4 use vars qw($VERSION @ISA @EXPORT @EXPORT_OK %EXPORT_TAGS %formats $DEBUG %filters %DSOs $ERRSTR $fontstate %OPCODES $I2P $FORMATGUESS);
81 i_writetiff_wiol_faxable
148 $VERSION = '0.39pre2';
149 @ISA = qw(Exporter DynaLoader);
150 bootstrap Imager $VERSION;
154 i_init_fonts(); # Initialize font engines
155 Imager::Font::__init();
156 for(i_list_formats()) { $formats{$_}++; }
158 if ($formats{'t1'}) {
162 if (!$formats{'t1'} and !$formats{'tt'}
163 && !$formats{'ft2'} && !$formats{'w32'}) {
164 $fontstate='no font support';
167 %OPCODES=(Add=>[0],Sub=>[1],Mult=>[2],Div=>[3],Parm=>[4],'sin'=>[5],'cos'=>[6],'x'=>[4,0],'y'=>[4,1]);
171 # the members of the subhashes under %filters are:
172 # callseq - a list of the parameters to the underlying filter in the
173 # order they are passed
174 # callsub - a code ref that takes a named parameter list and calls the
176 # defaults - a hash of default values
177 # names - defines names for value of given parameters so if the names
178 # field is foo=> { bar=>1 }, and the user supplies "bar" as the
179 # foo parameter, the filter will receive 1 for the foo
182 callseq => ['image','intensity'],
183 callsub => sub { my %hsh=@_; i_contrast($hsh{image},$hsh{intensity}); }
187 callseq => ['image', 'amount', 'subtype'],
188 defaults => { amount=>3,subtype=>0 },
189 callsub => sub { my %hsh=@_; i_noise($hsh{image},$hsh{amount},$hsh{subtype}); }
192 $filters{hardinvert} ={
193 callseq => ['image'],
195 callsub => sub { my %hsh=@_; i_hardinvert($hsh{image}); }
198 $filters{autolevels} ={
199 callseq => ['image','lsat','usat','skew'],
200 defaults => { lsat=>0.1,usat=>0.1,skew=>0.0 },
201 callsub => sub { my %hsh=@_; i_autolevels($hsh{image},$hsh{lsat},$hsh{usat},$hsh{skew}); }
204 $filters{turbnoise} ={
205 callseq => ['image'],
206 defaults => { xo=>0.0,yo=>0.0,scale=>10.0 },
207 callsub => sub { my %hsh=@_; i_turbnoise($hsh{image},$hsh{xo},$hsh{yo},$hsh{scale}); }
210 $filters{radnoise} ={
211 callseq => ['image'],
212 defaults => { xo=>100,yo=>100,ascale=>17.0,rscale=>0.02 },
213 callsub => sub { my %hsh=@_; i_radnoise($hsh{image},$hsh{xo},$hsh{yo},$hsh{rscale},$hsh{ascale}); }
217 callseq => ['image', 'coef'],
219 callsub => sub { my %hsh=@_; i_conv($hsh{image},$hsh{coef}); }
223 callseq => ['image', 'xo', 'yo', 'colors', 'dist'],
225 callsub => sub { my %hsh=@_; i_gradgen($hsh{image}, $hsh{xo}, $hsh{yo}, $hsh{colors}, $hsh{dist}); }
228 $filters{nearest_color} ={
229 callseq => ['image', 'xo', 'yo', 'colors', 'dist'],
231 callsub => sub { my %hsh=@_; i_nearest_color($hsh{image}, $hsh{xo}, $hsh{yo}, $hsh{colors}, $hsh{dist}); }
233 $filters{gaussian} = {
234 callseq => [ 'image', 'stddev' ],
236 callsub => sub { my %hsh = @_; i_gaussian($hsh{image}, $hsh{stddev}); },
240 callseq => [ qw(image size) ],
241 defaults => { size => 20 },
242 callsub => sub { my %hsh = @_; i_mosaic($hsh{image}, $hsh{size}) },
246 callseq => [ qw(image bump elevation lightx lighty st) ],
247 defaults => { elevation=>0, st=> 2 },
250 i_bumpmap($hsh{image}, $hsh{bump}{IMG}, $hsh{elevation},
251 $hsh{lightx}, $hsh{lighty}, $hsh{st});
254 $filters{bumpmap_complex} =
256 callseq => [ qw(image bump channel tx ty Lx Ly Lz cd cs n Ia Il Is) ],
267 Ia => Imager::Color->new(rgb=>[0,0,0]),
268 Il => Imager::Color->new(rgb=>[255,255,255]),
269 Is => Imager::Color->new(rgb=>[255,255,255]),
273 i_bumpmap_complex($hsh{image}, $hsh{bump}{IMG}, $hsh{channel},
274 $hsh{tx}, $hsh{ty}, $hsh{Lx}, $hsh{Ly}, $hsh{Lz},
275 $hsh{cd}, $hsh{cs}, $hsh{n}, $hsh{Ia}, $hsh{Il},
279 $filters{postlevels} =
281 callseq => [ qw(image levels) ],
282 defaults => { levels => 10 },
283 callsub => sub { my %hsh = @_; i_postlevels($hsh{image}, $hsh{levels}); },
285 $filters{watermark} =
287 callseq => [ qw(image wmark tx ty pixdiff) ],
288 defaults => { pixdiff=>10, tx=>0, ty=>0 },
292 i_watermark($hsh{image}, $hsh{wmark}{IMG}, $hsh{tx}, $hsh{ty},
298 callseq => [ qw(image xa ya xb yb ftype repeat combine super_sample ssample_param segments) ],
300 ftype => { linear => 0,
306 repeat => { none => 0,
321 multiply => 2, mult => 2,
324 subtract => 5, sub => 5,
334 defaults => { ftype => 0, repeat => 0, combine => 0,
335 super_sample => 0, ssample_param => 4,
338 Imager::Color->new(0,0,0),
339 Imager::Color->new(255, 255, 255),
347 i_fountain($hsh{image}, $hsh{xa}, $hsh{ya}, $hsh{xb}, $hsh{yb},
348 $hsh{ftype}, $hsh{repeat}, $hsh{combine}, $hsh{super_sample},
349 $hsh{ssample_param}, $hsh{segments});
352 $filters{unsharpmask} =
354 callseq => [ qw(image stddev scale) ],
355 defaults => { stddev=>2.0, scale=>1.0 },
359 i_unsharp_mask($hsh{image}, $hsh{stddev}, $hsh{scale});
363 $FORMATGUESS=\&def_guess_type;
371 # NOTE: this might be moved to an import override later on
375 # (look through @_ for special tags, process, and remove them);
377 # print Dumper($pack);
382 my %parms=(loglevel=>1,@_);
384 init_log($parms{'log'},$parms{'loglevel'});
387 # if ($parms{T1LIB_CONFIG}) { $ENV{T1LIB_CONFIG}=$parms{T1LIB_CONFIG}; }
388 # if ( $ENV{T1LIB_CONFIG} and ( $fontstate eq 'missing conf' )) {
396 print "shutdown code\n";
397 # for(keys %instances) { $instances{$_}->DESTROY(); }
398 malloc_state(); # how do decide if this should be used? -- store something from the import
399 print "Imager exiting\n";
403 # Load a filter plugin
408 my ($DSO_handle,$str)=DSO_open($filename);
409 if (!defined($DSO_handle)) { $Imager::ERRSTR="Couldn't load plugin '$filename'\n"; return undef; }
410 my %funcs=DSO_funclist($DSO_handle);
411 if ($DEBUG) { print "loading module $filename\n"; $i=0; for(keys %funcs) { printf(" %2d: %s\n",$i++,$_); } }
413 for(keys %funcs) { if ($filters{$_}) { $ERRSTR="filter '$_' already exists\n"; DSO_close($DSO_handle); return undef; } }
415 $DSOs{$filename}=[$DSO_handle,\%funcs];
418 my $evstr="\$filters{'".$_."'}={".$funcs{$_}.'};';
419 $DEBUG && print "eval string:\n",$evstr,"\n";
431 if (!$DSOs{$filename}) { $ERRSTR="plugin '$filename' not loaded."; return undef; }
432 my ($DSO_handle,$funcref)=@{$DSOs{$filename}};
433 for(keys %{$funcref}) {
435 $DEBUG && print "unloading: $_\n";
437 my $rc=DSO_close($DSO_handle);
438 if (!defined($rc)) { $ERRSTR="unable to unload plugin '$filename'."; return undef; }
442 # take the results of i_error() and make a message out of it
444 return join(": ", map $_->[0], i_errors());
448 # Methods to be called on objects.
451 # Create a new Imager object takes very few parameters.
452 # usually you call this method and then call open from
453 # the resulting object
460 $self->{IMG}=undef; # Just to indicate what exists
461 $self->{ERRSTR}=undef; #
462 $self->{DEBUG}=$DEBUG;
463 $self->{DEBUG} && print "Initialized Imager\n";
464 if ($hsh{xsize} && $hsh{ysize}) { $self->img_set(%hsh); }
468 # Copy an entire image with no changes
469 # - if an image has magic the copy of it will not be magical
473 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
475 my $newcopy=Imager->new();
476 $newcopy->{IMG}=i_img_new();
477 i_copy($newcopy->{IMG},$self->{IMG});
485 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
486 my %input=(left=>0, top=>0, @_);
487 unless($input{img}) {
488 $self->{ERRSTR}="no source image";
491 $input{left}=0 if $input{left} <= 0;
492 $input{top}=0 if $input{top} <= 0;
494 my($r,$b)=i_img_info($src->{IMG});
496 i_copyto($self->{IMG}, $src->{IMG},
497 0,0, $r, $b, $input{left}, $input{top});
498 return $self; # What should go here??
