* i_f_getcolors */
230 NULL, /* i_f_colorcount */
231 NULL, /* i_f_maxcolors */
232 NULL, /* i_f_findcolor */
233 NULL, /* i_f_setcolors */
235 NULL, /* i_f_destroy */
238 /*static void set_8bit_direct(i_img *im) {
239 im->i_f_ppix = i_ppix_d;
240 im->i_f_ppixf = i_ppixf_d;
241 im->i_f_plin = i_plin_d;
242 im->i_f_plinf = i_plinf_d;
243 im->i_f_gpix = i_gpix_d;
244 im->i_f_gpixf = i_gpixf_d;
245 im->i_f_glin = i_glin_d;
246 im->i_f_glinf = i_glinf_d;
249 im->i_f_addcolor = NULL;
250 im->i_f_getcolor = NULL;
251 im->i_f_colorcount = NULL;
252 im->i_f_findcolor = NULL;
256 =item IIM_new(x, y, ch)
258 Creates a new image object I<x> pixels wide, and I<y> pixels high with I<ch> channels.
265 IIM_new(int x,int y,int ch) {
267 mm_log((1,"IIM_new(x %d,y %d,ch %d)\n",x,y,ch));
269 im=i_img_empty_ch(NULL,x,y,ch);
271 mm_log((1,"(%p) <- IIM_new\n",im));
277 IIM_DESTROY(i_img *im) {
278 mm_log((1,"IIM_DESTROY(im* %p)\n",im));
288 Create new image reference - notice that this isn't an object yet and
289 this should be fixed asap.
299 mm_log((1,"i_img_struct()\n"));
300 if ( (im=mymalloc(sizeof(i_img))) == NULL)
301 m_fatal(2,"malloc() error\n");
303 *im = IIM_base_8bit_direct;
311 mm_log((1,"(%p) <- i_img_struct\n",im));
316 =item i_img_empty(im, x, y)
318 Re-new image reference (assumes 3 channels)
321 x - xsize of destination image
322 y - ysize of destination image
324 **FIXME** what happens if a live image is passed in here?
326 Should this just call i_img_empty_ch()?
332 i_img_empty(i_img *im,int x,int y) {
333 mm_log((1,"i_img_empty(*im %p, x %d, y %d)\n",im, x, y));
334 return i_img_empty_ch(im, x, y, 3);
338 =item i_img_empty_ch(im, x, y, ch)
340 Re-new image reference
343 x - xsize of destination image
344 y - ysize of destination image
345 ch - number of channels
351 i_img_empty_ch(i_img *im,int x,int y,int ch) {
352 mm_log((1,"i_img_empty_ch(*im %p, x %d, y %d, ch %d)\n", im, x, y, ch));
354 if ( (im=mymalloc(sizeof(i_img))) == NULL)
355 m_fatal(2,"malloc() error\n");
357 memcpy(im, &IIM_base_8bit_direct, sizeof(i_img));
358 i_tags_new(&im->tags);
362 im->ch_mask = MAXINT;
363 im->bytes=x*y*im->channels;
364 if ( (im->idata=mymalloc(im->bytes)) == NULL) m_fatal(2,"malloc() error\n");
365 memset(im->idata,0,(size_t)im->bytes);
369 mm_log((1,"(%p) <- i_img_empty_ch\n",im));
374 =item i_img_exorcise(im)
384 i_img_exorcise(i_img *im) {
385 mm_log((1,"i_img_exorcise(im* 0x%x)\n",im));
386 i_tags_destroy(&im->tags);
388 (im->i_f_destroy)(im);
389 if (im->idata != NULL) { myfree(im->idata); }
395 im->i_f_ppix=i_ppix_d;
396 im->i_f_gpix=i_gpix_d;
397 im->i_f_plin=i_plin_d;
398 im->i_f_glin=i_glin_d;
403 =item i_img_destroy(im)
405 Destroy image and free data via exorcise.
413 i_img_destroy(i_img *im) {
414 mm_log((1,"i_img_destroy(im %p)\n",im));
416 if (im) { myfree(im); }
420 =item i_img_info(im, info)
422 Return image information
425 info - pointer to array to return data
427 info is an array of 4 integers with the following values:
432 info[3] - channel mask
439 i_img_info(i_img *im,int *info) {
440 mm_log((1,"i_img_info(im 0x%x)\n",im));
442 mm_log((1,"i_img_info: xsize=%d ysize=%d channels=%d mask=%ud\n",im->xsize,im->ysize,im->channels,im->ch_mask));
443 mm_log((1,"i_img_info: idata=0x%d\n",im->idata));
446 info[2] = im->channels;
447 info[3] = im->ch_mask;
457 =item i_img_setmask(im, ch_mask)
459 Set the image channel mask for I<im> to I<ch_mask>.
464 i_img_setmask(i_img *im,int ch_mask) { im->ch_mask=ch_mask; }
468 =item i_img_getmask(im)
470 Get the image channel mask for I<im>.
475 i_img_getmask(i_img *im) { return im->ch_mask; }
478 =item i_img_getchannels(im)
480 Get the number of channels in I<im>.
485 i_img_getchannels(i_img *im) { return im->channels; }
490 =item i_copyto_trans(im, src, x1, y1, x2, y2, tx, ty, trans)
492 (x1,y1) (x2,y2) specifies the region to copy (in the source coordinates)
493 (tx,ty) specifies the upper left corner for the target image.
