4 use vars qw($VERSION @ISA @EXPORT @EXPORT_OK %EXPORT_TAGS %formats $DEBUG %filters %DSOs $ERRSTR $fontstate %OPCODES $I2P $FORMATGUESS);
81 i_writetiff_wiol_faxable
148 $VERSION = '0.39pre1';
149 @ISA = qw(Exporter DynaLoader);
150 bootstrap Imager $VERSION;
154 i_init_fonts(); # Initialize font engines
155 Imager::Font::__init();
156 for(i_list_formats()) { $formats{$_}++; }
158 if ($formats{'t1'}) {
162 if (!$formats{'t1'} and !$formats{'tt'}
163 && !$formats{'ft2'} && !$formats{'w32'}) {
164 $fontstate='no font support';
167 %OPCODES=(Add=>[0],Sub=>[1],Mult=>[2],Div=>[3],Parm=>[4],'sin'=>[5],'cos'=>[6],'x'=>[4,0],'y'=>[4,1]);
171 # the members of the subhashes under %filters are:
172 # callseq - a list of the parameters to the underlying filter in the
173 # order they are passed
174 # callsub - a code ref that takes a named parameter list and calls the
176 # defaults - a hash of default values
177 # names - defines names for value of given parameters so if the names
178 # field is foo=> { bar=>1 }, and the user supplies "bar" as the
179 # foo parameter, the filter will receive 1 for the foo
182 callseq => ['image','intensity'],
183 callsub => sub { my %hsh=@_; i_contrast($hsh{image},$hsh{intensity}); }
187 callseq => ['image', 'amount', 'subtype'],
188 defaults => { amount=>3,subtype=>0 },
189 callsub => sub { my %hsh=@_; i_noise($hsh{image},$hsh{amount},$hsh{subtype}); }
192 $filters{hardinvert} ={
193 callseq => ['image'],
195 callsub => sub { my %hsh=@_; i_hardinvert($hsh{image}); }
198 $filters{autolevels} ={
199 callseq => ['image','lsat','usat','skew'],
200 defaults => { lsat=>0.1,usat=>0.1,skew=>0.0 },
201 callsub => sub { my %hsh=@_; i_autolevels($hsh{image},$hsh{lsat},$hsh{usat},$hsh{skew}); }
204 $filters{turbnoise} ={
205 callseq => ['image'],
206 defaults => { xo=>0.0,yo=>0.0,scale=>10.0 },
207 callsub => sub { my %hsh=@_; i_turbnoise($hsh{image},$hsh{xo},$hsh{yo},$hsh{scale}); }
210 $filters{radnoise} ={
211 callseq => ['image'],
212 defaults => { xo=>100,yo=>100,ascale=>17.0,rscale=>0.02 },
213 callsub => sub { my %hsh=@_; i_radnoise($hsh{image},$hsh{xo},$hsh{yo},$hsh{rscale},$hsh{ascale}); }
217 callseq => ['image', 'coef'],
219 callsub => sub { my %hsh=@_; i_conv($hsh{image},$hsh{coef}); }
223 callseq => ['image', 'xo', 'yo', 'colors', 'dist'],
225 callsub => sub { my %hsh=@_; i_gradgen($hsh{image}, $hsh{xo}, $hsh{yo}, $hsh{colors}, $hsh{dist}); }
228 $filters{nearest_color} ={
229 callseq => ['image', 'xo', 'yo', 'colors', 'dist'],
231 callsub => sub { my %hsh=@_; i_nearest_color($hsh{image}, $hsh{xo}, $hsh{yo}, $hsh{colors}, $hsh{dist}); }
233 $filters{gaussian} = {
234 callseq => [ 'image', 'stddev' ],
236 callsub => sub { my %hsh = @_; i_gaussian($hsh{image}, $hsh{stddev}); },
240 callseq => [ qw(image size) ],
241 defaults => { size => 20 },
242 callsub => sub { my %hsh = @_; i_mosaic($hsh{image}, $hsh{size}) },
246 callseq => [ qw(image bump elevation lightx lighty st) ],
247 defaults => { elevation=>0, st=> 2 },
250 i_bumpmap($hsh{image}, $hsh{bump}{IMG}, $hsh{elevation},
251 $hsh{lightx}, $hsh{lighty}, $hsh{st});
254 $filters{postlevels} =
256 callseq => [ qw(image levels) ],
257 defaults => { levels => 10 },
258 callsub => sub { my %hsh = @_; i_postlevels($hsh{image}, $hsh{levels}); },
260 $filters{watermark} =
262 callseq => [ qw(image wmark tx ty pixdiff) ],
263 defaults => { pixdiff=>10, tx=>0, ty=>0 },
267 i_watermark($hsh{image}, $hsh{wmark}{IMG}, $hsh{tx}, $hsh{ty},
273 callseq => [ qw(image xa ya xb yb ftype repeat combine super_sample ssample_param segments) ],
275 ftype => { linear => 0,
281 repeat => { none => 0,
296 multiply => 2, mult => 2,
299 subtract => 5, sub => 5,
309 defaults => { ftype => 0, repeat => 0, combine => 0,
310 super_sample => 0, ssample_param => 4,
313 Imager::Color->new(0,0,0),
314 Imager::Color->new(255, 255, 255),
322 i_fountain($hsh{image}, $hsh{xa}, $hsh{ya}, $hsh{xb}, $hsh{yb},
323 $hsh{ftype}, $hsh{repeat}, $hsh{combine}, $hsh{super_sample},
324 $hsh{ssample_param}, $hsh{segments});
328 $FORMATGUESS=\&def_guess_type;
336 # NOTE: this might be moved to an import override later on
340 # (look through @_ for special tags, process, and remove them);
342 # print Dumper($pack);
347 my %parms=(loglevel=>1,@_);