501 # Crop an image - i.e. return a new image that is smaller
505 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
506 my %hsh=(left=>0,right=>0,top=>0,bottom=>0,@_);
508 my ($w,$h,$l,$r,$b,$t)=($self->getwidth(),$self->getheight(),
509 @hsh{qw(left right bottom top)});
510 $l=0 if not defined $l;
511 $t=0 if not defined $t;
513 $r||=$l+delete $hsh{'width'} if defined $l and exists $hsh{'width'};
514 $b||=$t+delete $hsh{'height'} if defined $t and exists $hsh{'height'};
515 $l||=$r-delete $hsh{'width'} if defined $r and exists $hsh{'width'};
516 $t||=$b-delete $hsh{'height'} if defined $b and exists $hsh{'height'};
518 $r=$self->getwidth if not defined $r;
519 $b=$self->getheight if not defined $b;
521 ($l,$r)=($r,$l) if $l>$r;
522 ($t,$b)=($b,$t) if $t>$b;
525 $l=int(0.5+($w-$hsh{'width'})/2);
530 if ($hsh{'height'}) {
531 $b=int(0.5+($h-$hsh{'height'})/2);
532 $t=$h+$hsh{'height'};
534 $hsh{'height'}=$b-$t;
537 # print "l=$l, r=$r, h=$hsh{'width'}\n";
538 # print "t=$t, b=$b, w=$hsh{'height'}\n";
540 my $dst=Imager->new(xsize=>$hsh{'width'}, ysize=>$hsh{'height'}, channels=>$self->getchannels());
542 i_copyto($dst->{IMG},$self->{IMG},$l,$t,$r,$b,0,0);
546 # Sets an image to a certain size and channel number
547 # if there was previously data in the image it is discarded
552 my %hsh=(xsize=>100, ysize=>100, channels=>3, bits=>8, type=>'direct', @_);
554 if (defined($self->{IMG})) {
555 # let IIM_DESTROY destroy it, it's possible this image is
556 # referenced from a virtual image (like masked)
557 #i_img_destroy($self->{IMG});
561 if ($hsh{type} eq 'paletted' || $hsh{type} eq 'pseudo') {
562 $self->{IMG} = i_img_pal_new($hsh{xsize}, $hsh{ysize}, $hsh{channels},
563 $hsh{maxcolors} || 256);
565 elsif ($hsh{bits} eq 'double') {
566 $self->{IMG} = i_img_double_new($hsh{xsize}, $hsh{ysize}, $hsh{channels});
568 elsif ($hsh{bits} == 16) {
569 $self->{IMG} = i_img_16_new($hsh{xsize}, $hsh{ysize}, $hsh{channels});
572 $self->{IMG}=Imager::ImgRaw::new($hsh{'xsize'}, $hsh{'ysize'},
577 # created a masked version of the current image
581 $self or return undef;
582 my %opts = (left => 0,
584 right => $self->getwidth,
585 bottom => $self->getheight,
587 my $mask = $opts{mask} ? $opts{mask}{IMG} : undef;
589 my $result = Imager->new;
590 $result->{IMG} = i_img_masked_new($self->{IMG}, $mask, $opts{left},
591 $opts{top}, $opts{right} - $opts{left},
592 $opts{bottom} - $opts{top});
593 # keep references to the mask and base images so they don't
595 $result->{DEPENDS} = [ $self->{IMG}, $mask ];
600 # convert an RGB image into a paletted image
604 if (@_ != 1 && !ref $_[0]) {
611 my $result = Imager->new;
612 $result->{IMG} = i_img_to_pal($self->{IMG}, $opts);
614 #print "Type ", i_img_type($result->{IMG}), "\n";
616 $result->{IMG} or undef $result;
621 # convert a paletted (or any image) to an 8-bit/channel RGB images
627 $result = Imager->new;
628 $result->{IMG} = i_img_to_rgb($self->{IMG})
637 my %opts = (colors=>[], @_);
639 @{$opts{colors}} or return undef;
641 $self->{IMG} and i_addcolors($self->{IMG}, @{$opts{colors}});
646 my %opts = (start=>0, colors=>[], @_);
647 @{$opts{colors}} or return undef;
649 $self->{IMG} and i_setcolors($self->{IMG}, $opts{start}, @{$opts{colors}});
655 if (!exists $opts{start} && !exists $opts{count}) {
658 $opts{count} = $self->colorcount;
660 elsif (!exists $opts{count}) {
663 elsif (!exists $opts{start}) {
668 return i_getcolors($self->{IMG}, $opts{start}, $opts{count});
672 i_colorcount($_[0]{IMG});
676 i_maxcolors($_[0]{IMG});
682 $opts{color} or return undef;
684 $self->{IMG} and i_findcolor($self->{IMG}, $opts{color});
689 my $bits = $self->{IMG} && i_img_bits($self->{IMG});
690 if ($bits && $bits == length(pack("d", 1)) * 8) {
699 return i_img_type($self->{IMG}) ? "paletted" : "direct";
705 $self->{IMG} and i_img_virtual($self->{IMG});
709 my ($self, %opts) = @_;
711 $self->{IMG} or return;
713 if (defined $opts{name}) {
717 while (defined($found = i_tags_find($self->{IMG}, $opts{name}, $start))) {
718 push @result, (i_tags_get($self->{IMG}, $found))[1];
721 return wantarray ? @result : $result[0];
723 elsif (defined $opts{code}) {
727 while (defined($found = i_tags_findn($self->{IMG}, $opts{code}, $start))) {
728 push @result, (i_tags_get($self->{IMG}, $found))[1];
735 return map { [ i_tags_get($self->{IMG}, $_) ] } 0.. i_tags_count($self->{IMG})-1;
738 return i_tags_count($self->{IMG});
747 return -1 unless $self->{IMG};
749 if (defined $opts{value}) {
750 if ($opts{value} =~ /^\d+$/) {
752 return i_tags_addn($self->{IMG}, $opts{name}, 0, $opts{value});
755 return i_tags_add($self->{IMG}, $opts{name}, 0, $opts{value}, 0);
758 elsif (defined $opts{data}) {
759 # force addition as a string
760 return i_tags_add($self->{IMG}, $opts{name}, 0, $opts{data}, 0);
763 $self->{ERRSTR} = "No value supplied";
767 elsif ($opts{code}) {
768 if (defined $opts{value}) {
769 if ($opts{value} =~ /^\d+$/) {
771 return i_tags_addn($self->{IMG}, $opts{code}, 0, $opts{value});
774 return i_tags_add($self->{IMG}, $opts{code}, 0, $opts{value}, 0);
777 elsif (defined $opts{data}) {
778 # force addition as a string
779 return i_tags_add($self->{IMG}, $opts{code}, 0, $opts{data}, 0);
782 $self->{ERRSTR} = "No value supplied";
795 return 0 unless $self->{IMG};
797 if (defined $opts{index}) {
798 return i_tags_delete($self->{IMG}, $opts{index});
800 elsif (defined $opts{name}) {
801 return i_tags_delbyname($self->{IMG}, $opts{name});
803 elsif (defined $opts{code}) {
804 return i_tags_delbycode($self->{IMG}, $opts{code});
807 $self->{ERRSTR} = "Need to supply index, name, or code parameter";
812 # Read an image from file
819 if (defined($self->{IMG})) {
820 # let IIM_DESTROY do the destruction, since the image may be
821 # referenced from elsewhere
822 #i_img_destroy($self->{IMG});
826 if (!$input{fd} and !$input{file} and !$input{data}) {
827 $self->{ERRSTR}='no file, fd or data parameter'; return undef;
830 $fh = new IO::File($input{file},"r");
832 $self->{ERRSTR}='Could not open file'; return undef;
841 # FIXME: Find the format here if not specified
842 # yes the code isn't here yet - next week maybe?
843 # Next week? Are you high or something? That comment
844 # has been there for half a year dude.
845 # Look, i just work here, ok?
847 if (!$input{type} and $input{file}) {
848 $input{type}=$FORMATGUESS->($input{file});
850 if (!$formats{$input{type}}) {
851 $self->{ERRSTR}='format not supported'; return undef;
854 my %iolready=(jpeg=>1, png=>1, tiff=>1, pnm=>1, raw=>1, bmp=>1, tga=>1);
856 if ($iolready{$input{type}}) {
858 $IO = io_new_fd($fd); # sort of simple for now eh?
860 if ( $input{type} eq 'jpeg' ) {
861 ($self->{IMG},$self->{IPTCRAW})=i_readjpeg_wiol( $IO );
862 if ( !defined($self->{IMG}) ) {
863 $self->{ERRSTR}='unable to read jpeg image'; return undef;
865 $self->{DEBUG} && print "loading a jpeg file\n";
869 if ( $input{type} eq 'tiff' ) {
870 $self->{IMG}=i_readtiff_wiol( $IO, -1 ); # Fixme, check if that length parameter is ever needed
871 if ( !defined($self->{IMG}) ) {
872 $self->{ERRSTR}='unable to read tiff image'; return undef;
874 $self->{DEBUG} && print "loading a tiff file\n";
878 if ( $input{type} eq 'pnm' ) {
879 $self->{IMG}=i_readpnm_wiol( $IO, -1 ); # Fixme, check if that length parameter is ever needed
880 if ( !defined($self->{IMG}) ) {
881 $self->{ERRSTR}='unable to read pnm image: '._error_as_msg(); return undef;
883 $self->{DEBUG} && print "loading a pnm file\n";
887 if ( $input{type} eq 'png' ) {
888 $self->{IMG}=i_readpng_wiol( $IO, -1 ); # Fixme, check if that length parameter is ever needed
889 if ( !defined($self->{IMG}) ) {
890 $self->{ERRSTR}='unable to read png image';
893 $self->{DEBUG} && print "loading a png file\n";
896 if ( $input{type} eq 'bmp' ) {
897 $self->{IMG}=i_readbmp_wiol( $IO );
898 if ( !defined($self->{IMG}) ) {
899 $self->{ERRSTR}='unable to read bmp image';
902 $self->{DEBUG} && print "loading a bmp file\n";
905 if ( $input{type} eq 'tga' ) {
906 $self->{IMG}=i_readtga_wiol( $IO, -1 ); # Fixme, check if that length parameter is ever needed
907 if ( !defined($self->{IMG}) ) {
908 $self->{ERRSTR}=$self->_error_as_msg();
909 # $self->{ERRSTR}='unable to read tga image';
912 $self->{DEBUG} && print "loading a tga file\n";
915 if ( $input{type} eq 'raw' ) {
916 my %params=(datachannels=>3,storechannels=>3,interleave=>1,%input);
918 if ( !($params{xsize} && $params{ysize}) ) {
919 $self->{ERRSTR}='missing xsize or ysize parameter for raw';
923 $self->{IMG} = i_readraw_wiol( $IO,
926 $params{datachannels},
927 $params{storechannels},
928 $params{interleave});
929 if ( !defined($self->{IMG}) ) {
930 $self->{ERRSTR}='unable to read raw image';
933 $self->{DEBUG} && print "loading a raw file\n";
938 # Old code for reference while changing the new stuff
940 if (!$input{type} and $input{file}) {
941 $input{type}=$FORMATGUESS->($input{file});
945 $self->{ERRSTR}='type parameter missing and not possible to guess from extension'; return undef;
948 if (!$formats{$input{type}}) {
949 $self->{ERRSTR}='format not supported';
954 $fh = new IO::File($input{file},"r");
956 $self->{ERRSTR}='Could not open file';
967 if ( $input{type} eq 'gif' ) {
969 if ($input{colors} && !ref($input{colors})) {
970 # must be a reference to a scalar that accepts the colour map
971 $self->{ERRSTR} = "option 'colors' must be a scalar reference";
974 if (exists $input{data}) {
975 if ($input{colors}) {
976 ($self->{IMG}, $colors) = i_readgif_scalar($input{data});
978 $self->{IMG}=i_readgif_scalar($input{data});
981 if ($input{colors}) {
982 ($self->{IMG}, $colors) = i_readgif( $fd );
984 $self->{IMG} = i_readgif( $fd )
988 # we may or may not change i_readgif to return blessed objects...
989 ${ $input{colors} } = [ map { NC(@$_) } @$colors ];
991 if ( !defined($self->{IMG}) ) {
992 $self->{ERRSTR}= 'reading GIF:'._error_as_msg();
995 $self->{DEBUG} && print "loading a gif file\n";
1001 # Write an image to file
1004 my %input=(jpegquality=>75,
1012 my ($fh, $rc, $fd, $IO);
1014 my %iolready=( tiff=>1, raw=>1, png=>1, pnm=>1, bmp=>1, jpeg=>1, tga=>1 ); # this will be SO MUCH BETTER once they are all in there
1016 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1018 if (!$input{file} and !$input{'fd'} and !$input{'data'}) { $self->{ERRSTR}='file/fd/data parameter missing'; return undef; }
1019 if (!$input{type} and $input{file}) { $input{type}=$FORMATGUESS->($input{file}); }
1020 if (!$input{type}) { $self->{ERRSTR}='type parameter missing and not possible to guess from extension'; return undef; }
1022 if (!$formats{$input{type}}) { $self->{ERRSTR}='format not supported'; return undef; }
1024 if (exists $input{'fd'}) {
1026 } elsif (exists $input{'data'}) {
1027 $IO = Imager::io_new_bufchain();
1029 $fh = new IO::File($input{file},"w+");
1030 if (!defined $fh) { $self->{ERRSTR}='Could not open file'; return undef; }
1031 binmode($fh) or die;
1032 $fd = $fh->fileno();
1035 if ($iolready{$input{type}}) {
1037 $IO = io_new_fd($fd);
1040 if ($input{type} eq 'tiff') {
1041 if (defined $input{class} && $input{class} eq 'fax') {
1042 if (!i_writetiff_wiol_faxable($self->{IMG}, $IO, $input{fax_fine})) {
1043 $self->{ERRSTR}='Could not write to buffer';
1047 if (!i_writetiff_wiol($self->{IMG}, $IO)) {
1048 $self->{ERRSTR}='Could not write to buffer';
1052 } elsif ( $input{type} eq 'pnm' ) {
1053 if ( ! i_writeppm_wiol($self->{IMG},$IO) ) {
1054 $self->{ERRSTR}='unable to write pnm image';
1057 $self->{DEBUG} && print "writing a pnm file\n";
1058 } elsif ( $input{type} eq 'raw' ) {
1059 if ( !i_writeraw_wiol($self->{IMG},$IO) ) {
1060 $self->{ERRSTR}='unable to write raw image';
1063 $self->{DEBUG} && print "writing a raw file\n";
1064 } elsif ( $input{type} eq 'png' ) {
1065 if ( !i_writepng_wiol($self->{IMG}, $IO) ) {
1066 $self->{ERRSTR}='unable to write png image';
1069 $self->{DEBUG} && print "writing a png file\n";
1070 } elsif ( $input{type} eq 'jpeg' ) {
1071 if ( !i_writejpeg_wiol($self->{IMG}, $IO, $input{jpegquality})) {
1072 $self->{ERRSTR} = $self->_error_as_msg();
1075 $self->{DEBUG} && print "writing a jpeg file\n";
1076 } elsif ( $input{type} eq 'bmp' ) {
1077 if ( !i_writebmp_wiol($self->{IMG}, $IO) ) {
1078 $self->{ERRSTR}='unable to write bmp image';
1081 $self->{DEBUG} && print "writing a bmp file\n";
1082 } elsif ( $input{type} eq 'tga' ) {
1084 if ( !i_writetga_wiol($self->{IMG}, $IO, $input{wierdpack}, $input{compress}, $input{idstring}) ) {
1085 $self->{ERRSTR}=$self->_error_as_msg();
1088 $self->{DEBUG} && print "writing a tga file\n";
1091 if (exists $input{'data'}) {
1092 my $data = io_slurp($IO);
1094 $self->{ERRSTR}='Could not slurp from buffer';
1097 ${$input{data}} = $data;
1101 if ( $input{type} eq 'gif' ) {
1102 if (not $input{gifplanes}) {
1104 my $count=i_count_colors($self->{IMG}, 256);
1105 $gp=8 if $count == -1;
1106 $gp=1 if not $gp and $count <= 2;
1107 $gp=2 if not $gp and $count <= 4;
1108 $gp=3 if not $gp and $count <= 8;
1109 $gp=4 if not $gp and $count <= 16;
1110 $gp=5 if not $gp and $count <= 32;
1111 $gp=6 if not $gp and $count <= 64;
1112 $gp=7 if not $gp and $count <= 128;
1113 $input{gifplanes} = $gp || 8;
1116 if ($input{gifplanes}>8) {
1117 $input{gifplanes}=8;
1119 if ($input{gifquant} eq 'gen' || $input{callback}) {
1122 if ($input{gifquant} eq 'lm') {
1124 $input{make_colors} = 'addi';
1125 $input{translate} = 'perturb';
1126 $input{perturb} = $input{lmdither};
1127 } elsif ($input{gifquant} eq 'gen') {
1128 # just pass options through
1130 $input{make_colors} = 'webmap'; # ignored
1131 $input{translate} = 'giflib';
1134 if ($input{callback}) {
1135 defined $input{maxbuffer} or $input{maxbuffer} = -1;
1136 $rc = i_writegif_callback($input{callback}, $input{maxbuffer},
1137 \%input, $self->{IMG});
1139 $rc = i_writegif_gen($fd, \%input, $self->{IMG});
1142 } elsif ($input{gifquant} eq 'lm') {
1143 $rc=i_writegif($self->{IMG},$fd,$input{gifplanes},$input{lmdither},$input{lmfixed});
1145 $rc=i_writegifmc($self->{IMG},$fd,$input{gifplanes});
1147 if ( !defined($rc) ) {
1148 $self->{ERRSTR} = "Writing GIF file: "._error_as_msg(); return undef;
1150 $self->{DEBUG} && print "writing a gif file\n";
1158 my ($class, $opts, @images) = @_;
1160 if ($opts->{type} eq 'gif') {
1161 my $gif_delays = $opts->{gif_delays};
1162 local $opts->{gif_delays} = $gif_delays;
1163 unless (ref $opts->{gif_delays}) {
1164 # assume the caller wants the same delay for each frame
1165 $opts->{gif_delays} = [ ($gif_delays) x @images ];
1167 # translate to ImgRaw
1168 if (grep !UNIVERSAL::isa($_, 'Imager') || !$_->{IMG}, @images) {
1169 $ERRSTR = "Usage: Imager->write_multi({ options }, @images)";
1172 my @work = map $_->{IMG}, @images;
1173 if ($opts->{callback}) {
1174 # Note: you may need to fix giflib for this one to work
1175 my $maxbuffer = $opts->{maxbuffer};
1176 defined $maxbuffer or $maxbuffer = -1; # max by default
1177 return i_writegif_callback($opts->{callback}, $maxbuffer,
1181 return i_writegif_gen($opts->{fd}, $opts, @work);
1184 my $fh = IO::File->new($opts->{file}, "w+");
1186 $ERRSTR = "Error creating $opts->{file}: $!";
1190 return i_writegif_gen(fileno($fh), $opts, @work);
1194 $ERRSTR = "Sorry, write_multi doesn't support $opts->{type} yet";
1199 # read multiple images from a file
1201 my ($class, %opts) = @_;
1203 if ($opts{file} && !exists $opts{type}) {
1205 my $type = $FORMATGUESS->($opts{file});
1206 $opts{type} = $type;
1208 unless ($opts{type}) {
1209 $ERRSTR = "No type parameter supplied and it couldn't be guessed";
1215 $file = IO::File->new($opts{file}, "r");
1217 $ERRSTR = "Could not open file $opts{file}: $!";
1221 $fd = fileno($file);
1224 $fd = fileno($opts{fh});
1226 $ERRSTR = "File handle specified with fh option not open";
1233 elsif ($opts{callback} || $opts{data}) {
1237 $ERRSTR = "You need to specify one of file, fd, fh, callback or data";
1241 if ($opts{type} eq 'gif') {
1244 @imgs = i_readgif_multi($fd);
1247 if (Imager::i_giflib_version() < 4.0) {
1248 $ERRSTR = "giflib3.x does not support callbacks";
1251 if ($opts{callback}) {
1252 @imgs = i_readgif_multi_callback($opts{callback})
1255 @imgs = i_readgif_multi_scalar($opts{data});
1260 bless { IMG=>$_, DEBUG=>$DEBUG, ERRSTR=>undef }, 'Imager'
1264 $ERRSTR = _error_as_msg();
1269 $ERRSTR = "Cannot read multiple images from $opts{type} files";
1273 # Destroy an Imager object
1277 # delete $instances{$self};
1278 if (defined($self->{IMG})) {
1279 # the following is now handled by the XS DESTROY method for
1280 # Imager::ImgRaw object
1281 # Re-enabling this will break virtual images
1282 # tested for in t/t020masked.t
1283 # i_img_destroy($self->{IMG});
1284 undef($self->{IMG});
1286 # print "Destroy Called on an empty image!\n"; # why did I put this here??