494 pass NULL in trans for non transparent i_colors.
500 i_copyto_trans(i_img *im,i_img *src,int x1,int y1,int x2,int y2,int tx,int ty,i_color *trans) {
502 int x,y,t,ttx,tty,tt,ch;
504 mm_log((1,"i_copyto_trans(im* %p,src 0x%x, x1 %d, y1 %d, x2 %d, y2 %d, tx %d, ty %d, trans* 0x%x)\n",
505 im, src, x1, y1, x2, y2, tx, ty, trans));
507 if (x2<x1) { t=x1; x1=x2; x2=t; }
508 if (y2<y1) { t=y1; y1=y2; y2=t; }
520 for(ch=0;ch<im->channels;ch++) if (trans->channel[ch]!=pv.channel[ch]) tt++;
521 if (tt) i_ppix(im,ttx,tty,&pv);
522 } else i_ppix(im,ttx,tty,&pv);
530 =item i_copyto(dest, src, x1, y1, x2, y2, tx, ty)
532 Copies image data from the area (x1,y1)-[x2,y2] in the source image to
533 a rectangle the same size with it's top-left corner at (tx,ty) in the
536 If x1 > x2 or y1 > y2 then the corresponding co-ordinates are swapped.
542 i_copyto(i_img *im, i_img *src, int x1, int y1, int x2, int y2, int tx, int ty) {
543 int x, y, t, ttx, tty;
545 if (x2<x1) { t=x1; x1=x2; x2=t; }
546 if (y2<y1) { t=y1; y1=y2; y2=t; }
548 mm_log((1,"i_copyto(im* %p, src %p, x1 %d, y1 %d, x2 %d, y2 %d, tx %d, ty %d)\n",
549 im, src, x1, y1, x2, y2, tx, ty));
551 if (im->bits == i_8_bits) {
554 for(y=y1; y<y2; y++) {
556 for(x=x1; x<x2; x++) {
557 i_gpix(src, x, y, &pv);
558 i_ppix(im, ttx, tty, &pv);
567 for(y=y1; y<y2; y++) {
569 for(x=x1; x<x2; x++) {
570 i_gpixf(src, x, y, &pv);
571 i_ppixf(im, ttx, tty, &pv);
580 =item i_copy(im, src)
582 Copies the contents of the image I<src> over the image I<im>.
588 i_copy(i_img *im, i_img *src) {
591 mm_log((1,"i_copy(im* %p,src %p)\n", im, src));
595 if (src->type == i_direct_type) {
596 if (src->bits == i_8_bits) {
598 i_img_empty_ch(im, x1, y1, src->channels);
599 pv = mymalloc(sizeof(i_color) * x1);
601 for (y = 0; y < y1; ++y) {
602 i_glin(src, 0, x1, y, pv);
603 i_plin(im, 0, x1, y, pv);
609 if (src->bits == i_16_bits)
610 i_img_16_new_low(im, x1, y1, src->channels);
611 else if (src->bits == i_double_bits)
612 i_img_double_new_low(im, x1, y1, src->channels);
614 fprintf(stderr, "i_copy(): Unknown image bit size %d\n", src->bits);
615 return; /* I dunno */
618 pv = mymalloc(sizeof(i_fcolor) * x1);
619 for (y = 0; y < y1; ++y) {
620 i_glinf(src, 0, x1, y, pv);
621 i_plinf(im, 0, x1, y, pv);
633 i_img_pal_new_low(im, x1, y1, src->channels, i_maxcolors(src));
634 /* copy across the palette */
635 count = i_colorcount(src);
636 for (index = 0; index < count; ++index) {
637 i_getcolors(src, index, &temp, 1);
638 i_addcolors(im, &temp, 1);
641 vals = mymalloc(sizeof(i_palidx) * x1);
642 for (y = 0; y < y1; ++y) {
643 i_gpal(src, 0, x1, y, vals);
644 i_ppal(im, 0, x1, y, vals);
652 =item i_rubthru(im, src, tx, ty)