349 init_log($parms{'log'},$parms{'loglevel'});
352 # if ($parms{T1LIB_CONFIG}) { $ENV{T1LIB_CONFIG}=$parms{T1LIB_CONFIG}; }
353 # if ( $ENV{T1LIB_CONFIG} and ( $fontstate eq 'missing conf' )) {
361 print "shutdown code\n";
362 # for(keys %instances) { $instances{$_}->DESTROY(); }
363 malloc_state(); # how do decide if this should be used? -- store something from the import
364 print "Imager exiting\n";
368 # Load a filter plugin
373 my ($DSO_handle,$str)=DSO_open($filename);
374 if (!defined($DSO_handle)) { $Imager::ERRSTR="Couldn't load plugin '$filename'\n"; return undef; }
375 my %funcs=DSO_funclist($DSO_handle);
376 if ($DEBUG) { print "loading module $filename\n"; $i=0; for(keys %funcs) { printf(" %2d: %s\n",$i++,$_); } }
378 for(keys %funcs) { if ($filters{$_}) { $ERRSTR="filter '$_' already exists\n"; DSO_close($DSO_handle); return undef; } }
380 $DSOs{$filename}=[$DSO_handle,\%funcs];
383 my $evstr="\$filters{'".$_."'}={".$funcs{$_}.'};';
384 $DEBUG && print "eval string:\n",$evstr,"\n";
396 if (!$DSOs{$filename}) { $ERRSTR="plugin '$filename' not loaded."; return undef; }
397 my ($DSO_handle,$funcref)=@{$DSOs{$filename}};
398 for(keys %{$funcref}) {
400 $DEBUG && print "unloading: $_\n";
402 my $rc=DSO_close($DSO_handle);
403 if (!defined($rc)) { $ERRSTR="unable to unload plugin '$filename'."; return undef; }
407 # take the results of i_error() and make a message out of it
409 return join(": ", map $_->[0], i_errors());
413 # Methods to be called on objects.
416 # Create a new Imager object takes very few parameters.
417 # usually you call this method and then call open from
418 # the resulting object
425 $self->{IMG}=undef; # Just to indicate what exists
426 $self->{ERRSTR}=undef; #
427 $self->{DEBUG}=$DEBUG;
428 $self->{DEBUG} && print "Initialized Imager\n";
429 if ($hsh{xsize} && $hsh{ysize}) { $self->img_set(%hsh); }
433 # Copy an entire image with no changes
434 # - if an image has magic the copy of it will not be magical
438 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
440 my $newcopy=Imager->new();
441 $newcopy->{IMG}=i_img_new();
442 i_copy($newcopy->{IMG},$self->{IMG});
450 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
451 my %input=(left=>0, top=>0, @_);
452 unless($input{img}) {
453 $self->{ERRSTR}="no source image";
456 $input{left}=0 if $input{left} <= 0;
457 $input{top}=0 if $input{top} <= 0;
459 my($r,$b)=i_img_info($src->{IMG});
461 i_copyto($self->{IMG}, $src->{IMG},
462 0,0, $r, $b, $input{left}, $input{top});
463 return $self; # What should go here??
466 # Crop an image - i.e. return a new image that is smaller
470 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
471 my %hsh=(left=>0,right=>0,top=>0,bottom=>0,@_);
473 my ($w,$h,$l,$r,$b,$t)=($self->getwidth(),$self->getheight(),
474 @hsh{qw(left right bottom top)});
475 $l=0 if not defined $l;
476 $t=0 if not defined $t;
478 $r||=$l+delete $hsh{'width'} if defined $l and exists $hsh{'width'};
479 $b||=$t+delete $hsh{'height'} if defined $t and exists $hsh{'height'};
480 $l||=$r-delete $hsh{'width'} if defined $r and exists $hsh{'width'};
481 $t||=$b-delete $hsh{'height'} if defined $b and exists $hsh{'height'};
483 $r=$self->getwidth if not defined $r;
484 $b=$self->getheight if not defined $b;
486 ($l,$r)=($r,$l) if $l>$r;
487 ($t,$b)=($b,$t) if $t>$b;
490 $l=int(0.5+($w-$hsh{'width'})/2);
495 if ($hsh{'height'}) {
496 $b=int(0.5+($h-$hsh{'height'})/2);
497 $t=$h+$hsh{'height'};
499 $hsh{'height'}=$b-$t;
502 # print "l=$l, r=$r, h=$hsh{'width'}\n";
503 # print "t=$t, b=$b, w=$hsh{'height'}\n";
505 my $dst=Imager->new(xsize=>$hsh{'width'}, ysize=>$hsh{'height'}, channels=>$self->getchannels());
507 i_copyto($dst->{IMG},$self->{IMG},$l,$t,$r,$b,0,0);
511 # Sets an image to a certain size and channel number
512 # if there was previously data in the image it is discarded
517 my %hsh=(xsize=>100, ysize=>100, channels=>3, bits=>8, type=>'direct', @_);
519 if (defined($self->{IMG})) {
520 # let IIM_DESTROY destroy it, it's possible this image is
521 # referenced from a virtual image (like masked)
522 #i_img_destroy($self->{IMG});
526 if ($hsh{type} eq 'paletted' || $hsh{type} eq 'pseudo') {
527 $self->{IMG} = i_img_pal_new($hsh{xsize}, $hsh{ysize}, $hsh{channels},