1290 # Perform an inplace filter of an image
1291 # that is the image will be overwritten with the data
1297 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1299 if (!$input{type}) { $self->{ERRSTR}='type parameter missing'; return undef; }
1301 if ( (grep { $_ eq $input{type} } keys %filters) != 1) {
1302 $self->{ERRSTR}='type parameter not matching any filter'; return undef;
1305 if ($filters{$input{type}}{names}) {
1306 my $names = $filters{$input{type}}{names};
1307 for my $name (keys %$names) {
1308 if (defined $input{$name} && exists $names->{$name}{$input{$name}}) {
1309 $input{$name} = $names->{$name}{$input{$name}};
1313 if (defined($filters{$input{type}}{defaults})) {
1314 %hsh=('image',$self->{IMG},%{$filters{$input{type}}{defaults}},%input);
1316 %hsh=('image',$self->{IMG},%input);
1319 my @cs=@{$filters{$input{type}}{callseq}};
1322 if (!defined($hsh{$_})) {
1323 $self->{ERRSTR}="missing parameter '$_' for filter ".$input{type}; return undef;
1327 &{$filters{$input{type}}{callsub}}(%hsh);
1331 $self->{DEBUG} && print "callseq is: @cs\n";
1332 $self->{DEBUG} && print "matching callseq is: @b\n";
1337 # Scale an image to requested size and return the scaled version
1341 my %opts=(scalefactor=>0.5,type=>'max',qtype=>'normal',@_);
1342 my $img = Imager->new();
1343 my $tmp = Imager->new();
1345 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1347 if ($opts{xpixels} and $opts{ypixels} and $opts{type}) {
1348 my ($xpix,$ypix)=( $opts{xpixels}/$self->getwidth() , $opts{ypixels}/$self->getheight() );
1349 if ($opts{type} eq 'min') { $opts{scalefactor}=min($xpix,$ypix); }
1350 if ($opts{type} eq 'max') { $opts{scalefactor}=max($xpix,$ypix); }
1351 } elsif ($opts{xpixels}) { $opts{scalefactor}=$opts{xpixels}/$self->getwidth(); }
1352 elsif ($opts{ypixels}) { $opts{scalefactor}=$opts{ypixels}/$self->getheight(); }
1354 if ($opts{qtype} eq 'normal') {
1355 $tmp->{IMG}=i_scaleaxis($self->{IMG},$opts{scalefactor},0);
1356 if ( !defined($tmp->{IMG}) ) { $self->{ERRSTR}='unable to scale image'; return undef; }
1357 $img->{IMG}=i_scaleaxis($tmp->{IMG},$opts{scalefactor},1);
1358 if ( !defined($img->{IMG}) ) { $self->{ERRSTR}='unable to scale image'; return undef; }
1361 if ($opts{'qtype'} eq 'preview') {
1362 $img->{IMG}=i_scale_nn($self->{IMG},$opts{'scalefactor'},$opts{'scalefactor'});
1363 if ( !defined($img->{IMG}) ) { $self->{ERRSTR}='unable to scale image'; return undef; }
1366 $self->{ERRSTR}='scale: invalid value for qtype'; return undef;
1369 # Scales only along the X axis
1373 my %opts=(scalefactor=>0.5,@_);
1375 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1377 my $img = Imager->new();
1379 if ($opts{pixels}) { $opts{scalefactor}=$opts{pixels}/$self->getwidth(); }
1381 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1382 $img->{IMG}=i_scaleaxis($self->{IMG},$opts{scalefactor},0);
1384 if ( !defined($img->{IMG}) ) { $self->{ERRSTR}='unable to scale image'; return undef; }
1388 # Scales only along the Y axis
1392 my %opts=(scalefactor=>0.5,@_);
1394 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1396 my $img = Imager->new();
1398 if ($opts{pixels}) { $opts{scalefactor}=$opts{pixels}/$self->getheight(); }
1400 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1401 $img->{IMG}=i_scaleaxis($self->{IMG},$opts{scalefactor},1);
1403 if ( !defined($img->{IMG}) ) { $self->{ERRSTR}='unable to scale image'; return undef; }
1408 # Transform returns a spatial transformation of the input image
1409 # this moves pixels to a new location in the returned image.
1410 # NOTE - should make a utility function to check transforms for
1415 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1417 my (@op,@ropx,@ropy,$iop,$or,@parm,$expr,@xt,@yt,@pt,$numre);
1419 # print Dumper(\%opts);
1422 if ( $opts{'xexpr'} and $opts{'yexpr'} ) {
1424 eval ("use Affix::Infix2Postfix;");
1427 $self->{ERRSTR}='transform: expr given and Affix::Infix2Postfix is not avaliable.';
1430 $I2P=Affix::Infix2Postfix->new('ops'=>[{op=>'+',trans=>'Add'},
1431 {op=>'-',trans=>'Sub'},
1432 {op=>'*',trans=>'Mult'},
1433 {op=>'/',trans=>'Div'},
1434 {op=>'-',type=>'unary',trans=>'u-'},
1436 {op=>'func',type=>'unary'}],
1437 'grouping'=>[qw( \( \) )],
1438 'func'=>[qw( sin cos )],
1443 @xt=$I2P->translate($opts{'xexpr'});
1444 @yt=$I2P->translate($opts{'yexpr'});
1446 $numre=$I2P->{'numre'};
1449 for(@xt) { if (/$numre/) { push(@pt,$_); push(@{$opts{'xopcodes'}},'Parm',$#pt); } else { push(@{$opts{'xopcodes'}},$_); } }
1450 for(@yt) { if (/$numre/) { push(@pt,$_); push(@{$opts{'yopcodes'}},'Parm',$#pt); } else { push(@{$opts{'yopcodes'}},$_); } }
1451 @{$opts{'parm'}}=@pt;
1454 # print Dumper(\%opts);
1456 if ( !exists $opts{'xopcodes'} or @{$opts{'xopcodes'}}==0) {
1457 $self->{ERRSTR}='transform: no xopcodes given.';
1461 @op=@{$opts{'xopcodes'}};
1463 if (!defined ($OPCODES{$iop}) and ($iop !~ /^\d+$/) ) {
1464 $self->{ERRSTR}="transform: illegal opcode '$_'.";
1467 push(@ropx,(exists $OPCODES{$iop}) ? @{$OPCODES{$iop}} : $iop );
1473 if ( !exists $opts{'yopcodes'} or @{$opts{'yopcodes'}}==0) {
1474 $self->{ERRSTR}='transform: no yopcodes given.';
1478 @op=@{$opts{'yopcodes'}};
1480 if (!defined ($OPCODES{$iop}) and ($iop !~ /^\d+$/) ) {
1481 $self->{ERRSTR}="transform: illegal opcode '$_'.";
1484 push(@ropy,(exists $OPCODES{$iop}) ? @{$OPCODES{$iop}} : $iop );
1489 if ( !exists $opts{'parm'}) {
1490 $self->{ERRSTR}='transform: no parameter arg given.';
1494 # print Dumper(\@ropx);
1495 # print Dumper(\@ropy);
1496 # print Dumper(\@ropy);
1498 my $img = Imager->new();
1499 $img->{IMG}=i_transform($self->{IMG},\@ropx,\@ropy,$opts{'parm'});
1500 if ( !defined($img->{IMG}) ) { $self->{ERRSTR}='transform: failed'; return undef; }
1506 my ($opts, @imgs) = @_;
1508 require "Imager/Expr.pm";
1510 $opts->{variables} = [ qw(x y) ];
1511 my ($width, $height) = @{$opts}{qw(width height)};
1513 $width ||= $imgs[0]->getwidth();
1514 $height ||= $imgs[0]->getheight();
1516 for my $img (@imgs) {
1517 $opts->{constants}{"w$img_num"} = $img->getwidth();
1518 $opts->{constants}{"h$img_num"} = $img->getheight();
1519 $opts->{constants}{"cx$img_num"} = $img->getwidth()/2;
1520 $opts->{constants}{"cy$img_num"} = $img->getheight()/2;
1525 $opts->{constants}{w} = $width;
1526 $opts->{constants}{cx} = $width/2;
1529 $Imager::ERRSTR = "No width supplied";
1533 $opts->{constants}{h} = $height;
1534 $opts->{constants}{cy} = $height/2;
1537 $Imager::ERRSTR = "No height supplied";
1540 my $code = Imager::Expr->new($opts);
1542 $Imager::ERRSTR = Imager::Expr::error();
1546 my $img = Imager->new();
1547 $img->{IMG} = i_transform2($opts->{width}, $opts->{height}, $code->code(),
1548 $code->nregs(), $code->cregs(),
1549 [ map { $_->{IMG} } @imgs ]);
1550 if (!defined $img->{IMG}) {
1551 $Imager::ERRSTR = Imager->_error_as_msg();
1560 my %opts=(tx=>0,ty=>0,@_);
1562 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1563 unless ($opts{src} && $opts{src}->{IMG}) { $self->{ERRSTR}='empty input image for source'; return undef; }
1565 unless (i_rubthru($self->{IMG}, $opts{src}->{IMG}, $opts{tx},$opts{ty})) {
1566 $self->{ERRSTR} = $self->_error_as_msg();
1576 my %xlate = (h=>0, v=>1, hv=>2, vh=>2);
1578 return () unless defined $opts{'dir'} and defined $xlate{$opts{'dir'}};
1579 $dir = $xlate{$opts{'dir'}};
1580 return $self if i_flipxy($self->{IMG}, $dir);
1587 if (defined $opts{right}) {
1588 my $degrees = $opts{right};
1590 $degrees += 360 * int(((-$degrees)+360)/360);
1592 $degrees = $degrees % 360;
1593 if ($degrees == 0) {
1594 return $self->copy();
1596 elsif ($degrees == 90 || $degrees == 180 || $degrees == 270) {
1597 my $result = Imager->new();
1598 if ($result->{IMG} = i_rotate90($self->{IMG}, $degrees)) {
1602 $self->{ERRSTR} = $self->_error_as_msg();
1607 $self->{ERRSTR} = "Parameter 'right' must be a multiple of 90 degrees";
1611 elsif (defined $opts{radians} || defined $opts{degrees}) {
1612 my $amount = $opts{radians} || $opts{degrees} * 3.1415926535 / 180;
1614 my $result = Imager->new;
1615 if ($result->{IMG} = i_rotate_exact($self->{IMG}, $amount)) {
1619 $self->{ERRSTR} = $self->_error_as_msg();
1624 $self->{ERRSTR} = "Only the 'right' parameter is available";
1629 sub matrix_transform {
1633 if ($opts{matrix}) {
1634 my $xsize = $opts{xsize} || $self->getwidth;
1635 my $ysize = $opts{ysize} || $self->getheight;
1637 my $result = Imager->new;
1638 $result->{IMG} = i_matrix_transform($self->{IMG}, $xsize, $ysize,
1645 $self->{ERRSTR} = "matrix parameter required";
1651 *yatf = \&matrix_transform;
1653 # These two are supported for legacy code only
1656 return Imager::Color->new(@_);
1660 return Imager::Color::set(@_);
1663 # Draws a box between the specified corner points.