654 Takes the image I<src> and applies it at an original (I<tx>,I<ty>) in I<im>.
656 The alpha channel of each pixel in I<src> is used to control how much
657 the existing colour in I<im> is replaced, if it is 255 then the colour
658 is completely replaced, if it is 0 then the original colour is left
665 i_rubthru(i_img *im,i_img *src,int tx,int ty) {
672 mm_log((1,"i_rubthru(im %p, src %p, tx %d, ty %d)\n", im, src, tx, ty));
675 if (im->channels == 3 && src->channels == 4) {
677 chans[0] = 0; chans[1] = 1; chans[2] = 2;
680 else if (im->channels == 3 && src->channels == 2) {
682 chans[0] = chans[1] = chans[2] = 0;
685 else if (im->channels == 1 && src->channels == 2) {
691 i_push_error(0, "rubthru can only work where (dest, src) channels are (3,4), (3,2) or (1,2)");
696 /* if you change this code, please make sure the else branch is
697 changed in a similar fashion - TC */
699 i_color pv, orig, dest;
701 for(x=0; x<src->xsize; x++) {
703 for(y=0;y<src->ysize;y++) {
704 /* fprintf(stderr,"reading (%d,%d) writing (%d,%d).\n",x,y,ttx,tty); */
705 i_gpix(src, x, y, &pv);
706 i_gpix(im, ttx, tty, &orig);
707 alpha = pv.channel[alphachan];
708 for (ch = 0; ch < chancount; ++ch) {
709 dest.channel[ch] = (alpha * pv.channel[chans[ch]]
710 + (255 - alpha) * orig.channel[ch])/255;
712 i_ppix(im, ttx, tty, &dest);
720 i_fcolor pv, orig, dest;
723 for(x=0; x<src->xsize; x++) {
725 for(y=0;y<src->ysize;y++) {
726 /* fprintf(stderr,"reading (%d,%d) writing (%d,%d).\n",x,y,ttx,tty); */
727 i_gpixf(src, x, y, &pv);
728 i_gpixf(im, ttx, tty, &orig);
729 alpha = pv.channel[alphachan];
730 for (ch = 0; ch < chancount; ++ch) {
731 dest.channel[ch] = alpha * pv.channel[chans[ch]]
732 + (1 - alpha) * orig.channel[ch];
734 i_ppixf(im, ttx, tty, &dest);
746 =item i_flipxy(im, axis)
748 Flips the image inplace around the axis specified.
749 Returns 0 if parameters are invalid.
752 axis - 0 = x, 1 = y, 2 = both
758 i_flipxy(i_img *im, int direction) {
759 int x, x2, y, y2, xm, ym;
763 mm_log((1, "i_flipxy(im %p, direction %d)\n", im, direction ));
768 case XAXIS: /* Horizontal flip */
771 for(y=0; y<ym; y++) {
773 for(x=0; x<xm; x++) {
775 i_gpix(im, x, y, &val1);
776 i_gpix(im, x2, y, &val2);
777 i_ppix(im, x, y, &val2);
778 i_ppix(im, x2, y, &val1);
783 case YAXIS: /* Vertical flip */
787 for(y=0; y<ym; y++) {
788 for(x=0; x<xm; x++) {
790 i_gpix(im, x, y, &val1);
791 i_gpix(im, x, y2, &val2);
792 i_ppix(im, x, y, &val2);
793 i_ppix(im, x, y2, &val1);
798 case XYAXIS: /* Horizontal and Vertical flip */
802 for(y=0; y<ym; y++) {
804 for(x=0; x<xm; x++) {
806 i_gpix(im, x, y, &val1);
807 i_gpix(im, x2, y2, &val2);
808 i_ppix(im, x, y, &val2);
809 i_ppix(im, x2, y2, &val1);
811 i_gpix(im, x2, y, &val1);
812 i_gpix(im, x, y2, &val2);
813 i_ppix(im, x2, y, &val2);
814 i_ppix(im, x, y2, &val1);
819 if (xm*2 != xs) { /* odd number of column */
820 mm_log((1, "i_flipxy: odd number of columns\n"));
823 for(y=0; y<ym; y++) {
825 i_gpix(im, x, y, &val1);
826 i_gpix(im, x, y2, &val2);
827 i_ppix(im, x, y, &val2);
828 i_ppix(im, x, y2, &val1);
832 if (ym*2 != ys) { /* odd number of rows */
833 mm_log((1, "i_flipxy: odd number of rows\n"));
836 for(x=0; x<xm; x++) {
838 i_gpix(im, x, y, &val1);
839 i_gpix(im, x2, y, &val2);
840 i_ppix(im, x, y, &val2);
841 i_ppix(im, x2, y, &val1);
847 mm_log((1, "i_flipxy: direction is invalid\n" ));
865 if ((x >= 2.0) || (x <= -2.0)) return (0.0);
866 else if (x == 0.0) return (1.0);
867 else return(sin(PIx) / PIx * sin(PIx2) / PIx2);
871 =item i_scaleaxis(im, value, axis)
873 Returns a new image object which is I<im> scaled by I<value> along
874 wither the x-axis (I<axis> == 0) or the y-axis (I<axis> == 1).