528 $hsh{maxcolors} || 256);
530 elsif ($hsh{bits} == 16) {
531 $self->{IMG} = i_img_16_new($hsh{xsize}, $hsh{ysize}, $hsh{channels});
534 $self->{IMG}=Imager::ImgRaw::new($hsh{'xsize'}, $hsh{'ysize'},
539 # created a masked version of the current image
543 $self or return undef;
544 my %opts = (left => 0,
546 right => $self->getwidth,
547 bottom => $self->getheight,
549 my $mask = $opts{mask} ? $opts{mask}{IMG} : undef;
551 my $result = Imager->new;
552 $result->{IMG} = i_img_masked_new($self->{IMG}, $mask, $opts{left},
553 $opts{top}, $opts{right} - $opts{left},
554 $opts{bottom} - $opts{top});
555 # keep references to the mask and base images so they don't
557 $result->{DEPENDS} = [ $self->{IMG}, $mask ];
562 # convert an RGB image into a paletted image
566 if (@_ != 1 && !ref $_[0]) {
573 my $result = Imager->new;
574 $result->{IMG} = i_img_to_pal($self->{IMG}, $opts);
576 #print "Type ", i_img_type($result->{IMG}), "\n";
578 $result->{IMG} or undef $result;
583 # convert a paletted (or any image) to an 8-bit/channel RGB images
589 $result = Imager->new;
590 $result->{IMG} = i_img_to_rgb($self->{IMG})
599 my %opts = (colors=>[], @_);
601 @{$opts{colors}} or return undef;
603 $self->{IMG} and i_addcolors($self->{IMG}, @{$opts{colors}});
608 my %opts = (start=>0, colors=>[], @_);
609 @{$opts{colors}} or return undef;
611 $self->{IMG} and i_setcolors($self->{IMG}, $opts{start}, @{$opts{colors}});
617 if (!exists $opts{start} && !exists $opts{count}) {
620 $opts{count} = $self->colorcount;
622 elsif (!exists $opts{count}) {
625 elsif (!exists $opts{start}) {
630 return i_getcolors($self->{IMG}, $opts{start}, $opts{count});
634 i_colorcount($_[0]{IMG});
638 i_maxcolors($_[0]{IMG});
644 $opts{color} or return undef;
646 $self->{IMG} and i_findcolor($self->{IMG}, $opts{color});
651 $self->{IMG} and i_img_bits($self->{IMG});
657 return i_img_type($self->{IMG}) ? "paletted" : "direct";
663 $self->{IMG} and i_img_virtual($self->{IMG});
667 my ($self, %opts) = @_;
669 $self->{IMG} or return;
671 if (defined $opts{name}) {
675 while (defined($found = i_tags_find($self->{IMG}, $opts{name}, $start))) {
676 push @result, (i_tags_get($self->{IMG}, $found))[1];
679 return wantarray ? @result : $result[0];
681 elsif (defined $opts{code}) {
685 while (defined($found = i_tags_findn($self->{IMG}, $opts{code}, $start))) {
686 push @result, (i_tags_get($self->{IMG}, $found))[1];
693 return map { [ i_tags_get($self->{IMG}, $_) ] } 0.. i_tags_count($self->{IMG})-1;
696 return i_tags_count($self->{IMG});
705 return -1 unless $self->{IMG};
707 if (defined $opts{value}) {
708 if ($opts{value} =~ /^\d+$/) {
710 return i_tags_addn($self->{IMG}, $opts{name}, 0, $opts{value});
713 return i_tags_add($self->{IMG}, $opts{name}, 0, $opts{value}, 0);
716 elsif (defined $opts{data}) {
717 # force addition as a string
718 return i_tags_add($self->{IMG}, $opts{name}, 0, $opts{data}, 0);
721 $self->{ERRSTR} = "No value supplied";
725 elsif ($opts{code}) {
726 if (defined $opts{value}) {
727 if ($opts{value} =~ /^\d+$/) {
729 return i_tags_addn($self->{IMG}, $opts{code}, 0, $opts{value});
732 return i_tags_add($self->{IMG}, $opts{code}, 0, $opts{value}, 0);
735 elsif (defined $opts{data}) {
736 # force addition as a string
737 return i_tags_add($self->{IMG}, $opts{code}, 0, $opts{data}, 0);
740 $self->{ERRSTR} = "No value supplied";
753 return 0 unless $self->{IMG};
755 if (defined $opts{index}) {
756 return i_tags_delete($self->{IMG}, $opts{index});
758 elsif (defined $opts{name}) {
759 return i_tags_delbyname($self->{IMG}, $opts{name});
761 elsif (defined $opts{code}) {
762 return i_tags_delbycode($self->{IMG}, $opts{code});
765 $self->{ERRSTR} = "Need to supply index, name, or code parameter";
770 # Read an image from file
777 if (defined($self->{IMG})) {
778 # let IIM_DESTROY do the destruction, since the image may be
779 # referenced from elsewhere
780 #i_img_destroy($self->{IMG});
784 if (!$input{fd} and !$input{file} and !$input{data}) {
785 $self->{ERRSTR}='no file, fd or data parameter'; return undef;
788 $fh = new IO::File($input{file},"r");
790 $self->{ERRSTR}='Could not open file'; return undef;
799 # FIXME: Find the format here if not specified
800 # yes the code isn't here yet - next week maybe?