1666 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1667 my $dflcl=i_color_new(255,255,255,255);
1668 my %opts=(color=>$dflcl,xmin=>0,ymin=>0,xmax=>$self->getwidth()-1,ymax=>$self->getheight()-1,@_);
1670 if (exists $opts{'box'}) {
1671 $opts{'xmin'} = min($opts{'box'}->[0],$opts{'box'}->[2]);
1672 $opts{'xmax'} = max($opts{'box'}->[0],$opts{'box'}->[2]);
1673 $opts{'ymin'} = min($opts{'box'}->[1],$opts{'box'}->[3]);
1674 $opts{'ymax'} = max($opts{'box'}->[1],$opts{'box'}->[3]);
1677 if ($opts{filled}) {
1678 i_box_filled($self->{IMG},$opts{xmin},$opts{ymin},$opts{xmax},
1679 $opts{ymax},$opts{color});
1681 elsif ($opts{fill}) {
1682 unless (UNIVERSAL::isa($opts{fill}, 'Imager::Fill')) {
1683 # assume it's a hash ref
1684 require 'Imager/Fill.pm';
1685 unless ($opts{fill} = Imager::Fill->new(%{$opts{fill}})) {
1686 $self->{ERRSTR} = $Imager::ERRSTR;
1690 i_box_cfill($self->{IMG},$opts{xmin},$opts{ymin},$opts{xmax},
1691 $opts{ymax},$opts{fill}{fill});
1694 i_box($self->{IMG},$opts{xmin},$opts{ymin},$opts{xmax},$opts{ymax},$opts{color});
1699 # Draws an arc - this routine SUCKS and is buggy - it sometimes doesn't work when the arc is a convex polygon
1703 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1704 my $dflcl=i_color_new(255,255,255,255);
1705 my %opts=(color=>$dflcl,
1706 'r'=>min($self->getwidth(),$self->getheight())/3,
1707 'x'=>$self->getwidth()/2,
1708 'y'=>$self->getheight()/2,
1709 'd1'=>0, 'd2'=>361, @_);
1711 unless (UNIVERSAL::isa($opts{fill}, 'Imager::Fill')) {
1712 # assume it's a hash ref
1713 require 'Imager/Fill.pm';
1714 unless ($opts{fill} = Imager::Fill->new(%{$opts{fill}})) {
1715 $self->{ERRSTR} = $Imager::ERRSTR;
1719 i_arc_cfill($self->{IMG},$opts{'x'},$opts{'y'},$opts{'r'},$opts{'d1'},
1720 $opts{'d2'}, $opts{fill}{fill});
1723 if ($opts{d1} == 0 && $opts{d2} == 361 && $opts{aa}) {
1724 i_circle_aa($self->{IMG}, $opts{'x'}, $opts{'y'}, $opts{'r'},
1728 # i_arc($self->{IMG},$opts{'x'},$opts{'y'},$opts{'r'},$opts{'d1'}, $opts{'d2'},$opts{'color'});
1729 if ($opts{'d1'} <= $opts{'d2'}) { i_arc($self->{IMG},$opts{'x'},$opts{'y'},$opts{'r'},$opts{'d1'},$opts{'d2'},$opts{'color'}); }
1730 else { i_arc($self->{IMG},$opts{'x'},$opts{'y'},$opts{'r'},$opts{'d1'}, 361,$opts{'color'});
1731 i_arc($self->{IMG},$opts{'x'},$opts{'y'},$opts{'r'}, 0,$opts{'d2'},$opts{'color'}); }
1738 # Draws a line from one point to (but not including) the destination point
1742 my $dflcl=i_color_new(0,0,0,0);
1743 my %opts=(color=>$dflcl,@_);
1744 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1746 unless (exists $opts{x1} and exists $opts{y1}) { $self->{ERRSTR}='missing begining coord'; return undef; }
1747 unless (exists $opts{x2} and exists $opts{y2}) { $self->{ERRSTR}='missing ending coord'; return undef; }
1749 if ($opts{antialias}) {
1750 i_line_aa($self->{IMG},$opts{x1}, $opts{y1}, $opts{x2}, $opts{y2}, $opts{color});
1752 i_draw($self->{IMG},$opts{x1}, $opts{y1}, $opts{x2}, $opts{y2}, $opts{color});
1757 # Draws a line between an ordered set of points - It more or less just transforms this
1758 # into a list of lines.
1762 my ($pt,$ls,@points);
1763 my $dflcl=i_color_new(0,0,0,0);
1764 my %opts=(color=>$dflcl,@_);
1766 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1768 if (exists($opts{points})) { @points=@{$opts{points}}; }
1769 if (!exists($opts{points}) and exists($opts{'x'}) and exists($opts{'y'}) ) {
1770 @points=map { [ $opts{'x'}->[$_],$opts{'y'}->[$_] ] } (0..(scalar @{$opts{'x'}}-1));
1773 # print Dumper(\@points);
1775 if ($opts{antialias}) {
1777 if (defined($ls)) { i_line_aa($self->{IMG},$ls->[0],$ls->[1],$pt->[0],$pt->[1],$opts{color}); }
1782 if (defined($ls)) { i_draw($self->{IMG},$ls->[0],$ls->[1],$pt->[0],$pt->[1],$opts{color}); }
1789 # this the multipoint bezier curve
1790 # this is here more for testing that actual usage since
1791 # this is not a good algorithm. Usually the curve would be
1792 # broken into smaller segments and each done individually.
1796 my ($pt,$ls,@points);
1797 my $dflcl=i_color_new(0,0,0,0);
1798 my %opts=(color=>$dflcl,@_);
1800 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1802 if (exists $opts{points}) {
1803 $opts{'x'}=map { $_->[0]; } @{$opts{'points'}};
1804 $opts{'y'}=map { $_->[1]; } @{$opts{'points'}};
1807 unless ( @{$opts{'x'}} and @{$opts{'x'}} == @{$opts{'y'}} ) {
1808 $self->{ERRSTR}='Missing or invalid points.';
1812 i_bezier_multi($self->{IMG},$opts{'x'},$opts{'y'},$opts{'color'});
1818 my %opts = ( color=>Imager::Color->new(255, 255, 255), @_ );
1820 unless (exists $opts{x} && exists $opts{'y'}) {
1821 $self->{ERRSTR} = "missing seed x and y parameters";
1826 unless (UNIVERSAL::isa($opts{fill}, 'Imager::Fill')) {
1827 # assume it's a hash ref
1828 require 'Imager/Fill.pm';
1829 unless ($opts{fill} = Imager::Fill->new(%{$opts{fill}})) {
1830 $self->{ERRSTR} = $Imager::ERRSTR;
1834 i_flood_cfill($self->{IMG}, $opts{x}, $opts{'y'}, $opts{fill}{fill});
1837 i_flood_fill($self->{IMG}, $opts{x}, $opts{'y'}, $opts{color});
1843 # make an identity matrix of the given size
1847 my $matrix = [ map { [ (0) x $size ] } 1..$size ];
1848 for my $c (0 .. ($size-1)) {
1849 $matrix->[$c][$c] = 1;
1854 # general function to convert an image
1856 my ($self, %opts) = @_;
1859 # the user can either specify a matrix or preset
1860 # the matrix overrides the preset
1861 if (!exists($opts{matrix})) {
1862 unless (exists($opts{preset})) {
1863 $self->{ERRSTR} = "convert() needs a matrix or preset";
1867 if ($opts{preset} eq 'gray' || $opts{preset} eq 'grey') {
1868 # convert to greyscale, keeping the alpha channel if any
1869 if ($self->getchannels == 3) {
1870 $matrix = [ [ 0.222, 0.707, 0.071 ] ];
1872 elsif ($self->getchannels == 4) {
1873 # preserve the alpha channel
1874 $matrix = [ [ 0.222, 0.707, 0.071, 0 ],
1879 $matrix = _identity($self->getchannels);
1882 elsif ($opts{preset} eq 'noalpha') {
1883 # strip the alpha channel
1884 if ($self->getchannels == 2 or $self->getchannels == 4) {
1885 $matrix = _identity($self->getchannels);
1886 pop(@$matrix); # lose the alpha entry
1889 $matrix = _identity($self->getchannels);
1892 elsif ($opts{preset} eq 'red' || $opts{preset} eq 'channel0') {
1894 $matrix = [ [ 1 ] ];
1896 elsif ($opts{preset} eq 'green' || $opts{preset} eq 'channel1') {
1897 $matrix = [ [ 0, 1 ] ];
1899 elsif ($opts{preset} eq 'blue' || $opts{preset} eq 'channel2') {
1900 $matrix = [ [ 0, 0, 1 ] ];
1902 elsif ($opts{preset} eq 'alpha') {
1903 if ($self->getchannels == 2 or $self->getchannels == 4) {
1904 $matrix = [ [ (0) x ($self->getchannels-1), 1 ] ];
1907 # the alpha is just 1 <shrug>
1908 $matrix = [ [ (0) x $self->getchannels, 1 ] ];
1911 elsif ($opts{preset} eq 'rgb') {
1912 if ($self->getchannels == 1) {
1913 $matrix = [ [ 1 ], [ 1 ], [ 1 ] ];
1915 elsif ($self->getchannels == 2) {
1916 # preserve the alpha channel
1917 $matrix = [ [ 1, 0 ], [ 1, 0 ], [ 1, 0 ], [ 0, 1 ] ];
1920 $matrix = _identity($self->getchannels);
1923 elsif ($opts{preset} eq 'addalpha') {
1924 if ($self->getchannels == 1) {
1925 $matrix = _identity(2);
1927 elsif ($self->getchannels == 3) {
1928 $matrix = _identity(4);
1931 $matrix = _identity($self->getchannels);
1935 $self->{ERRSTR} = "Unknown convert preset $opts{preset}";
1941 $matrix = $opts{matrix};
1944 my $new = Imager->new();
1945 $new->{IMG} = i_img_new();
1946 unless (i_convert($new->{IMG}, $self->{IMG}, $matrix)) {
1947 # most likely a bad matrix
1948 $self->{ERRSTR} = _error_as_msg();
1955 # general function to map an image through lookup tables
1958 my ($self, %opts) = @_;
1959 my @chlist = qw( red green blue alpha );
1961 if (!exists($opts{'maps'})) {
1962 # make maps from channel maps
1964 for $chnum (0..$#chlist) {
1965 if (exists $opts{$chlist[$chnum]}) {
1966 $opts{'maps'}[$chnum] = $opts{$chlist[$chnum]};
1967 } elsif (exists $opts{'all'}) {
1968 $opts{'maps'}[$chnum] = $opts{'all'};
1972 if ($opts{'maps'} and $self->{IMG}) {
1973 i_map($self->{IMG}, $opts{'maps'} );
1978 # destructive border - image is shrunk by one pixel all around
1981 my ($self,%opts)=@_;
1982 my($tx,$ty)=($self->getwidth()-1,$self->getheight()-1);
1983 $self->polyline('x'=>[0,$tx,$tx,0,0],'y'=>[0,0,$ty,$ty,0],%opts);
1987 # Get the width of an image
1991 if (!defined($self->{IMG})) { $self->{ERRSTR} = 'image is empty'; return undef; }
1992 return (i_img_info($self->{IMG}))[0];
1995 # Get the height of an image
1999 if (!defined($self->{IMG})) { $self->{ERRSTR} = 'image is empty'; return undef; }
2000 return (i_img_info($self->{IMG}))[1];
2003 # Get number of channels in an image
2007 if (!defined($self->{IMG})) { $self->{ERRSTR} = 'image is empty'; return undef; }
2008 return i_img_getchannels($self->{IMG});
2015 if (!defined($self->{IMG})) { $self->{ERRSTR} = 'image is empty'; return undef; }
2016 return i_img_getmask($self->{IMG});
2024 if (!defined($self->{IMG})) { $self->{ERRSTR} = 'image is empty'; return undef; }
2025 i_img_setmask( $self->{IMG} , $opts{mask} );
2028 # Get number of colors in an image
2032 my %opts=(maxcolors=>2**30,@_);
2033 if (!defined($self->{IMG})) { $self->{ERRSTR}='image is empty'; return undef; }
2034 my $rc=i_count_colors($self->{IMG},$opts{'maxcolors'});
2035 return ($rc==-1? undef : $rc);
2038 # draw string to an image
2042 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
2044 my %input=('x'=>0, 'y'=>0, @_);
2045 $input{string}||=$input{text};
2047 unless(exists $input{string}) {
2048 $self->{ERRSTR}="missing required parameter 'string'";
2052 unless($input{font}) {
2053 $self->{ERRSTR}="missing required parameter 'font'";
2057 unless ($input{font}->draw(image=>$self, %input)) {
2058 $self->{ERRSTR} = $self->_error_as_msg();
2065 # Shortcuts that can be exported
2067 sub newcolor { Imager::Color->new(@_); }
2068 sub newfont { Imager::Font->new(@_); }
2070 *NC=*newcolour=*newcolor;
2077 #### Utility routines
2080 ref $_[0] ? $_[0]->{ERRSTR} : $ERRSTR
2083 # Default guess for the type of an image from extension
2085 sub def_guess_type {
2088 $ext=($name =~ m/\.([^\.]+)$/)[0];
2089 return 'tiff' if ($ext =~ m/^tiff?$/);
2090 return 'jpeg' if ($ext =~ m/^jpe?g$/);
2091 return 'pnm' if ($ext =~ m/^p[pgb]m$/);
2092 return 'png' if ($ext eq "png");
2093 return 'bmp' if ($ext eq "bmp" || $ext eq "dib");
2094 return 'tga' if ($ext eq "tga");
2095 return 'gif' if ($ext eq "gif");
2099 # get the minimum of a list
2103 for(@_) { if ($_<$mx) { $mx=$_; }}
2107 # get the maximum of a list
2111 for(@_) { if ($_>$mx) { $mx=$_; }}
2115 # string stuff for iptc headers
2119 $str = substr($str,3);
2120 $str =~ s/[\n\r]//g;
2127 # A little hack to parse iptc headers.