880 i_scaleaxis(i_img *im, float Value, int Axis) {
881 int hsize, vsize, i, j, k, l, lMax, iEnd, jEnd;
882 int LanczosWidthFactor;
883 float *l0, *l1, OldLocation;
886 float F, PictureValue[MAXCHANNELS];
888 i_color val,val1,val2;
891 mm_log((1,"i_scaleaxis(im %p,Value %.2f,Axis %d)\n",im,Value,Axis));
894 hsize = (int)(0.5 + im->xsize * Value);
901 vsize = (int)(0.5 + im->ysize * Value);
907 new_img = i_img_empty_ch(NULL, hsize, vsize, im->channels);
909 /* 1.4 is a magic number, setting it to 2 will cause rather blurred images */
910 LanczosWidthFactor = (Value >= 1) ? 1 : (int) (1.4/Value);
911 lMax = LanczosWidthFactor << 1;
913 l0 = mymalloc(lMax * sizeof(float));
914 l1 = mymalloc(lMax * sizeof(float));
916 for (j=0; j<jEnd; j++) {
917 OldLocation = ((float) j) / Value;
918 T = (int) (OldLocation);
919 F = OldLocation - (float) T;
921 for (l = 0; l<lMax; l++) {
922 l0[lMax-l-1] = Lanczos(((float) (lMax-l-1) + F) / (float) LanczosWidthFactor);
923 l1[l] = Lanczos(((float) (l+1) - F) / (float) LanczosWidthFactor);
926 /* Make sure filter is normalized */
928 for(l=0; l<lMax; l++) {
932 t /= (float)LanczosWidthFactor;
934 for(l=0; l<lMax; l++) {
941 for (i=0; i<iEnd; i++) {
942 for (k=0; k<im->channels; k++) PictureValue[k] = 0.0;
943 for (l=0; l<lMax; l++) {
946 mx = (mx < 0) ? 0 : mx;
947 Mx = (Mx >= im->xsize) ? im->xsize-1 : Mx;
949 i_gpix(im, Mx, i, &val1);
950 i_gpix(im, mx, i, &val2);
952 for (k=0; k<im->channels; k++) {
953 PictureValue[k] += l1[l] * val1.channel[k];
954 PictureValue[k] += l0[lMax-l-1] * val2.channel[k];
957 for(k=0;k<im->channels;k++) {
958 psave = (short)(0.5+(PictureValue[k] / LanczosWidthFactor));
959 val.channel[k]=minmax(0,255,psave);
961 i_ppix(new_img, j, i, &val);
966 for (i=0; i<iEnd; i++) {
967 for (k=0; k<im->channels; k++) PictureValue[k] = 0.0;
968 for (l=0; l < lMax; l++) {
971 mx = (mx < 0) ? 0 : mx;
972 Mx = (Mx >= im->ysize) ? im->ysize-1 : Mx;
974 i_gpix(im, i, Mx, &val1);
975 i_gpix(im, i, mx, &val2);
976 for (k=0; k<im->channels; k++) {
977 PictureValue[k] += l1[l] * val1.channel[k];
978 PictureValue[k] += l0[lMax-l-1] * val2.channel[k];
981 for (k=0; k<im->channels; k++) {
982 psave = (short)(0.5+(PictureValue[k] / LanczosWidthFactor));
983 val.channel[k] = minmax(0, 255, psave);
985 i_ppix(new_img, i, j, &val);
993 mm_log((1,"(%p) <- i_scaleaxis\n", new_img));
1000 =item i_scale_nn(im, scx, scy)
1002 Scale by using nearest neighbor
1003 Both axes scaled at the same time since
1004 nothing is gained by doing it in two steps
1011 i_scale_nn(i_img *im, float scx, float scy) {
1013 int nxsize,nysize,nx,ny;
1017 mm_log((1,"i_scale_nn(im 0x%x,scx %.2f,scy %.2f)\n",im,scx,scy));
1019 nxsize = (int) ((float) im->xsize * scx);
1020 nysize = (int) ((float) im->ysize * scy);
1022 new_img=i_img_empty_ch(NULL,nxsize,nysize,im->channels);
1024 for(ny=0;ny<nysize;ny++) for(nx=0;nx<nxsize;nx++) {
1025 i_gpix(im,((float)nx)/scx,((float)ny)/scy,&val);
1026 i_ppix(new_img,nx,ny,&val);
1029 mm_log((1,"(0x%x) <- i_scale_nn\n",new_img));
1035 =item i_sametype(i_img *im, int xsize, int ysize)
1037 Returns an image of the same type (sample size, channels, paletted/direct).
1039 For paletted images the palette is copied from the source.
1044 i_img *i_sametype(i_img *src, int xsize, int ysize) {
1045 if (src->type == i_direct_type) {
1046 if (src->bits == 8) {
1047 return i_img_empty_ch(NULL, xsize, ysize, src->channels);
1049 else if (src->bits == i_16_bits) {
1050 return i_img_16_new(xsize, ysize, src->channels);
1052 else if (src->bits == i_double_bits) {
1053 return i_img_double_new(xsize, ysize, src->channels);
1056 i_push_error(0, "Unknown image bits");
1064 i_img *targ = i_img_pal_new(xsize, ysize, src->channels, i_maxcolors(src));
1065 for (i = 0; i < i_colorcount(src); ++i) {
1066 i_getcolors(src, i, &col, 1);
1067 i_addcolors(targ, &col, 1);
1075 =item i_transform(im, opx, opxl, opy, opyl, parm, parmlen)
1077 Spatially transforms I<im> returning a new image.
1079 opx for a length of opxl and opy for a length of opy are arrays of
1080 operators that modify the x and y positions to retreive the pixel data from.
1082 parm and parmlen define extra parameters that the operators may use.
1084 Note that this function is largely superseded by the more flexible
1085 L<transform.c/i_transform2>.
1087 Returns the new image.
1089 The operators for this function are defined in L<stackmach.c>.
1094 i_transform(i_img *im, int *opx,int opxl,int *opy,int opyl,double parm[],int parmlen) {
1096 int nxsize,nysize,nx,ny;
1100 mm_log((1,"i_transform(im 0x%x, opx 0x%x, opxl %d, opy 0x%x, opyl %d, parm 0x%x, parmlen %d)\n",im,opx,opxl,opy,opyl,parm,parmlen));
1103 nysize = im->ysize ;
1105 new_img=i_img_empty_ch(NULL,nxsize,nysize,im->channels);
1106 /* fprintf(stderr,"parm[2]=%f\n",parm[2]); */
1107 for(ny=0;ny<nysize;ny++) for(nx=0;nx<nxsize;nx++) {
1108 /* parm[parmlen-2]=(double)nx;
1109 parm[parmlen-1]=(double)ny; */
1114 /* fprintf(stderr,"(%d,%d) ->",nx,ny); */
1115 rx=op_run(opx,opxl,parm,parmlen);
1116 ry=op_run(opy,opyl,parm,parmlen);
1117 /* fprintf(stderr,"(%f,%f)\n",rx,ry); */
1118 i_gpix(im,rx,ry,&val);
1119 i_ppix(new_img,nx,ny,&val);
1122 mm_log((1,"(0x%x) <- i_transform\n",new_img));
1127 =item i_img_diff(im1, im2)
1129 Calculates the sum of the squares of the differences between
1130 correspoding channels in two images.