801 # Next week? Are you high or something? That comment
802 # has been there for half a year dude.
803 # Look, i just work here, ok?
805 if (!$input{type} and $input{file}) {
806 $input{type}=$FORMATGUESS->($input{file});
808 if (!$formats{$input{type}}) {
809 $self->{ERRSTR}='format not supported'; return undef;
812 my %iolready=(jpeg=>1, png=>1, tiff=>1, pnm=>1, raw=>1, bmp=>1);
814 if ($iolready{$input{type}}) {
816 $IO = io_new_fd($fd); # sort of simple for now eh?
818 if ( $input{type} eq 'jpeg' ) {
819 ($self->{IMG},$self->{IPTCRAW})=i_readjpeg_wiol( $IO );
820 if ( !defined($self->{IMG}) ) {
821 $self->{ERRSTR}='unable to read jpeg image'; return undef;
823 $self->{DEBUG} && print "loading a jpeg file\n";
827 if ( $input{type} eq 'tiff' ) {
828 $self->{IMG}=i_readtiff_wiol( $IO, -1 ); # Fixme, check if that length parameter is ever needed
829 if ( !defined($self->{IMG}) ) {
830 $self->{ERRSTR}='unable to read tiff image'; return undef;
832 $self->{DEBUG} && print "loading a tiff file\n";
836 if ( $input{type} eq 'pnm' ) {
837 $self->{IMG}=i_readpnm_wiol( $IO, -1 ); # Fixme, check if that length parameter is ever needed
838 if ( !defined($self->{IMG}) ) {
839 $self->{ERRSTR}='unable to read pnm image: '._error_as_msg(); return undef;
841 $self->{DEBUG} && print "loading a pnm file\n";
845 if ( $input{type} eq 'png' ) {
846 $self->{IMG}=i_readpng_wiol( $IO, -1 ); # Fixme, check if that length parameter is ever needed
847 if ( !defined($self->{IMG}) ) {
848 $self->{ERRSTR}='unable to read png image';
851 $self->{DEBUG} && print "loading a png file\n";
854 if ( $input{type} eq 'bmp' ) {
855 $self->{IMG}=i_readbmp_wiol( $IO );
856 if ( !defined($self->{IMG}) ) {
857 $self->{ERRSTR}='unable to read bmp image';
860 $self->{DEBUG} && print "loading a bmp file\n";
863 if ( $input{type} eq 'raw' ) {
864 my %params=(datachannels=>3,storechannels=>3,interleave=>1,%input);
866 if ( !($params{xsize} && $params{ysize}) ) {
867 $self->{ERRSTR}='missing xsize or ysize parameter for raw';
871 $self->{IMG} = i_readraw_wiol( $IO,
874 $params{datachannels},
875 $params{storechannels},
876 $params{interleave});
877 if ( !defined($self->{IMG}) ) {
878 $self->{ERRSTR}='unable to read raw image';
881 $self->{DEBUG} && print "loading a raw file\n";
886 # Old code for reference while changing the new stuff
888 if (!$input{type} and $input{file}) {
889 $input{type}=$FORMATGUESS->($input{file});
893 $self->{ERRSTR}='type parameter missing and not possible to guess from extension'; return undef;
896 if (!$formats{$input{type}}) {
897 $self->{ERRSTR}='format not supported';
902 $fh = new IO::File($input{file},"r");
904 $self->{ERRSTR}='Could not open file';
915 if ( $input{type} eq 'gif' ) {
917 if ($input{colors} && !ref($input{colors})) {
918 # must be a reference to a scalar that accepts the colour map
919 $self->{ERRSTR} = "option 'colors' must be a scalar reference";
922 if (exists $input{data}) {
923 if ($input{colors}) {
924 ($self->{IMG}, $colors) = i_readgif_scalar($input{data});
926 $self->{IMG}=i_readgif_scalar($input{data});
929 if ($input{colors}) {
930 ($self->{IMG}, $colors) = i_readgif( $fd );
932 $self->{IMG} = i_readgif( $fd )
936 # we may or may not change i_readgif to return blessed objects...