2132 my($caption,$photogr,$headln,$credit);
2134 my $str=$self->{IPTCRAW};
2138 @ar=split(/8BIM/,$str);
2143 @sar=split(/\034\002/);
2144 foreach $item (@sar) {
2145 if ($item =~ m/^x/) {
2146 $caption=&clean($item);
2149 if ($item =~ m/^P/) {
2150 $photogr=&clean($item);
2153 if ($item =~ m/^i/) {
2154 $headln=&clean($item);
2157 if ($item =~ m/^n/) {
2158 $credit=&clean($item);
2164 return (caption=>$caption,photogr=>$photogr,headln=>$headln,credit=>$credit);
2167 # Autoload methods go after =cut, and are processed by the autosplit program.
2171 # Below is the stub of documentation for your module. You better edit it!
2175 Imager - Perl extension for Generating 24 bit Images
2179 use Imager qw(init);
2182 $img = Imager->new();
2183 $img->open(file=>'image.ppm',type=>'pnm')
2184 || print "failed: ",$img->{ERRSTR},"\n";
2185 $scaled=$img->scale(xpixels=>400,ypixels=>400);
2186 $scaled->write(file=>'sc_image.ppm',type=>'pnm')
2187 || print "failed: ",$scaled->{ERRSTR},"\n";
2191 Imager is a module for creating and altering images - It is not meant
2192 as a replacement or a competitor to ImageMagick or GD. Both are
2193 excellent packages and well supported.
2197 Almost all functions take the parameters in the hash fashion.
2200 $img->open(file=>'lena.png',type=>'png');
2204 $img->open(file=>'lena.png');
2206 =head2 Basic concept
2208 An Image object is created with C<$img = Imager-E<gt>new()> Should
2209 this fail for some reason an explanation can be found in
2210 C<$Imager::ERRSTR> usually error messages are stored in
2211 C<$img-E<gt>{ERRSTR}>, but since no object is created this is the only
2212 way to give back errors. C<$Imager::ERRSTR> is also used to report
2213 all errors not directly associated with an image object. Examples:
2215 $img=Imager->new(); # This is an empty image (size is 0 by 0)
2216 $img->open(file=>'lena.png',type=>'png'); # initializes from file
2218 or if you want to create an empty image:
2220 $img=Imager->new(xsize=>400,ysize=>300,channels=>4);
2222 This example creates a completely black image of width 400 and
2223 height 300 and 4 channels.
2225 If you have an existing image, use img_set() to change it's dimensions
2226 - this will destroy any existing image data:
2228 $img->img_set(xsize=>500, ysize=>500, channels=>4);
2230 To create paletted images, set the 'type' parameter to 'paletted':
2232 $img = Imager->new(xsize=>200, ysize=>200, channels=>3, type=>'paletted');
2234 which creates an image with a maxiumum of 256 colors, which you can
2235 change by supplying the C<maxcolors> parameter.
2237 You can create a new paletted image from an existing image using the
2238 to_paletted() method:
2240 $palimg = $img->to_paletted(\%opts)
2242 where %opts contains the options specified under L<Quantization options>.
2244 You can convert a paletted image (or any image) to an 8-bit/channel
2247 $rgbimg = $img->to_rgb8;
2249 Warning: if you draw on a paletted image with colors that aren't in
2250 the palette, the image will be internally converted to a normal image.
2252 For improved color precision you can use the bits parameter to specify
2255 $img = Imager->new(xsize=>200, ysize=>200, channels=>3, bits=>16);
2257 or for even more precision:
2259 $img = Imager->new(xsize=>200, ysize=>200, channels=>3, bits=>'double');
2261 to get an image that uses a double for each channel.
2263 Note that as of this writing all functions should work on images with
2264 more than 8-bits/channel, but many will only work at only
2265 8-bit/channel precision.
2267 Currently only 8-bit, 16-bit, and double per channel image types are
2268 available, this may change later.
2270 Color objects are created by calling the Imager::Color->new()
2273 $color = Imager::Color->new($red, $green, $blue);
2274 $color = Imager::Color->new($red, $green, $blue, $alpha);
2275 $color = Imager::Color->new("#C0C0FF"); # html color specification
2277 This object can then be passed to functions that require a color parameter.
2279 Coordinates in Imager have the origin in the upper left corner. The
2280 horizontal coordinate increases to the right and the vertical
2283 =head2 Reading and writing images
2285 C<$img-E<gt>read()> generally takes two parameters, 'file' and 'type'.
2286 If the type of the file can be determined from the suffix of the file
2287 it can be omitted. Format dependant parameters are: For images of
2288 type 'raw' two extra parameters are needed 'xsize' and 'ysize', if the
2289 'channel' parameter is omitted for type 'raw' it is assumed to be 3.
2290 gif and png images might have a palette are converted to truecolor bit
2291 when read. Alpha channel is preserved for png images irregardless of
2292 them being in RGB or gray colorspace. Similarly grayscale jpegs are
2293 one channel images after reading them. For jpeg images the iptc
2294 header information (stored in the APP13 header) is avaliable to some
2295 degree. You can get the raw header with C<$img-E<gt>{IPTCRAW}>, but
2296 you can also retrieve the most basic information with
2297 C<%hsh=$img-E<gt>parseiptc()> as always patches are welcome. pnm has no
2298 extra options. Examples:
2300 $img = Imager->new();
2301 $img->read(file=>"cover.jpg") or die $img->errstr; # gets type from name
2303 $img = Imager->new();
2304 { local(*FH,$/); open(FH,"file.gif") or die $!; $a=<FH>; }
2305 $img->read(data=>$a,type=>'gif') or die $img->errstr;
2307 The second example shows how to read an image from a scalar, this is
2308 usefull if your data originates from somewhere else than a filesystem
2309 such as a database over a DBI connection.
2311 When writing to a tiff image file you can also specify the 'class'
2312 parameter, which can currently take a single value, "fax". If class
2313 is set to fax then a tiff image which should be suitable for faxing
2314 will be written. For the best results start with a grayscale image.
2315 By default the image is written at fine resolution you can override
2316 this by setting the "fax_fine" parameter to 0.
2318 If you are reading from a gif image file, you can supply a 'colors'
2319 parameter which must be a reference to a scalar. The referenced
2320 scalar will receive an array reference which contains the colors, each
2321 represented as an Imager::Color object.
2323 If you already have an open file handle, for example a socket or a
2324 pipe, you can specify the 'fd' parameter instead of supplying a
2325 filename. Please be aware that you need to use fileno() to retrieve
2326 the file descriptor for the file:
2328 $img->read(fd=>fileno(FILE), type=>'gif') or die $img->errstr;
2330 For writing using the 'fd' option you will probably want to set $| for
2331 that descriptor, since the writes to the file descriptor bypass Perl's
2332 (or the C libraries) buffering. Setting $| should avoid out of order
2333 output. For example a common idiom when writing a CGI script is:
2335 # the $| _must_ come before you send the content-type
2337 print "Content-Type: image/jpeg\n\n";
2338 $img->write(fd=>fileno(STDOUT), type=>'jpeg') or die $img->errstr;
2340 *Note that load() is now an alias for read but will be removed later*
2342 C<$img-E<gt>write> has the same interface as C<read()>. The earlier
2343 comments on C<read()> for autodetecting filetypes apply. For jpegs
2344 quality can be adjusted via the 'jpegquality' parameter (0-100). The
2345 number of colorplanes in gifs are set with 'gifplanes' and should be
2346 between 1 (2 color) and 8 (256 colors). It is also possible to choose
2347 between two quantizing methods with the parameter 'gifquant'. If set
2348 to mc it uses the mediancut algorithm from either giflibrary. If set
2349 to lm it uses a local means algorithm. It is then possible to give
2350 some extra settings. lmdither is the dither deviation amount in pixels
2351 (manhattan distance). lmfixed can be an array ref who holds an array
2352 of Imager::Color objects. Note that the local means algorithm needs
2353 much more cpu time but also gives considerable better results than the
2354 median cut algorithm.
2356 When storing targa images rle compression can be activated with the
2357 'compress' parameter, the 'idstring' parameter can be used to set the
2358 targa comment field and the 'wierdpack' option can be used to use the
2359 15 and 16 bit targa formats for rgb and rgba data. The 15 bit format
2360 has 5 of each red, green and blue. The 16 bit format in addition
2361 allows 1 bit of alpha. The most significant bits are used for each
2364 Currently just for gif files, you can specify various options for the
2365 conversion from Imager's internal RGB format to the target's indexed
2366 file format. If you set the gifquant option to 'gen', you can use the
2367 options specified under L<Quantization options>.
2369 To see what Imager is compiled to support the following code snippet
2373 print "@{[keys %Imager::formats]}";
2375 When reading raw images you need to supply the width and height of the
2376 image in the xsize and ysize options:
2378 $img->read(file=>'foo.raw', xsize=>100, ysize=>100)
2379 or die "Cannot read raw image\n";
2381 If your input file has more channels than you want, or (as is common),
2382 junk in the fourth channel, you can use the datachannels and
2383 storechannels options to control the number of channels in your input
2384 file and the resulting channels in your image. For example, if your
2385 input image uses 32-bits per pixel with red, green, blue and junk
2386 values for each pixel you could do:
2388 $img->read(file=>'foo.raw', xsize=>100, ysize=>100, datachannels=>4,
2390 or die "Cannot read raw image\n";
2392 Normally the raw image is expected to have the value for channel 1
2393 immediately following channel 0 and channel 2 immediately following
2394 channel 1 for each pixel. If your input image has all the channel 0
2395 values for the first line of the image, followed by all the channel 1
2396 values for the first line and so on, you can use the interleave option:
2398 $img->read(file=>'foo.raw', xsize=100, ysize=>100, interleave=>1)
2399 or die "Cannot read raw image\n";
2401 =head2 Multi-image files
2403 Currently just for gif files, you can create files that contain more
2408 Imager->write_multi(\%opts, @images)
2410 Where %opts describes 4 possible types of outputs:
2416 This is C<gif> for gif animations.
2420 A code reference which is called with a single parameter, the data to
2421 be written. You can also specify $opts{maxbuffer} which is the
2422 maximum amount of data buffered. Note that there can be larger writes
2423 than this if the file library writes larger blocks. A smaller value
2424 maybe useful for writing to a socket for incremental display.
2428 The file descriptor to save the images to.
2432 The name of the file to write to.
2434 %opts may also include the keys from L<Gif options> and L<Quantization
2439 You must also specify the file format using the 'type' option.
2441 The current aim is to support other multiple image formats in the
2442 future, such as TIFF, and to support reading multiple images from a
2448 # ... code to put images in @images
2449 Imager->write_multi({type=>'gif',
2451 gif_delays=>[ (10) x @images ] },
2455 You can read multi-image files (currently only GIF files) using the
2456 read_multi() method:
2458 my @imgs = Imager->read_multi(file=>'foo.gif')
2459 or die "Cannot read images: ",Imager->errstr;
2461 The possible parameters for read_multi() are:
2467 The name of the file to read in.
2471 A filehandle to read in. This can be the name of a filehandle, but it
2472 will need the package name, no attempt is currently made to adjust
2473 this to the caller's package.