1132 If the images are not the same size then only the common area is
1133 compared, hence even if images are different sizes this function
1139 i_img_diff(i_img *im1,i_img *im2) {
1140 int x,y,ch,xb,yb,chb;
1144 mm_log((1,"i_img_diff(im1 0x%x,im2 0x%x)\n",im1,im2));
1146 xb=(im1->xsize<im2->xsize)?im1->xsize:im2->xsize;
1147 yb=(im1->ysize<im2->ysize)?im1->ysize:im2->ysize;
1148 chb=(im1->channels<im2->channels)?im1->channels:im2->channels;
1150 mm_log((1,"i_img_diff: xb=%d xy=%d chb=%d\n",xb,yb,chb));
1153 for(y=0;y<yb;y++) for(x=0;x<xb;x++) {
1154 i_gpix(im1,x,y,&val1);
1155 i_gpix(im2,x,y,&val2);
1157 for(ch=0;ch<chb;ch++) tdiff+=(val1.channel[ch]-val2.channel[ch])*(val1.channel[ch]-val2.channel[ch]);
1159 mm_log((1,"i_img_diff <- (%.2f)\n",tdiff));
1163 /* just a tiny demo of haar wavelets */
1171 i_img *new_img,*new_img2;
1172 i_color val1,val2,dval1,dval2;
1180 /* horizontal pass */
1182 new_img=i_img_empty_ch(NULL,fx*2,fy*2,im->channels);
1183 new_img2=i_img_empty_ch(NULL,fx*2,fy*2,im->channels);
1186 for(y=0;y<my;y++) for(x=0;x<fx;x++) {
1187 i_gpix(im,x*2,y,&val1);
1188 i_gpix(im,x*2+1,y,&val2);
1189 for(ch=0;ch<im->channels;ch++) {
1190 dval1.channel[ch]=(val1.channel[ch]+val2.channel[ch])/2;
1191 dval2.channel[ch]=(255+val1.channel[ch]-val2.channel[ch])/2;
1193 i_ppix(new_img,x,y,&dval1);
1194 i_ppix(new_img,x+fx,y,&dval2);
1197 for(y=0;y<fy;y++) for(x=0;x<mx;x++) {
1198 i_gpix(new_img,x,y*2,&val1);
1199 i_gpix(new_img,x,y*2+1,&val2);
1200 for(ch=0;ch<im->channels;ch++) {
1201 dval1.channel[ch]=(val1.channel[ch]+val2.channel[ch])/2;
1202 dval2.channel[ch]=(255+val1.channel[ch]-val2.channel[ch])/2;
1204 i_ppix(new_img2,x,y,&dval1);
1205 i_ppix(new_img2,x,y+fy,&dval2);
1208 i_img_destroy(new_img);
1213 =item i_count_colors(im, maxc)
1215 returns number of colors or -1
1216 to indicate that it was more than max colors
1221 i_count_colors(i_img *im,int maxc) {
1228 mm_log((1,"i_count_colors(im 0x%08X,maxc %d)\n"));
1235 for(y=0;y<ysize;y++) for(x=0;x<xsize;x++) {
1236 i_gpix(im,x,y,&val);
1237 colorcnt+=octt_add(ct,val.rgb.r,val.rgb.g,val.rgb.b);
1238 if (colorcnt > maxc) { octt_delete(ct); return -1; }
1247 =head2 8-bit per sample image internal functions
1249 These are the functions installed in an 8-bit per sample image.
1253 =item i_ppix_d(im, x, y, col)
1257 This is the function kept in the i_f_ppix member of an i_img object.
1258 It does a normal store of a pixel into the image with range checking.
1260 Returns 0 if the pixel could be set, -1 otherwise.
1266 i_ppix_d(i_img *im, int x, int y, i_color *val) {
1269 if ( x>-1 && x<im->xsize && y>-1 && y<im->ysize ) {
1270 for(ch=0;ch<im->channels;ch++)
1271 if (im->ch_mask&(1<<ch))
1272 im->idata[(x+y*im->xsize)*im->channels+ch]=val->channel[ch];
1275 return -1; /* error was clipped */
1279 =item i_gpix_d(im, x, y, &col)
1283 This is the function kept in the i_f_gpix member of an i_img object.
1284 It does normal retrieval of a pixel from the image with range checking.
1286 Returns 0 if the pixel could be set, -1 otherwise.
1292 i_gpix_d(i_img *im, int x, int y, i_color *val) {
1294 if (x>-1 && x<im->xsize && y>-1 && y<im->ysize) {
1295 for(ch=0;ch<im->channels;ch++)
1296 val->channel[ch]=im->idata[(x+y*im->xsize)*im->channels+ch];
1299 for(ch=0;ch<im->channels;ch++) val->channel[ch] = 0;
1300 return -1; /* error was cliped */
1304 =item i_glin_d(im, l, r, y, vals)
1306 Reads a line of data from the image, storing the pixels at vals.
1308 The line runs from (l,y) inclusive to (r,y) non-inclusive
1310 vals should point at space for (r-l) pixels.