937 ${ $input{colors} } = [ map { NC(@$_) } @$colors ];
939 if ( !defined($self->{IMG}) ) {
940 $self->{ERRSTR}= 'reading GIF:'._error_as_msg();
943 $self->{DEBUG} && print "loading a gif file\n";
949 # Write an image to file
952 my %input=(jpegquality=>75, gifquant=>'mc', lmdither=>6.0, lmfixed=>[],
954 my ($fh, $rc, $fd, $IO);
956 my %iolready=( tiff=>1, raw=>1, png=>1, pnm=>1, bmp=>1, jpeg=>1 ); # this will be SO MUCH BETTER once they are all in there
958 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
960 if (!$input{file} and !$input{'fd'} and !$input{'data'}) { $self->{ERRSTR}='file/fd/data parameter missing'; return undef; }
961 if (!$input{type} and $input{file}) { $input{type}=$FORMATGUESS->($input{file}); }
962 if (!$input{type}) { $self->{ERRSTR}='type parameter missing and not possible to guess from extension'; return undef; }
964 if (!$formats{$input{type}}) { $self->{ERRSTR}='format not supported'; return undef; }
966 if (exists $input{'fd'}) {
968 } elsif (exists $input{'data'}) {
969 $IO = Imager::io_new_bufchain();
971 $fh = new IO::File($input{file},"w+");
972 if (!defined $fh) { $self->{ERRSTR}='Could not open file'; return undef; }
977 if ($iolready{$input{type}}) {
979 $IO = io_new_fd($fd);
982 if ($input{type} eq 'tiff') {
983 if (defined $input{class} && $input{class} eq 'fax') {
984 if (!i_writetiff_wiol_faxable($self->{IMG}, $IO, $input{fax_fine})) {
985 $self->{ERRSTR}='Could not write to buffer';
989 if (!i_writetiff_wiol($self->{IMG}, $IO)) {
990 $self->{ERRSTR}='Could not write to buffer';
994 } elsif ( $input{type} eq 'pnm' ) {
995 if ( ! i_writeppm_wiol($self->{IMG},$IO) ) {
996 $self->{ERRSTR}='unable to write pnm image';
999 $self->{DEBUG} && print "writing a pnm file\n";
1000 } elsif ( $input{type} eq 'raw' ) {
1001 if ( !i_writeraw_wiol($self->{IMG},$IO) ) {
1002 $self->{ERRSTR}='unable to write raw image';
1005 $self->{DEBUG} && print "writing a raw file\n";
1006 } elsif ( $input{type} eq 'png' ) {
1007 if ( !i_writepng_wiol($self->{IMG}, $IO) ) {
1008 $self->{ERRSTR}='unable to write png image';
1011 $self->{DEBUG} && print "writing a png file\n";
1012 } elsif ( $input{type} eq 'jpeg' ) {
1013 if ( !i_writejpeg_wiol($self->{IMG}, $IO, $input{jpegquality})) {
1014 $self->{ERRSTR}='unable to write jpeg image';
1017 $self->{DEBUG} && print "writing a jpeg file\n";
1018 } elsif ( $input{type} eq 'bmp' ) {
1019 if ( !i_writebmp_wiol($self->{IMG}, $IO) ) {
1020 $self->{ERRSTR}='unable to write bmp image';
1023 $self->{DEBUG} && print "writing a bmp file\n";
1026 if (exists $input{'data'}) {
1027 my $data = io_slurp($IO);
1029 $self->{ERRSTR}='Could not slurp from buffer';
1032 ${$input{data}} = $data;
1036 if ( $input{type} eq 'gif' ) {
1037 if (not $input{gifplanes}) {
1039 my $count=i_count_colors($self->{IMG}, 256);
1040 $gp=8 if $count == -1;
1041 $gp=1 if not $gp and $count <= 2;
1042 $gp=2 if not $gp and $count <= 4;
1043 $gp=3 if not $gp and $count <= 8;
1044 $gp=4 if not $gp and $count <= 16;
1045 $gp=5 if not $gp and $count <= 32;
1046 $gp=6 if not $gp and $count <= 64;
1047 $gp=7 if not $gp and $count <= 128;
1048 $input{gifplanes} = $gp || 8;
1051 if ($input{gifplanes}>8) {
1052 $input{gifplanes}=8;
1054 if ($input{gifquant} eq 'gen' || $input{callback}) {
1057 if ($input{gifquant} eq 'lm') {
1059 $input{make_colors} = 'addi';
1060 $input{translate} = 'perturb';
1061 $input{perturb} = $input{lmdither};
1062 } elsif ($input{gifquant} eq 'gen') {
1063 # just pass options through
1065 $input{make_colors} = 'webmap'; # ignored
1066 $input{translate} = 'giflib';
1069 if ($input{callback}) {
1070 defined $input{maxbuffer} or $input{maxbuffer} = -1;
1071 $rc = i_writegif_callback($input{callback}, $input{maxbuffer},
1072 \%input, $self->{IMG});
1074 $rc = i_writegif_gen($fd, \%input, $self->{IMG});
1077 } elsif ($input{gifquant} eq 'lm') {
1078 $rc=i_writegif($self->{IMG},$fd,$input{gifplanes},$input{lmdither},$input{lmfixed});
1080 $rc=i_writegifmc($self->{IMG},$fd,$input{gifplanes});
1082 if ( !defined($rc) ) {
1083 $self->{ERRSTR} = "Writing GIF file: "._error_as_msg(); return undef;
1085 $self->{DEBUG} && print "writing a gif file\n";
1093 my ($class, $opts, @images) = @_;
1095 if ($opts->{type} eq 'gif') {
1096 my $gif_delays = $opts->{gif_delays};
1097 local $opts->{gif_delays} = $gif_delays;
1098 unless (ref $opts->{gif_delays}) {
1099 # assume the caller wants the same delay for each frame
1100 $opts->{gif_delays} = [ ($gif_delays) x @images ];
1102 # translate to ImgRaw
1103 if (grep !UNIVERSAL::isa($_, 'Imager') || !$_->{IMG}, @images) {
1104 $ERRSTR = "Usage: Imager->write_multi({ options }, @images)";
1107 my @work = map $_->{IMG}, @images;
1108 if ($opts->{callback}) {
1109 # Note: you may need to fix giflib for this one to work
1110 my $maxbuffer = $opts->{maxbuffer};
1111 defined $maxbuffer or $maxbuffer = -1; # max by default
1112 return i_writegif_callback($opts->{callback}, $maxbuffer,
1116 return i_writegif_gen($opts->{fd}, $opts, @work);
1119 my $fh = IO::File->new($opts->{file}, "w+");
1121 $ERRSTR = "Error creating $opts->{file}: $!";
1125 return i_writegif_gen(fileno($fh), $opts, @work);