2477 The numeric file descriptor of an open file (or socket).
2481 A function to be called to read in data, eg. reading a blob from a
2482 database incrementally.
2486 The data of the input file in memory.
2490 The type of file. If the file is parameter is given and provides
2491 enough information to guess the type, then this parameter is optional.
2495 Note: you cannot use the callback or data parameter with giflib
2496 versions before 4.0.
2498 When reading from a GIF file with read_multi() the images are returned
2503 These options can be specified when calling write_multi() for gif
2504 files, when writing a single image with the gifquant option set to
2505 'gen', or for direct calls to i_writegif_gen and i_writegif_callback.
2507 Note that some viewers will ignore some of these options
2508 (gif_user_input in particular).
2512 =item gif_each_palette
2514 Each image in the gif file has it's own palette if this is non-zero.
2515 All but the first image has a local colour table (the first uses the
2516 global colour table.
2520 The images are written interlaced if this is non-zero.
2524 A reference to an array containing the delays between images, in 1/100
2527 If you want the same delay for every frame you can simply set this to
2528 the delay in 1/100 seconds.
2530 =item gif_user_input
2532 A reference to an array contains user input flags. If the given flag
2533 is non-zero the image viewer should wait for input before displaying
2538 A reference to an array of image disposal methods. These define what
2539 should be done to the image before displaying the next one. These are
2540 integers, where 0 means unspecified, 1 means the image should be left
2541 in place, 2 means restore to background colour and 3 means restore to
2544 =item gif_tran_color
2546 A reference to an Imager::Color object, which is the colour to use for
2547 the palette entry used to represent transparency in the palette. You
2548 need to set the transp option (see L<Quantization options>) for this
2553 A reference to an array of references to arrays which represent screen
2554 positions for each image.
2556 =item gif_loop_count
2558 If this is non-zero the Netscape loop extension block is generated,
2559 which makes the animation of the images repeat.
2561 This is currently unimplemented due to some limitations in giflib.
2563 =item gif_eliminate_unused
2565 If this is true, when you write a paletted image any unused colors
2566 will be eliminated from its palette. This is set by default.
2570 =head2 Quantization options
2572 These options can be specified when calling write_multi() for gif
2573 files, when writing a single image with the gifquant option set to
2574 'gen', or for direct calls to i_writegif_gen and i_writegif_callback.
2580 A arrayref of colors that are fixed. Note that some color generators
2585 The type of transparency processing to perform for images with an
2586 alpha channel where the output format does not have a proper alpha
2587 channel (eg. gif). This can be any of:
2593 No transparency processing is done. (default)
2597 Pixels more transparent that tr_threshold are rendered as transparent.
2601 An error diffusion dither is done on the alpha channel. Note that
2602 this is independent of the translation performed on the colour
2603 channels, so some combinations may cause undesired artifacts.
2607 The ordered dither specified by tr_orddith is performed on the alpha
2612 This will only be used if the image has an alpha channel, and if there
2613 is space in the palette for a transparency colour.
2617 The highest alpha value at which a pixel will be made transparent when
2618 transp is 'threshold'. (0-255, default 127)
2622 The type of error diffusion to perform on the alpha channel when
2623 transp is 'errdiff'. This can be any defined error diffusion type
2624 except for custom (see errdiff below).
2628 The type of ordered dither to perform on the alpha channel when transp
2629 is 'ordered'. Possible values are:
2635 A semi-random map is used. The map is the same each time.
2647 horizontal line dither.
2651 vertical line dither.
2657 diagonal line dither
2663 diagonal line dither
2667 dot matrix dither (currently the default). This is probably the best
2668 for displays (like web pages).
2672 A custom dither matrix is used - see tr_map
2678 When tr_orddith is custom this defines an 8 x 8 matrix of integers
2679 representing the transparency threshold for pixels corresponding to
2680 each position. This should be a 64 element array where the first 8
2681 entries correspond to the first row of the matrix. Values should be
2686 Defines how the quantization engine will build the palette(s).
2687 Currently this is ignored if 'translate' is 'giflib', but that may
2688 change. Possible values are:
2694 Only colors supplied in 'colors' are used.
2698 The web color map is used (need url here.)
2702 The original code for generating the color map (Addi's code) is used.
2706 Other methods may be added in the future.
2710 A arrayref containing Imager::Color objects, which represents the
2711 starting set of colors to use in translating the images. webmap will
2712 ignore this. The final colors used are copied back into this array
2713 (which is expanded if necessary.)
2717 The maximum number of colors to use in the image.
2721 The method used to translate the RGB values in the source image into
2722 the colors selected by make_colors. Note that make_colors is ignored
2723 whene translate is 'giflib'.
2725 Possible values are:
2731 The giflib native quantization function is used.
2735 The closest color available is used.
2739 The pixel color is modified by perturb, and the closest color is chosen.
2743 An error diffusion dither is performed.
2747 It's possible other transate values will be added.
2751 The type of error diffusion dither to perform. These values (except
2752 for custom) can also be used in tr_errdif.
2758 Floyd-Steinberg dither
2762 Jarvis, Judice and Ninke dither
2770 Custom. If you use this you must also set errdiff_width,
2771 errdiff_height and errdiff_map.
2777 =item errdiff_height
2783 When translate is 'errdiff' and errdiff is 'custom' these define a
2784 custom error diffusion map. errdiff_width and errdiff_height define
2785 the size of the map in the arrayref in errdiff_map. errdiff_orig is
2786 an integer which indicates the current pixel position in the top row
2791 When translate is 'perturb' this is the magnitude of the random bias
2792 applied to each channel of the pixel before it is looked up in the
2797 =head2 Obtaining/setting attributes of images
2799 To get the size of an image in pixels the C<$img-E<gt>getwidth()> and
2800 C<$img-E<gt>getheight()> are used.
2802 To get the number of channels in
2803 an image C<$img-E<gt>getchannels()> is used. $img-E<gt>getmask() and
2804 $img-E<gt>setmask() are used to get/set the channel mask of the image.
2806 $mask=$img->getmask();
2807 $img->setmask(mask=>1+2); # modify red and green only
2808 $img->setmask(mask=>8); # modify alpha only
2809 $img->setmask(mask=>$mask); # restore previous mask
2811 The mask of an image describes which channels are updated when some
2812 operation is performed on an image. Naturally it is not possible to
2813 apply masks to operations like scaling that alter the dimensions of
2816 It is possible to have Imager find the number of colors in an image
2817 by using C<$img-E<gt>getcolorcount()>. It requires memory proportionally
2818 to the number of colors in the image so it is possible to have it
2819 stop sooner if you only need to know if there are more than a certain number
2820 of colors in the image. If there are more colors than asked for
2821 the function return undef. Examples:
2823 if (!defined($img->getcolorcount(maxcolors=>512)) {
2824 print "Less than 512 colors in image\n";
2827 The bits() method retrieves the number of bits used to represent each
2828 channel in a pixel, 8 for a normal image, 16 for 16-bit image and
2829 'double' for a double/channel image. The type() method returns either
2830 'direct' for truecolor images or 'paletted' for paletted images. The
2831 virtual() method returns non-zero if the image contains no actual
2832 pixels, for example masked images.
2834 =head2 Paletted Images
2836 In general you can work with paletted images in the same way as RGB
2837 images, except that if you attempt to draw to a paletted image with a
2838 color that is not in the image's palette, the image will be converted
2839 to an RGB image. This means that drawing on a paletted image with
2840 anti-aliasing enabled will almost certainly convert the image to RGB.
2842 You can add colors to a paletted image with the addcolors() method:
2844 my @colors = ( Imager::Color->new(255, 0, 0),
2845 Imager::Color->new(0, 255, 0) );
2846 my $index = $img->addcolors(colors=>\@colors);
2848 The return value is the index of the first color added, or undef if
2849 adding the colors would overflow the palette.
2851 Once you have colors in the palette you can overwrite them with the
2854 $img->setcolors(start=>$start, colors=>\@colors);
2856 Returns true on success.
2858 To retrieve existing colors from the palette use the getcolors() method:
2860 # get the whole palette
2861 my @colors = $img->getcolors();
2862 # get a single color
2863 my $color = $img->getcolors(start=>$index);
2864 # get a range of colors
2865 my @colors = $img->getcolors(start=>$index, count=>$count);
2867 To quickly find a color in the palette use findcolor():
2869 my $index = $img->findcolor(color=>$color);
2871 which returns undef on failure, or the index of the color.
2873 You can get the current palette size with $img->colorcount, and the
2874 maximum size of the palette with $img->maxcolors.
2876 =head2 Drawing Methods
2878 IMPLEMENTATION MORE OR LESS DONE CHECK THE TESTS
2879 DOCUMENTATION OF THIS SECTION OUT OF SYNC
2881 It is possible to draw with graphics primitives onto images. Such
2882 primitives include boxes, arcs, circles and lines. A reference
2883 oriented list follows.
2886 $img->box(color=>$blue,xmin=>10,ymin=>30,xmax=>200,ymax=>300,filled=>1);
2888 The above example calls the C<box> method for the image and the box
2889 covers the pixels with in the rectangle specified. If C<filled> is
2890 ommited it is drawn as an outline. If any of the edges of the box are
2891 ommited it will snap to the outer edge of the image in that direction.
2892 Also if a color is omitted a color with (255,255,255,255) is used
2896 $img->arc(color=>$red, r=20, x=>200, y=>100, d1=>10, d2=>20 );
2898 This creates a filled red arc with a 'center' at (200, 100) and spans
2899 10 degrees and the slice has a radius of 20. SEE section on BUGS.
2901 Both the arc() and box() methods can take a C<fill> parameter which
2902 can either be an Imager::Fill object, or a reference to a hash
2903 containing the parameters used to create the fill:
2905 $img->box(xmin=>10, ymin=>30, xmax=>150, ymax=>60,
2906 fill => { hatch=>'cross2' });
2908 my $fill = Imager::Fill->new(hatch=>'stipple');
2909 $img->box(fill=>$fill);
2911 See L<Imager::Fill> for the type of fills you can use.
2914 $img->circle(color=>$green, r=50, x=>200, y=>100);
2916 This creates a green circle with its center at (200, 100) and has a
2920 $img->line(color=>$green, x1=10, x2=>100,
2921 y1=>20, y2=>50, antialias=>1 );
2923 That draws an antialiased line from (10,100) to (20,50).
2926 $img->polyline(points=>[[$x0,$y0],[$x1,$y1],[$x2,$y2]],color=>$red);
2927 $img->polyline(x=>[$x0,$x1,$x2], y=>[$y0,$y1,$y2], antialias=>1);
2929 Polyline is used to draw multilple lines between a series of points.
2930 The point set can either be specified as an arrayref to an array of
2931 array references (where each such array represents a point). The
2932 other way is to specify two array references.
2934 You can fill a region that all has the same color using the
2935 flood_fill() method, for example:
2937 $img->flood_fill(x=>50, y=>50, color=>$color);
2939 will fill all regions the same color connected to the point (50, 50).
2941 You can also use a general fill, so you could fill the same region
2942 with a check pattern using:
2944 $img->flood_fill(x=>50, y=>50, fill=>{ hatch=>'check2x2' });
2946 See L<Imager::Fill> for more information on general fills.
2948 =head2 Text rendering
2950 Text rendering is described in the Imager::Font manpage.
2952 =head2 Image resizing
2954 To scale an image so porportions are maintained use the
2955 C<$img-E<gt>scale()> method. if you give either a xpixels or ypixels
2956 parameter they will determine the width or height respectively. If
2957 both are given the one resulting in a larger image is used. example:
2958 C<$img> is 700 pixels wide and 500 pixels tall.
2960 $img->scale(xpixels=>400); # 400x285
2961 $img->scale(ypixels=>400); # 560x400
2963 $img->scale(xpixels=>400,ypixels=>400); # 560x400
2964 $img->scale(xpixels=>400,ypixels=>400,type=>min); # 400x285
2966 $img->scale(scalefactor=>0.25); 175x125 $img->scale(); # 350x250
2968 if you want to create low quality previews of images you can pass
2969 C<qtype=E<gt>'preview'> to scale and it will use nearest neighbor
2970 sampling instead of filtering. It is much faster but also generates
2971 worse looking images - especially if the original has a lot of sharp
2972 variations and the scaled image is by more than 3-5 times smaller than
2975 If you need to scale images per axis it is best to do it simply by
2976 calling scaleX and scaleY. You can pass either 'scalefactor' or
2977 'pixels' to both functions.
2979 Another way to resize an image size is to crop it. The parameters
2980 to crop are the edges of the area that you want in the returned image.
2981 If a parameter is omited a default is used instead.
2983 $newimg = $img->crop(left=>50, right=>100, top=>10, bottom=>100);
2984 $newimg = $img->crop(left=>50, top=>10, width=>50, height=>90);
2985 $newimg = $img->crop(left=>50, right=>100); # top
2987 You can also specify width and height parameters which will produce a
2988 new image cropped from the center of the input image, with the given
2991 $newimg = $img->crop(width=>50, height=>50);
2993 The width and height parameters take precedence over the left/right
2994 and top/bottom parameters respectively.
2996 =head2 Copying images
2998 To create a copy of an image use the C<copy()> method. This is usefull
2999 if you want to keep an original after doing something that changes the image
3000 inplace like writing text.