1312 l should never be less than zero (to avoid confusion about where to
1313 put the pixels in vals).
1315 Returns the number of pixels copied (eg. if r, l or y is out of range)
1321 i_glin_d(i_img *im, int l, int r, int y, i_color *vals) {
1323 unsigned char *data;
1324 if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) {
1327 data = im->idata + (l+y*im->xsize) * im->channels;
1329 for (i = 0; i < count; ++i) {
1330 for (ch = 0; ch < im->channels; ++ch)
1331 vals[i].channel[ch] = *data++;
1341 =item i_plin_d(im, l, r, y, vals)
1343 Writes a line of data into the image, using the pixels at vals.
1345 The line runs from (l,y) inclusive to (r,y) non-inclusive
1347 vals should point at (r-l) pixels.
1349 l should never be less than zero (to avoid confusion about where to
1350 get the pixels in vals).
1352 Returns the number of pixels copied (eg. if r, l or y is out of range)
1358 i_plin_d(i_img *im, int l, int r, int y, i_color *vals) {
1360 unsigned char *data;
1361 if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) {
1364 data = im->idata + (l+y*im->xsize) * im->channels;
1366 for (i = 0; i < count; ++i) {
1367 for (ch = 0; ch < im->channels; ++ch) {
1368 if (im->ch_mask & (1 << ch))
1369 *data = vals[i].channel[ch];
1381 =item i_ppixf_d(im, x, y, val)
1387 i_ppixf_d(i_img *im, int x, int y, i_fcolor *val) {
1390 if ( x>-1 && x<im->xsize && y>-1 && y<im->ysize ) {
1391 for(ch=0;ch<im->channels;ch++)
1392 if (im->ch_mask&(1<<ch)) {
1393 im->idata[(x+y*im->xsize)*im->channels+ch] =
1394 SampleFTo8(val->channel[ch]);
1398 return -1; /* error was clipped */
1402 =item i_gpixf_d(im, x, y, val)
1408 i_gpixf_d(i_img *im, int x, int y, i_fcolor *val) {
1410 if (x>-1 && x<im->xsize && y>-1 && y<im->ysize) {
1411 for(ch=0;ch<im->channels;ch++) {
1413 Sample8ToF(im->idata[(x+y*im->xsize)*im->channels+ch]);
1417 return -1; /* error was cliped */
1421 =item i_glinf_d(im, l, r, y, vals)
1423 Reads a line of data from the image, storing the pixels at vals.
1425 The line runs from (l,y) inclusive to (r,y) non-inclusive
1427 vals should point at space for (r-l) pixels.
1429 l should never be less than zero (to avoid confusion about where to
1430 put the pixels in vals).
1432 Returns the number of pixels copied (eg. if r, l or y is out of range)
1438 i_glinf_d(i_img *im, int l, int r, int y, i_fcolor *vals) {
1440 unsigned char *data;
1441 if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) {
1444 data = im->idata + (l+y*im->xsize) * im->channels;
1446 for (i = 0; i < count; ++i) {
1447 for (ch = 0; ch < im->channels; ++ch)
1448 vals[i].channel[ch] = Sample8ToF(*data++);
1458 =item i_plinf_d(im, l, r, y, vals)
1460 Writes a line of data into the image, using the pixels at vals.
1462 The line runs from (l,y) inclusive to (r,y) non-inclusive
1464 vals should point at (r-l) pixels.
1466 l should never be less than zero (to avoid confusion about where to
1467 get the pixels in vals).