1129 $ERRSTR = "Sorry, write_multi doesn't support $opts->{type} yet";
1134 # read multiple images from a file
1136 my ($class, %opts) = @_;
1138 if ($opts{file} && !exists $opts{type}) {
1140 my $type = $FORMATGUESS->($opts{file});
1141 $opts{type} = $type;
1143 unless ($opts{type}) {
1144 $ERRSTR = "No type parameter supplied and it couldn't be guessed";
1150 $file = IO::File->new($opts{file}, "r");
1152 $ERRSTR = "Could not open file $opts{file}: $!";
1156 $fd = fileno($file);
1159 $fd = fileno($opts{fh});
1161 $ERRSTR = "File handle specified with fh option not open";
1168 elsif ($opts{callback} || $opts{data}) {
1172 $ERRSTR = "You need to specify one of file, fd, fh, callback or data";
1176 if ($opts{type} eq 'gif') {
1179 @imgs = i_readgif_multi($fd);
1182 if (Imager::i_giflib_version() < 4.0) {
1183 $ERRSTR = "giflib3.x does not support callbacks";
1186 if ($opts{callback}) {
1187 @imgs = i_readgif_multi_callback($opts{callback})
1190 @imgs = i_readgif_multi_scalar($opts{data});
1195 bless { IMG=>$_, DEBUG=>$DEBUG, ERRSTR=>undef }, 'Imager'
1199 $ERRSTR = _error_as_msg();
1204 $ERRSTR = "Cannot read multiple images from $opts{type} files";
1208 # Destroy an Imager object
1212 # delete $instances{$self};
1213 if (defined($self->{IMG})) {
1214 # the following is now handled by the XS DESTROY method for
1215 # Imager::ImgRaw object
1216 # Re-enabling this will break virtual images
1217 # tested for in t/t020masked.t
1218 # i_img_destroy($self->{IMG});
1219 undef($self->{IMG});
1221 # print "Destroy Called on an empty image!\n"; # why did I put this here??
1225 # Perform an inplace filter of an image
1226 # that is the image will be overwritten with the data
1232 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1234 if (!$input{type}) { $self->{ERRSTR}='type parameter missing'; return undef; }
1236 if ( (grep { $_ eq $input{type} } keys %filters) != 1) {
1237 $self->{ERRSTR}='type parameter not matching any filter'; return undef;
1240 if ($filters{$input{type}}{names}) {
1241 my $names = $filters{$input{type}}{names};
1242 for my $name (keys %$names) {
1243 if (defined $input{$name} && exists $names->{$name}{$input{$name}}) {
1244 $input{$name} = $names->{$name}{$input{$name}};
1248 if (defined($filters{$input{type}}{defaults})) {
1249 %hsh=('image',$self->{IMG},%{$filters{$input{type}}{defaults}},%input);
1251 %hsh=('image',$self->{IMG},%input);
1254 my @cs=@{$filters{$input{type}}{callseq}};
1257 if (!defined($hsh{$_})) {
1258 $self->{ERRSTR}="missing parameter '$_' for filter ".$input{type}; return undef;
1262 &{$filters{$input{type}}{callsub}}(%hsh);
1266 $self->{DEBUG} && print "callseq is: @cs\n";
1267 $self->{DEBUG} && print "matching callseq is: @b\n";
1272 # Scale an image to requested size and return the scaled version
1276 my %opts=(scalefactor=>0.5,type=>'max',qtype=>'normal',@_);
1277 my $img = Imager->new();
1278 my $tmp = Imager->new();
1280 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1282 if ($opts{xpixels} and $opts{ypixels} and $opts{type}) {
1283 my ($xpix,$ypix)=( $opts{xpixels}/$self->getwidth() , $opts{ypixels}/$self->getheight() );
1284 if ($opts{type} eq 'min') { $opts{scalefactor}=min($xpix,$ypix); }
1285 if ($opts{type} eq 'max') { $opts{scalefactor}=max($xpix,$ypix); }
1286 } elsif ($opts{xpixels}) { $opts{scalefactor}=$opts{xpixels}/$self->getwidth(); }
1287 elsif ($opts{ypixels}) { $opts{scalefactor}=$opts{ypixels}/$self->getheight(); }
1289 if ($opts{qtype} eq 'normal') {
1290 $tmp->{IMG}=i_scaleaxis($self->{IMG},$opts{scalefactor},0);
1291 if ( !defined($tmp->{IMG}) ) { $self->{ERRSTR}='unable to scale image'; return undef; }
1292 $img->{IMG}=i_scaleaxis($tmp->{IMG},$opts{scalefactor},1);
1293 if ( !defined($img->{IMG}) ) { $self->{ERRSTR}='unable to scale image'; return undef; }
1296 if ($opts{'qtype'} eq 'preview') {
1297 $img->{IMG}=i_scale_nn($self->{IMG},$opts{'scalefactor'},$opts{'scalefactor'});
1298 if ( !defined($img->{IMG}) ) { $self->{ERRSTR}='unable to scale image'; return undef; }
1301 $self->{ERRSTR}='scale: invalid value for qtype'; return undef;
1304 # Scales only along the X axis
1308 my %opts=(scalefactor=>0.5,@_);
1310 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1312 my $img = Imager->new();
1314 if ($opts{pixels}) { $opts{scalefactor}=$opts{pixels}/$self->getwidth(); }
1316 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1317 $img->{IMG}=i_scaleaxis($self->{IMG},$opts{scalefactor},0);
1319 if ( !defined($img->{IMG}) ) { $self->{ERRSTR}='unable to scale image'; return undef; }
1323 # Scales only along the Y axis
1327 my %opts=(scalefactor=>0.5,@_);
1329 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1331 my $img = Imager->new();
1333 if ($opts{pixels}) { $opts{scalefactor}=$opts{pixels}/$self->getheight(); }
1335 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1336 $img->{IMG}=i_scaleaxis($self->{IMG},$opts{scalefactor},1);
1338 if ( !defined($img->{IMG}) ) { $self->{ERRSTR}='unable to scale image'; return undef; }
1343 # Transform returns a spatial transformation of the input image
1344 # this moves pixels to a new location in the returned image.