3004 To copy an image to onto another image use the C<paste()> method.
3006 $dest->paste(left=>40,top=>20,img=>$logo);
3008 That copies the entire C<$logo> image onto the C<$dest> image so that the
3009 upper left corner of the C<$logo> image is at (40,20).
3012 =head2 Flipping images
3014 An inplace horizontal or vertical flip is possible by calling the
3015 C<flip()> method. If the original is to be preserved it's possible to
3016 make a copy first. The only parameter it takes is the C<dir>
3017 parameter which can take the values C<h>, C<v>, C<vh> and C<hv>.
3019 $img->flip(dir=>"h"); # horizontal flip
3020 $img->flip(dir=>"vh"); # vertical and horizontal flip
3021 $nimg = $img->copy->flip(dir=>"v"); # make a copy and flip it vertically
3023 =head2 Rotating images
3025 Use the rotate() method to rotate an image. This method will return a
3028 To rotate by an exact amount in degrees or radians, use the 'degrees'
3029 or 'radians' parameter:
3031 my $rot20 = $img->rotate(degrees=>20);
3032 my $rotpi4 = $img->rotate(radians=>3.14159265/4);
3034 Exact image rotation uses the same underlying transformation engine as
3035 the matrix_transform() method.
3037 To rotate in steps of 90 degrees, use the 'right' parameter:
3039 my $rotated = $img->rotate(right=>270);
3041 Rotations are clockwise for positive values.
3043 =head2 Blending Images
3045 To put an image or a part of an image directly
3046 into another it is best to call the C<paste()> method on the image you
3049 $img->paste(img=>$srcimage,left=>30,top=>50);
3051 That will take paste C<$srcimage> into C<$img> with the upper
3052 left corner at (30,50). If no values are given for C<left>
3053 or C<top> they will default to 0.
3055 A more complicated way of blending images is where one image is
3056 put 'over' the other with a certain amount of opaqueness. The
3057 method that does this is rubthrough.
3059 $img->rubthrough(src=>$srcimage,tx=>30,ty=>50);
3061 That will take the image C<$srcimage> and overlay it with the upper
3062 left corner at (30,50). You can rub 2 or 4 channel images onto a 3
3063 channel image, or a 2 channel image onto a 1 channel image. The last
3064 channel is used as an alpha channel.
3069 A special image method is the filter method. An example is:
3071 $img->filter(type=>'autolevels');
3073 This will call the autolevels filter. Here is a list of the filters
3074 that are always avaliable in Imager. This list can be obtained by
3075 running the C<filterlist.perl> script that comes with the module
3079 autolevels lsat(0.1) usat(0.1) skew(0)
3080 bumpmap bump elevation(0) lightx lighty st(2)
3081 bumpmap_complex bump channel(0) tx(0) ty(0) Lx(0.2) Ly(0.4)
3082 Lz(-1) cd(1.0) cs(40.0) n(1.3) Ia(0 0 0) Il(255 255 255)
3086 fountain xa ya xb yb ftype(linear) repeat(none) combine(none)
3087 super_sample(none) ssample_param(4) segments(see below)
3089 gradgen xo yo colors dist
3092 noise amount(3) subtype(0)
3093 postlevels levels(10)
3094 radnoise xo(100) yo(100) ascale(17.0) rscale(0.02)
3095 turbnoise xo(0.0) yo(0.0) scale(10.0)
3096 unsharpmask stddev(2.0) scale(1.0)
3097 watermark wmark pixdiff(10) tx(0) ty(0)
3099 The default values are in parenthesis. All parameters must have some
3100 value but if a parameter has a default value it may be omitted when
3101 calling the filter function.
3109 scales the value of each channel so that the values in the image will
3110 cover the whole possible range for the channel. I<lsat> and I<usat>
3111 truncate the range by the specified fraction at the top and bottom of
3112 the range respectivly..
3116 uses the channel I<elevation> image I<bump> as a bumpmap on your
3117 image, with the light at (I<lightx>, I<lightty>), with a shadow length
3120 =item bumpmap_complex
3122 uses the channel I<channel> image I<bump> as a bumpmap on your image.
3123 If Lz<0 the three L parameters are considered to be the direction of
3124 the light. If Lz>0 the L parameters are considered to be the light
3125 position. I<Ia> is the ambient colour, I<Il> is the light colour,
3126 I<Is> is the color of specular highlights. I<cd> is the diffuse
3127 coefficient and I<cs> is the specular coefficient. I<n> is the
3128 shininess of the surface.
3132 scales each channel by I<intensity>. Values of I<intensity> < 1.0
3133 will reduce the contrast.
3137 performs 2 1-dimensional convolutions on the image using the values
3138 from I<coef>. I<coef> should be have an odd length.
3142 renders a fountain fill, similar to the gradient tool in most paint
3143 software. The default fill is a linear fill from opaque black to
3144 opaque white. The points A(xa, ya) and B(xb, yb) control the way the
3145 fill is performed, depending on the ftype parameter:
3151 the fill ramps from A through to B.
3155 the fill ramps in both directions from A, where AB defines the length
3160 A is the center of a circle, and B is a point on it's circumference.
3161 The fill ramps from the center out to the circumference.
3165 A is the center of a square and B is the center of one of it's sides.
3166 This can be used to rotate the square. The fill ramps out to the
3167 edges of the square.
3171 A is the centre of a circle and B is a point on it's circumference. B
3172 marks the 0 and 360 point on the circle, with the fill ramping
3177 A is the center of a circle and B is a point on it's circumference. B
3178 marks the 0 and point on the circle, with the fill ramping in both
3179 directions to meet opposite.
3183 The I<repeat> option controls how the fill is repeated for some
3184 I<ftype>s after it leaves the AB range:
3190 no repeats, points outside of each range are treated as if they were
3191 on the extreme end of that range.
3195 the fill simply repeats in the positive direction
3199 the fill repeats in reverse and then forward and so on, in the
3204 the fill repeats in both the positive and negative directions (only
3205 meaningful for a linear fill).
3209 as for triangle, but in the negative direction too (only meaningful
3214 By default the fill simply overwrites the whole image (unless you have
3215 parts of the range 0 through 1 that aren't covered by a segment), if
3216 any segments of your fill have any transparency, you can set the
3217 I<combine> option to 'normal' to have the fill combined with the
3218 existing pixels. See the description of I<combine> in L<Imager/Fill>.
3220 If your fill has sharp edges, for example between steps if you use
3221 repeat set to 'triangle', you may see some aliased or ragged edges.
3222 You can enable super-sampling which will take extra samples within the
3223 pixel in an attempt anti-alias the fill.
3225 The possible values for the super_sample option are:
3231 no super-sampling is done
3235 a square grid of points are sampled. The number of points sampled is
3236 the square of ceil(0.5 + sqrt(ssample_param)).
3240 a random set of points within the pixel are sampled. This looks
3241 pretty bad for low ssample_param values.
3245 the points on the radius of a circle within the pixel are sampled.
3246 This seems to produce the best results, but is fairly slow (for now).
3250 You can control the level of sampling by setting the ssample_param
3251 option. This is roughly the number of points sampled, but depends on
3252 the type of sampling.
3254 The segments option is an arrayref of segments. You really should use
3255 the Imager::Fountain class to build your fountain fill. Each segment
3256 is an array ref containing:
3262 a floating point number between 0 and 1, the start of the range of fill parameters covered by this segment.
3266 a floating point number between start and end which can be used to
3267 push the color range towards one end of the segment.
3271 a floating point number between 0 and 1, the end of the range of fill
3272 parameters covered by this segment. This should be greater than
3279 The colors at each end of the segment. These can be either
3280 Imager::Color or Imager::Color::Float objects.
3284 The type of segment, this controls the way the fill parameter varies
3285 over the segment. 0 for linear, 1 for curved (unimplemented), 2 for
3286 sine, 3 for sphere increasing, 4 for sphere decreasing.
3290 The way the color varies within the segment, 0 for simple RGB, 1 for
3291 hue increasing and 2 for hue decreasing.
3295 Don't forgot to use Imager::Fountain instead of building your own.
3296 Really. It even loads GIMP gradient files.
3300 performs a gaussian blur of the image, using I<stddev> as the standard
3301 deviation of the curve used to combine pixels, larger values give
3302 bigger blurs. For a definition of Gaussian Blur, see:
3304 http://www.maths.abdn.ac.uk/~igc/tch/mx4002/notes/node99.html
3308 renders a gradient, with the given I<colors> at the corresponding
3309 points (x,y) in I<xo> and I<yo>. You can specify the way distance is
3310 measured for color blendeing by setting I<dist> to 0 for Euclidean, 1
3311 for Euclidean squared, and 2 for Manhattan distance.
3315 inverts the image, black to white, white to black. All channels are
3316 inverted, including the alpha channel if any.
3320 produces averaged tiles of the given I<size>.
3324 adds noise of the given I<amount> to the image. If I<subtype> is
3325 zero, the noise is even to each channel, otherwise noise is added to
3326 each channel independently.
3330 renders radiant Perlin turbulent noise. The centre of the noise is at
3331 (I<xo>, I<yo>), I<ascale> controls the angular scale of the noise ,
3332 and I<rscale> the radial scale, higher numbers give more detail.
3336 alters the image to have only I<levels> distinct level in each
3341 renders Perlin turbulent noise. (I<xo>, I<yo>) controls the origin of
3342 the noise, and I<scale> the scale of the noise, with lower numbers
3347 performs an unsharp mask on the image. This is the result of
3348 subtracting a gaussian blurred version of the image from the original.
3349 I<stddev> controls the stddev parameter of the gaussian blur. Each
3350 output pixel is: in + I<scale> * (in - blurred).
3354 applies I<wmark> as a watermark on the image with strength I<pixdiff>,
3355 with an origin at (I<tx>, I<ty>)
3359 A demonstration of most of the filters can be found at:
3361 http://www.develop-help.com/imager/filters.html
3363 (This is a slow link.)
3365 =head2 Color transformations
3367 You can use the convert method to transform the color space of an
3368 image using a matrix. For ease of use some presets are provided.
3370 The convert method can be used to:
3376 convert an RGB or RGBA image to grayscale.
3380 convert a grayscale image to RGB.
3384 extract a single channel from an image.
3388 set a given channel to a particular value (or from another channel)
3392 The currently defined presets are:
3400 converts an RGBA image into a grayscale image with alpha channel, or
3401 an RGB image into a grayscale image without an alpha channel.
3403 This weights the RGB channels at 22.2%, 70.7% and 7.1% respectively.
3407 removes the alpha channel from a 2 or 4 channel image. An identity
3414 extracts the first channel of the image into a single channel image
3420 extracts the second channel of the image into a single channel image
3426 extracts the third channel of the image into a single channel image
3430 extracts the alpha channel of the image into a single channel image.
3432 If the image has 1 or 3 channels (assumed to be grayscale of RGB) then
3433 the resulting image will be all white.
3437 converts a grayscale image to RGB, preserving the alpha channel if any
3441 adds an alpha channel to a grayscale or RGB image. Preserves an
3442 existing alpha channel for a 2 or 4 channel image.
3446 For example, to convert an RGB image into a greyscale image:
3448 $new = $img->convert(preset=>'grey'); # or gray
3450 or to convert a grayscale image to an RGB image:
3452 $new = $img->convert(preset=>'rgb');
3454 The presets aren't necessary simple constants in the code, some are
3455 generated based on the number of channels in the input image.
3457 If you want to perform some other colour transformation, you can use
3458 the 'matrix' parameter.
3460 For each output pixel the following matrix multiplication is done:
3462 channel[0] [ [ $c00, $c01, ... ] inchannel[0]
3463 [ ... ] = ... x [ ... ]
3464 channel[n-1] [ $cn0, ..., $cnn ] ] inchannel[max]
3467 So if you want to swap the red and green channels on a 3 channel image:
3469 $new = $img->convert(matrix=>[ [ 0, 1, 0 ],
3473 or to convert a 3 channel image to greyscale using equal weightings:
3475 $new = $img->convert(matrix=>[ [ 0.333, 0.333, 0.334 ] ])
3477 =head2 Color Mappings
3479 You can use the map method to map the values of each channel of an
3480 image independently using a list of lookup tables. It's important to
3481 realize that the modification is made inplace. The function simply
3482 returns the input image again or undef on failure.
3484 Each channel is mapped independently through a lookup table with 256
3485 entries. The elements in the table should not be less than 0 and not
3486 greater than 255. If they are out of the 0..255 range they are
3487 clamped to the range. If a table does not contain 256 entries it is
3490 Single channels can mapped by specifying their name and the mapping
3491 table. The channel names are C<red>, C<green>, C<blue>, C<alpha>.
3493 @map = map { int( $_/2 } 0..255;
3494 $img->map( red=>\@map );
3496 It is also possible to specify a single map that is applied to all
3497 channels, alpha channel included. For example this applies a gamma
3498 correction with a gamma of 1.4 to the input image.
3501 @map = map { int( 0.5 + 255*($_/255)**$gamma ) } 0..255;
3502 $img->map(all=> \@map);
3504 The C<all> map is used as a default channel, if no other map is
3505 specified for a channel then the C<all> map is used instead. If we
3506 had not wanted to apply gamma to the alpha channel we would have used:
3508 $img->map(all=> \@map, alpha=>[]);
3510 Since C<[]> contains fewer than 256 element the gamma channel is
3513 It is also possible to simply specify an array of maps that are
3514 applied to the images in the rgba order. For example to apply
3515 maps to the C<red> and C<blue> channels one would use:
3517 $img->map(maps=>[\@redmap, [], \@bluemap]);
3521 =head2 Transformations
3523 Another special image method is transform. It can be used to generate
3524 warps and rotations and such features. It can be given the operations
3525 in postfix notation or the module Affix::Infix2Postfix can be used.