1469 Returns the number of pixels copied (eg. if r, l or y is out of range)
1475 i_plinf_d(i_img *im, int l, int r, int y, i_fcolor *vals) {
1477 unsigned char *data;
1478 if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) {
1481 data = im->idata + (l+y*im->xsize) * im->channels;
1483 for (i = 0; i < count; ++i) {
1484 for (ch = 0; ch < im->channels; ++ch) {
1485 if (im->ch_mask & (1 << ch))
1486 *data = SampleFTo8(vals[i].channel[ch]);
1498 =item i_gsamp_d(i_img *im, int l, int r, int y, i_sample_t *samps, int *chans, int chan_count)
1500 Reads sample values from im for the horizontal line (l, y) to (r-1,y)
1501 for the channels specified by chans, an array of int with chan_count
1504 Returns the number of samples read (which should be (r-l) * bits_set(chan_mask)
1510 i_gsamp_d(i_img *im, int l, int r, int y, i_sample_t *samps,
1511 const int *chans, int chan_count) {
1512 int ch, count, i, w;
1513 unsigned char *data;
1515 if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) {
1518 data = im->idata + (l+y*im->xsize) * im->channels;
1523 /* make sure we have good channel numbers */
1524 for (ch = 0; ch < chan_count; ++ch) {
1525 if (chans[ch] < 0 || chans[ch] >= im->channels) {
1526 i_push_errorf(0, "No channel %d in this image", chans[ch]);
1530 for (i = 0; i < w; ++i) {
1531 for (ch = 0; ch < chan_count; ++ch) {
1532 *samps++ = data[chans[ch]];
1535 data += im->channels;
1539 for (i = 0; i < w; ++i) {
1540 for (ch = 0; ch < chan_count; ++ch) {
1541 *samps++ = data[ch];
1544 data += im->channels;
1556 =item i_gsampf_d(i_img *im, int l, int r, int y, i_fsample_t *samps, int *chans, int chan_count)
1558 Reads sample values from im for the horizontal line (l, y) to (r-1,y)
1559 for the channels specified by chan_mask, where bit 0 is the first
1562 Returns the number of samples read (which should be (r-l) * bits_set(chan_mask)
1568 i_gsampf_d(i_img *im, int l, int r, int y, i_fsample_t *samps,
1569 const int *chans, int chan_count) {
1570 int ch, count, i, w;
1571 unsigned char *data;
1572 for (ch = 0; ch < chan_count; ++ch) {
1573 if (chans[ch] < 0 || chans[ch] >= im->channels) {
1574 i_push_errorf(0, "No channel %d in this image", chans[ch]);
1577 if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) {
1580 data = im->idata + (l+y*im->xsize) * im->channels;
1585 /* make sure we have good channel numbers */
1586 for (ch = 0; ch < chan_count; ++ch) {
1587 if (chans[ch] < 0 || chans[ch] >= im->channels) {
1588 i_push_errorf(0, "No channel %d in this image", chans[ch]);
1592 for (i = 0; i < w; ++i) {
1593 for (ch = 0; ch < chan_count; ++ch) {
1594 *samps++ = Sample8ToF(data[chans[ch]]);
1597 data += im->channels;
1601 for (i = 0; i < w; ++i) {
1602 for (ch = 0; ch < chan_count; ++ch) {
1603 *samps++ = Sample8ToF(data[ch]);
1606 data += im->channels;
1619 =head2 Image method wrappers
1621 These functions provide i_fsample_t functions in terms of their
1622 i_sample_t versions.
1626 =item i_ppixf_fp(i_img *im, int x, int y, i_fcolor *pix)
1631 int i_ppixf_fp(i_img *im, int x, int y, i_fcolor *pix) {
1635 for (ch = 0; ch < im->channels; ++ch)
1636 temp.channel[ch] = SampleFTo8(pix->channel[ch]);
1638 return i_ppix(im, x, y, &temp);
1642 =item i_gpixf_fp(i_img *im, int x, int y, i_fcolor *pix)
1646 int i_gpixf_fp(i_img *im, int x, int y, i_fcolor *pix) {
1650 if (i_gpix(im, x, y, &temp)) {
1651 for (ch = 0; ch < im->channels; ++ch)
1652 pix->channel[ch] = Sample8ToF(temp.channel[ch]);
1660 =item i_plinf_fp(i_img *im, int l, int r, int y, i_fcolor *pix)
1664 int i_plinf_fp(i_img *im, int l, int r, int y, i_fcolor *pix) {
1667 if (y >= 0 && y < im->ysize && l < im->xsize && l >= 0) {
1673 work = mymalloc(sizeof(i_color) * (r-l));
1674 for (i = 0; i < r-l; ++i) {
1675 for (ch = 0; ch < im->channels; ++ch)
1676 work[i].channel[ch] = SampleFTo8(pix[i].channel[ch]);
1678 ret = i_plin(im, l, r, y, work);
1693 =item i_glinf_fp(i_img *im, int l, int r, int y, i_fcolor *pix)
1697 int i_glinf_fp(i_img *im, int l, int r, int y, i_fcolor *pix) {
1700 if (y >= 0 && y < im->ysize && l < im->xsize && l >= 0) {
1706 work = mymalloc(sizeof(i_color) * (r-l));
1707 ret = i_plin(im, l, r, y, work);
1708 for (i = 0; i < r-l; ++i) {
1709 for (ch = 0; ch < im->channels; ++ch)
1710 pix[i].channel[ch] = Sample8ToF(work[i].channel[ch]);
1726 =item i_gsampf_fp(i_img *im, int l, int r, int y, i_fsample_t *samp, int *chans, int chan_count)
1730 int i_gsampf_fp(i_img *im, int l, int r, int y, i_fsample_t *samp,
1731 int const *chans, int chan_count) {
1734 if (y >= 0 && y < im->ysize && l < im->xsize && l >= 0) {
1740 work = mymalloc(sizeof(i_sample_t) * (r-l));
1741 ret = i_gsamp(im, l, r, y, work, chans, chan_count);
1742 for (i = 0; i < ret; ++i) {
1743 samp[i] = Sample8ToF(work[i]);
1761 =head2 Palette wrapper functions
1763 Used for virtual images, these forward palette calls to a wrapped image,
1764 assuming the wrapped image is the first pointer in the structure that
1765 im->ext_data points at.