1345 # NOTE - should make a utility function to check transforms for
1350 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1352 my (@op,@ropx,@ropy,$iop,$or,@parm,$expr,@xt,@yt,@pt,$numre);
1354 # print Dumper(\%opts);
1357 if ( $opts{'xexpr'} and $opts{'yexpr'} ) {
1359 eval ("use Affix::Infix2Postfix;");
1362 $self->{ERRSTR}='transform: expr given and Affix::Infix2Postfix is not avaliable.';
1365 $I2P=Affix::Infix2Postfix->new('ops'=>[{op=>'+',trans=>'Add'},
1366 {op=>'-',trans=>'Sub'},
1367 {op=>'*',trans=>'Mult'},
1368 {op=>'/',trans=>'Div'},
1369 {op=>'-',type=>'unary',trans=>'u-'},
1371 {op=>'func',type=>'unary'}],
1372 'grouping'=>[qw( \( \) )],
1373 'func'=>[qw( sin cos )],
1378 @xt=$I2P->translate($opts{'xexpr'});
1379 @yt=$I2P->translate($opts{'yexpr'});
1381 $numre=$I2P->{'numre'};
1384 for(@xt) { if (/$numre/) { push(@pt,$_); push(@{$opts{'xopcodes'}},'Parm',$#pt); } else { push(@{$opts{'xopcodes'}},$_); } }
1385 for(@yt) { if (/$numre/) { push(@pt,$_); push(@{$opts{'yopcodes'}},'Parm',$#pt); } else { push(@{$opts{'yopcodes'}},$_); } }
1386 @{$opts{'parm'}}=@pt;
1389 # print Dumper(\%opts);
1391 if ( !exists $opts{'xopcodes'} or @{$opts{'xopcodes'}}==0) {
1392 $self->{ERRSTR}='transform: no xopcodes given.';
1396 @op=@{$opts{'xopcodes'}};
1398 if (!defined ($OPCODES{$iop}) and ($iop !~ /^\d+$/) ) {
1399 $self->{ERRSTR}="transform: illegal opcode '$_'.";
1402 push(@ropx,(exists $OPCODES{$iop}) ? @{$OPCODES{$iop}} : $iop );
1408 if ( !exists $opts{'yopcodes'} or @{$opts{'yopcodes'}}==0) {
1409 $self->{ERRSTR}='transform: no yopcodes given.';
1413 @op=@{$opts{'yopcodes'}};
1415 if (!defined ($OPCODES{$iop}) and ($iop !~ /^\d+$/) ) {
1416 $self->{ERRSTR}="transform: illegal opcode '$_'.";
1419 push(@ropy,(exists $OPCODES{$iop}) ? @{$OPCODES{$iop}} : $iop );
1424 if ( !exists $opts{'parm'}) {
1425 $self->{ERRSTR}='transform: no parameter arg given.';
1429 # print Dumper(\@ropx);
1430 # print Dumper(\@ropy);
1431 # print Dumper(\@ropy);
1433 my $img = Imager->new();
1434 $img->{IMG}=i_transform($self->{IMG},\@ropx,\@ropy,$opts{'parm'});
1435 if ( !defined($img->{IMG}) ) { $self->{ERRSTR}='transform: failed'; return undef; }
1443 my ($opts, @imgs) = @_;
1446 # this is fairly big, delay loading it
1447 eval "use Imager::Expr";
1452 $opts->{variables} = [ qw(x y) ];
1453 my ($width, $height) = @{$opts}{qw(width height)};
1455 $width ||= $imgs[0]->getwidth();
1456 $height ||= $imgs[0]->getheight();
1458 for my $img (@imgs) {
1459 $opts->{constants}{"w$img_num"} = $img->getwidth();
1460 $opts->{constants}{"h$img_num"} = $img->getheight();
1461 $opts->{constants}{"cx$img_num"} = $img->getwidth()/2;
1462 $opts->{constants}{"cy$img_num"} = $img->getheight()/2;
1467 $opts->{constants}{w} = $width;
1468 $opts->{constants}{cx} = $width/2;
1471 $Imager::ERRSTR = "No width supplied";
1475 $opts->{constants}{h} = $height;
1476 $opts->{constants}{cy} = $height/2;
1479 $Imager::ERRSTR = "No height supplied";
1482 my $code = Imager::Expr->new($opts);
1484 $Imager::ERRSTR = Imager::Expr::error();
1488 my $img = Imager->new();
1489 $img->{IMG} = i_transform2($opts->{width}, $opts->{height}, $code->code(),
1490 $code->nregs(), $code->cregs(),
1491 [ map { $_->{IMG} } @imgs ]);
1492 if (!defined $img->{IMG}) {
1493 $Imager::ERRSTR = "transform2 failed";
1503 my %opts=(tx=>0,ty=>0,@_);
1505 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1506 unless ($opts{src} && $opts{src}->{IMG}) { $self->{ERRSTR}='empty input image for source'; return undef; }
1508 unless (i_rubthru($self->{IMG}, $opts{src}->{IMG}, $opts{tx},$opts{ty})) {
1509 $self->{ERRSTR} = $self->_error_as_msg();
1519 my %xlate = (h=>0, v=>1, hv=>2, vh=>2);
1521 return () unless defined $opts{'dir'} and defined $xlate{$opts{'dir'}};
1522 $dir = $xlate{$opts{'dir'}};