3526 Look in the test case t/t55trans.t for an example.
3528 transform() needs expressions (or opcodes) that determine the source
3529 pixel for each target pixel. Source expressions are infix expressions
3530 using any of the +, -, *, / or ** binary operators, the - unary
3531 operator, ( and ) for grouping and the sin() and cos() functions. The
3532 target pixel is input as the variables x and y.
3534 You specify the x and y expressions as xexpr and yexpr respectively.
3535 You can also specify opcodes directly, but that's magic deep enough
3536 that you can look at the source code.
3538 You can still use the transform() function, but the transform2()
3539 function is just as fast and is more likely to be enhanced and
3542 Later versions of Imager also support a transform2() class method
3543 which allows you perform a more general set of operations, rather than
3544 just specifying a spatial transformation as with the transform()
3545 method, you can also perform colour transformations, image synthesis
3546 and image combinations.
3548 transform2() takes an reference to an options hash, and a list of
3549 images to operate one (this list may be empty):
3554 my $img = Imager::transform2(\%opts, @imgs)
3555 or die "transform2 failed: $Imager::ERRSTR";
3557 The options hash may define a transformation function, and optionally:
3563 width - the width of the image in pixels. If this isn't supplied the
3564 width of the first input image is used. If there are no input images
3569 height - the height of the image in pixels. If this isn't supplied
3570 the height of the first input image is used. If there are no input
3571 images an error occurs.
3575 constants - a reference to hash of constants to define for the
3576 expression engine. Some extra constants are defined by Imager
3580 The tranformation function is specified using either the expr or
3581 rpnexpr member of the options.
3585 =item Infix expressions
3587 You can supply infix expressions to transform 2 with the expr keyword.
3589 $opts{expr} = 'return getp1(w-x, h-y)'
3591 The 'expression' supplied follows this general grammar:
3593 ( identifier '=' expr ';' )* 'return' expr
3595 This allows you to simplify your expressions using variables.
3597 A more complex example might be:
3599 $opts{expr} = 'pix = getp1(x,y); return if(value(pix)>0.8,pix*0.8,pix)'
3601 Currently to use infix expressions you must have the Parse::RecDescent
3602 module installed (available from CPAN). There is also what might be a
3603 significant delay the first time you run the infix expression parser
3604 due to the compilation of the expression grammar.
3606 =item Postfix expressions
3608 You can supply postfix or reverse-polish notation expressions to
3609 transform2() through the rpnexpr keyword.
3611 The parser for rpnexpr emulates a stack machine, so operators will
3612 expect to see their parameters on top of the stack. A stack machine
3613 isn't actually used during the image transformation itself.
3615 You can store the value at the top of the stack in a variable called
3616 foo using !foo and retrieve that value again using @foo. The !foo
3617 notation will pop the value from the stack.
3619 An example equivalent to the infix expression above:
3621 $opts{rpnexpr} = 'x y getp1 !pix @pix value 0.8 gt @pix 0.8 * @pix ifp'
3625 transform2() has a fairly rich range of operators.
3629 =item +, *, -, /, %, **
3631 multiplication, addition, subtraction, division, remainder and
3632 exponentiation. Multiplication, addition and subtraction can be used
3633 on colour values too - though you need to be careful - adding 2 white
3634 values together and multiplying by 0.5 will give you grey, not white.
3636 Division by zero (or a small number) just results in a large number.
3637 Modulo zero (or a small number) results in zero.
3639 =item sin(N), cos(N), atan2(y,x)
3641 Some basic trig functions. They work in radians, so you can't just
3644 =item distance(x1, y1, x2, y2)
3646 Find the distance between two points. This is handy (along with
3647 atan2()) for producing circular effects.
3651 Find the square root. I haven't had much use for this since adding
3652 the distance() function.
3656 Find the absolute value.
3658 =item getp1(x,y), getp2(x,y), getp3(x, y)
3660 Get the pixel at position (x,y) from the first, second or third image
3661 respectively. I may add a getpn() function at some point, but this
3662 prevents static checking of the instructions against the number of
3663 images actually passed in.
3665 =item value(c), hue(c), sat(c), hsv(h,s,v)
3667 Separates a colour value into it's value (brightness), hue (colour)
3668 and saturation elements. Use hsv() to put them back together (after
3669 suitable manipulation).
3671 =item red(c), green(c), blue(c), rgb(r,g,b)
3673 Separates a colour value into it's red, green and blue colours. Use
3674 rgb(r,g,b) to put it back together.
3678 Convert a value to an integer. Uses a C int cast, so it may break on
3681 =item if(cond,ntrue,nfalse), if(cond,ctrue,cfalse)
3683 A simple (and inefficient) if function.
3685 =item <=,<,==,>=,>,!=
3687 Relational operators (typically used with if()). Since we're working
3688 with floating point values the equalities are 'near equalities' - an
3689 epsilon value is used.
3691 =item &&, ||, not(n)
3693 Basic logical operators.
3701 =item rpnexpr=>'x 25 % 15 * y 35 % 10 * getp1 !pat x y getp1 !pix @pix sat 0.7 gt @pat @pix ifp'
3703 tiles a smaller version of the input image over itself where the
3704 colour has a saturation over 0.7.
3706 =item rpnexpr=>'x 25 % 15 * y 35 % 10 * getp1 !pat y 360 / !rat x y getp1 1 @rat - pmult @pat @rat pmult padd'
3708 tiles the input image over itself so that at the top of the image the
3709 full-size image is at full strength and at the bottom the tiling is
3712 =item rpnexpr=>'x y getp1 !pix @pix value 0.96 gt @pix sat 0.1 lt and 128 128 255 rgb @pix ifp'
3714 replace pixels that are white or almost white with a palish blue
3716 =item rpnexpr=>'x 35 % 10 * y 45 % 8 * getp1 !pat x y getp1 !pix @pix sat 0.2 lt @pix value 0.9 gt and @pix @pat @pix value 2 / 0.5 + pmult ifp'
3718 Tiles the input image overitself where the image isn't white or almost
3721 =item rpnexpr=>'x y 160 180 distance !d y 180 - x 160 - atan2 !a @d 10 / @a + 3.1416 2 * % !a2 @a2 180 * 3.1416 / 1 @a2 sin 1 + 2 / hsv'
3725 =item rpnexpr=>'x y 160 180 distance !d y 180 - x 160 - atan2 !a @d 10 / @a + 3.1416 2 * % !a2 @a 180 * 3.1416 / 1 @a2 sin 1 + 2 / hsv'
3727 A spiral built on top of a colour wheel.
3731 For details on expression parsing see L<Imager::Expr>. For details on
3732 the virtual machine used to transform the images, see
3733 L<Imager::regmach.pod>.
3735 =head2 Matrix Transformations
3737 Rather than having to write code in a little language, you can use a
3738 matrix to perform transformations, using the matrix_transform()
3741 my $im2 = $im->matrix_transform(matrix=>[ -1, 0, $im->getwidth-1,
3745 By default the output image will be the same size as the input image,
3746 but you can supply the xsize and ysize parameters to change the size.
3748 Rather than building matrices by hand you can use the Imager::Matrix2d
3749 module to build the matrices. This class has methods to allow you to
3750 scale, shear, rotate, translate and reflect, and you can combine these
3751 with an overloaded multiplication operator.
3753 WARNING: the matrix you provide in the matrix operator transforms the
3754 co-ordinates within the B<destination> image to the co-ordinates
3755 within the I<source> image. This can be confusing.
3757 Since Imager has 3 different fairly general ways of transforming an
3758 image spatially, this method also has a yatf() alias. Yet Another
3759 Transformation Function.
3761 =head2 Masked Images
3763 Masked images let you control which pixels are modified in an
3764 underlying image. Where the first channel is completely black in the
3765 mask image, writes to the underlying image are ignored.
3767 For example, given a base image called $img:
3769 my $mask = Imager->new(xsize=>$img->getwidth, ysize=>getheight,
3771 # ... draw something on the mask
3772 my $maskedimg = $img->masked(mask=>$mask);
3774 You can specifiy the region of the underlying image that is masked
3775 using the left, top, right and bottom options.
3777 If you just want a subset of the image, without masking, just specify
3778 the region without specifying a mask.
3782 It is possible to add filters to the module without recompiling the
3783 module itself. This is done by using DSOs (Dynamic shared object)
3784 avaliable on most systems. This way you can maintain our own filters
3785 and not have to get me to add it, or worse patch every new version of
3786 the Module. Modules can be loaded AND UNLOADED at runtime. This
3787 means that you can have a server/daemon thingy that can do something
3790 load_plugin("dynfilt/dyntest.so") || die "unable to load plugin\n";
3791 %hsh=(a=>35,b=>200,type=>lin_stretch);
3793 unload_plugin("dynfilt/dyntest.so") || die "unable to load plugin\n";
3794 $img->write(type=>'pnm',file=>'testout/t60.jpg')
3795 || die "error in write()\n";
3797 Someone decides that the filter is not working as it should -
3798 dyntest.c modified and recompiled.
3800 load_plugin("dynfilt/dyntest.so") || die "unable to load plugin\n";
3803 An example plugin comes with the module - Please send feedback to
3804 addi@umich.edu if you test this.
3806 Note: This seems to test ok on the following systems:
3807 Linux, Solaris, HPUX, OpenBSD, FreeBSD, TRU64/OSF1, AIX.
3808 If you test this on other systems please let me know.
3812 Image tags contain meta-data about the image, ie. information not
3813 stored as pixels of the image.
3815 At the perl level each tag has a name or code and a value, which is an
3816 integer or an arbitrary string. An image can contain more than one
3817 tag with the same name or code.
3819 You can retrieve tags from an image using the tags() method, you can
3820 get all of the tags in an image, as a list of array references, with
3821 the code or name of the tag followed by the value of the tag:
3823 my @alltags = $img->tags;
3825 or you can get all tags that have a given name:
3827 my @namedtags = $img->tags(name=>$name);
3831 my @tags = $img->tags(code=>$code);
3833 You can add tags using the addtag() method, either by name:
3835 my $index = $img->addtag(name=>$name, value=>$value);
3839 my $index = $img->addtag(code=>$code, value=>$value);
3841 You can remove tags with the deltag() method, either by index:
3843 $img->deltag(index=>$index);
3847 $img->deltag(name=>$name);
3851 $img->deltag(code=>$code);
3853 In each case deltag() returns the number of tags deleted.
3855 When you read a GIF image using read_multi(), each image can include
3862 the offset of the image from the left of the "screen" ("Image Left
3867 the offset of the image from the top of the "screen" ("Image Top Position")
3871 non-zero if the image was interlaced ("Interlace Flag")
3873 =item gif_screen_width
3875 =item gif_screen_height
3877 the size of the logical screen ("Logical Screen Width",
3878 "Logical Screen Height")
3882 Non-zero if this image had a local color map.
3884 =item gif_background
3886 The index in the global colormap of the logical screen's background
3887 color. This is only set if the current image uses the global
3890 =item gif_trans_index
3892 The index of the color in the colormap used for transparency. If the
3893 image has a transparency then it is returned as a 4 channel image with
3894 the alpha set to zero in this palette entry. ("Transparent Color Index")
3898 The delay until the next frame is displayed, in 1/100 of a second.
3901 =item gif_user_input
3903 whether or not a user input is expected before continuing (view dependent)
3904 ("User Input Flag").
3908 how the next frame is displayed ("Disposal Method")
3912 the number of loops from the Netscape Loop extension. This may be zero.
3916 the first block of the first gif comment before each image.
3920 Where applicable, the ("name") is the name of that field from the GIF89
3923 The following tags are set in a TIFF image when read, and can be set
3928 =item tiff_resolutionunit
3930 The value of the ResolutionUnit tag. This is ignored on writing if
3931 the i_aspect_only tag is non-zero.
3935 The following tags are set when a Windows BMP file is read:
3939 =item bmp_compression
3941 The type of compression, if any.
3943 =item bmp_important_colors
3945 The number of important colors as defined by the writer of the image.
3949 Some standard tags will be implemented as time goes by:
3957 The spatial resolution of the image in pixels per inch. If the image
3958 format uses a different scale, eg. pixels per meter, then this value
3959 is converted. A floating point number stored as a string.
3963 If this is non-zero then the values in i_xres and i_yres are treated
3964 as a ratio only. If the image format does not support aspect ratios
3965 then this is scaled so the smaller value is 72dpi.
3971 box, arc, circle do not support antialiasing yet. arc, is only filled
3972 as of yet. Some routines do not return $self where they should. This
3973 affects code like this, C<$img-E<gt>box()-E<gt>arc()> where an object
3976 When saving Gif images the program does NOT try to shave of extra
3977 colors if it is possible. If you specify 128 colors and there are
3978 only 2 colors used - it will have a 128 colortable anyway.
3982 Arnar M. Hrafnkelsson, addi@umich.edu, and recently lots of assistance
3983 from Tony Cook. See the README for a complete list.
3987 perl(1), Imager::Color(3), Imager::Font(3), Imager::Matrix2d(3),
3988 Affix::Infix2Postfix(3), Parse::RecDescent(3)
3989 http://www.eecs.umich.edu/~addi/perl/Imager/