1769 =item i_addcolors_forward(i_img *im, i_color *colors, int count)
1773 int i_addcolors_forward(i_img *im, i_color *colors, int count) {
1774 return i_addcolors(*(i_img **)im->ext_data, colors, count);
1778 =item i_getcolors_forward(i_img *im, int i, i_color *color, int count)
1782 int i_getcolors_forward(i_img *im, int i, i_color *color, int count) {
1783 return i_getcolors(*(i_img **)im->ext_data, i, color, count);
1787 =item i_setcolors_forward(i_img *im, int i, i_color *color, int count)
1791 int i_setcolors_forward(i_img *im, int i, i_color *color, int count) {
1792 return i_setcolors(*(i_img **)im->ext_data, i, color, count);
1796 =item i_colorcount_forward(i_img *im)
1800 int i_colorcount_forward(i_img *im) {
1801 return i_colorcount(*(i_img **)im->ext_data);
1805 =item i_maxcolors_forward(i_img *im)
1809 int i_maxcolors_forward(i_img *im) {
1810 return i_maxcolors(*(i_img **)im->ext_data);
1814 =item i_findcolor_forward(i_img *im, i_color *color, i_palidx *entry)
1818 int i_findcolor_forward(i_img *im, i_color *color, i_palidx *entry) {
1819 return i_findcolor(*(i_img **)im->ext_data, color, entry);
1825 =head2 Stream reading and writing wrapper functions
1829 =item i_gen_reader(i_gen_read_data *info, char *buf, int length)
1831 Performs general read buffering for file readers that permit reading
1832 to be done through a callback.
1834 The final callback gets two parameters, a I<need> value, and a I<want>
1835 value, where I<need> is the amount of data that the file library needs
1836 to read, and I<want> is the amount of space available in the buffer
1837 maintained by these functions.
1839 This means if you need to read from a stream that you don't know the
1840 length of, you can return I<need> bytes, taking the performance hit of
1841 possibly expensive callbacks (eg. back to perl code), or if you are
1842 reading from a stream where it doesn't matter if some data is lost, or
1843 if the total length of the stream is known, you can return I<want>
1850 i_gen_reader(i_gen_read_data *gci, char *buf, int length) {
1853 if (length < gci->length - gci->cpos) {
1855 memcpy(buf, gci->buffer+gci->cpos, length);
1856 gci->cpos += length;
1861 memcpy(buf, gci->buffer+gci->cpos, gci->length-gci->cpos);
1862 total += gci->length - gci->cpos;
1863 length -= gci->length - gci->cpos;
1864 buf += gci->length - gci->cpos;
1865 if (length < (int)sizeof(gci->buffer)) {
1869 && (did_read = (gci->cb)(gci->userdata, gci->buffer, length,
1870 sizeof(gci->buffer))) > 0) {
1872 gci->length = did_read;
1874 copy_size = min(length, gci->length);
1875 memcpy(buf, gci->buffer, copy_size);
1876 gci->cpos += copy_size;
1879 length -= copy_size;
1883 /* just read the rest - too big for our buffer*/
1885 while ((did_read = (gci->cb)(gci->userdata, buf, length, length)) > 0) {
1895 =item i_gen_read_data_new(i_read_callback_t cb, char *userdata)
1897 For use by callback file readers to initialize the reader buffer.
1899 Allocates, initializes and returns the reader buffer.
1901 See also L<image.c/free_gen_read_data> and L<image.c/i_gen_reader>.
1906 i_gen_read_data_new(i_read_callback_t cb, char *userdata) {
1907 i_gen_read_data *self = mymalloc(sizeof(i_gen_read_data));
1909 self->userdata = userdata;
1917 =item free_gen_read_data(i_gen_read_data *)
1923 void free_gen_read_data(i_gen_read_data *self) {
1928 =item i_gen_writer(i_gen_write_data *info, char const *data, int size)
1930 Performs write buffering for a callback based file writer.
1932 Failures are considered fatal, if a write fails then data will be
1939 i_gen_write_data *self,
1943 if (self->filledto && self->filledto+size > self->maxlength) {
1944 if (self->cb(self->userdata, self->buffer, self->filledto)) {
1952 if (self->filledto+size <= self->maxlength) {
1954 memcpy(self->buffer+self->filledto, data, size);
1955 self->filledto += size;
1958 /* doesn't fit - hand it off */
1959 return self->cb(self->userdata, data, size);
1963 =item i_gen_write_data_new(i_write_callback_t cb, char *userdata, int max_length)
1965 Allocates and initializes the data structure used by i_gen_writer.
1967 This should be released with L<image.c/free_gen_write_data>
1971 i_gen_write_data *i_gen_write_data_new(i_write_callback_t cb,
1972 char *userdata, int max_length)
1974 i_gen_write_data *self = mymalloc(sizeof(i_gen_write_data));
1976 self->userdata = userdata;
1977 self->maxlength = min(max_length, sizeof(self->buffer));
1978 if (self->maxlength < 0)
1979 self->maxlength = sizeof(self->buffer);
1986 =item free_gen_write_data(i_gen_write_data *info, int flush)
1988 Cleans up the write buffer.
1990 Will flush any left-over data if I<flush> is non-zero.
1992 Returns non-zero if flush is zero or if info->cb() returns non-zero.
1994 Return zero only if flush is non-zero and info->cb() returns zero.
2000 int free_gen_write_data(i_gen_write_data *info, int flush)
2002 int result = !flush ||
2003 info->filledto == 0 ||
2004 info->cb(info->userdata, info->buffer, info->filledto);
2015 Arnar M. Hrafnkelsson <addi@umich.edu>
2017 Tony Cook <tony@develop-help.com>