1523 return $self if i_flipxy($self->{IMG}, $dir);
1530 if (defined $opts{right}) {
1531 my $degrees = $opts{right};
1533 $degrees += 360 * int(((-$degrees)+360)/360);
1535 $degrees = $degrees % 360;
1536 if ($degrees == 0) {
1537 return $self->copy();
1539 elsif ($degrees == 90 || $degrees == 180 || $degrees == 270) {
1540 my $result = Imager->new();
1541 if ($result->{IMG} = i_rotate90($self->{IMG}, $degrees)) {
1545 $self->{ERRSTR} = $self->_error_as_msg();
1550 $self->{ERRSTR} = "Parameter 'right' must be a multiple of 90 degrees";
1554 elsif (defined $opts{radians} || defined $opts{degrees}) {
1555 my $amount = $opts{radians} || $opts{degrees} * 3.1415926535 / 180;
1557 my $result = Imager->new;
1558 if ($result->{IMG} = i_rotate_exact($self->{IMG}, $amount)) {
1562 $self->{ERRSTR} = $self->_error_as_msg();
1567 $self->{ERRSTR} = "Only the 'right' parameter is available";
1572 sub matrix_transform {
1576 if ($opts{matrix}) {
1577 my $xsize = $opts{xsize} || $self->getwidth;
1578 my $ysize = $opts{ysize} || $self->getheight;
1580 my $result = Imager->new;
1581 $result->{IMG} = i_matrix_transform($self->{IMG}, $xsize, $ysize,
1588 $self->{ERRSTR} = "matrix parameter required";
1594 *yatf = \&matrix_transform;
1596 # These two are supported for legacy code only
1599 return Imager::Color->new(@_);
1603 return Imager::Color::set(@_);
1606 # Draws a box between the specified corner points.
1609 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1610 my $dflcl=i_color_new(255,255,255,255);
1611 my %opts=(color=>$dflcl,xmin=>0,ymin=>0,xmax=>$self->getwidth()-1,ymax=>$self->getheight()-1,@_);
1613 if (exists $opts{'box'}) {
1614 $opts{'xmin'} = min($opts{'box'}->[0],$opts{'box'}->[2]);
1615 $opts{'xmax'} = max($opts{'box'}->[0],$opts{'box'}->[2]);
1616 $opts{'ymin'} = min($opts{'box'}->[1],$opts{'box'}->[3]);
1617 $opts{'ymax'} = max($opts{'box'}->[1],$opts{'box'}->[3]);
1620 if ($opts{filled}) {
1621 i_box_filled($self->{IMG},$opts{xmin},$opts{ymin},$opts{xmax},
1622 $opts{ymax},$opts{color});
1624 elsif ($opts{fill}) {
1625 unless (UNIVERSAL::isa($opts{fill}, 'Imager::Fill')) {
1626 # assume it's a hash ref
1627 require 'Imager/Fill.pm';
1628 unless ($opts{fill} = Imager::Fill->new(%{$opts{fill}})) {
1629 $self->{ERRSTR} = $Imager::ERRSTR;
1633 i_box_cfill($self->{IMG},$opts{xmin},$opts{ymin},$opts{xmax},
1634 $opts{ymax},$opts{fill}{fill});
1637 i_box($self->{IMG},$opts{xmin},$opts{ymin},$opts{xmax},$opts{ymax},$opts{color});
1642 # Draws an arc - this routine SUCKS and is buggy - it sometimes doesn't work when the arc is a convex polygon
1646 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1647 my $dflcl=i_color_new(255,255,255,255);
1648 my %opts=(color=>$dflcl,
1649 'r'=>min($self->getwidth(),$self->getheight())/3,
1650 'x'=>$self->getwidth()/2,
1651 'y'=>$self->getheight()/2,
1652 'd1'=>0, 'd2'=>361, @_);
1654 unless (UNIVERSAL::isa($opts{fill}, 'Imager::Fill')) {
1655 # assume it's a hash ref
1656 require 'Imager/Fill.pm';
1657 $opts{fill} = Imager::Fill->new(%{$opts{fill}});
1659 i_arc_cfill($self->{IMG},$opts{'x'},$opts{'y'},$opts{'r'},$opts{'d1'},
1660 $opts{'d2'}, $opts{fill}{fill});
1663 i_arc($self->{IMG},$opts{'x'},$opts{'y'},$opts{'r'},$opts{'d1'},
1664 $opts{'d2'},$opts{'color'});
1670 # Draws a line from one point to (but not including) the destination point
1674 my $dflcl=i_color_new(0,0,0,0);
1675 my %opts=(color=>$dflcl,@_);
1676 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1678 unless (exists $opts{x1} and exists $opts{y1}) { $self->{ERRSTR}='missing begining coord'; return undef; }
1679 unless (exists $opts{x2} and exists $opts{y2}) { $self->{ERRSTR}='missing ending coord'; return undef; }
1681 if ($opts{antialias}) {
1682 i_line_aa($self->{IMG},$opts{x1}, $opts{y1}, $opts{x2}, $opts{y2}, $opts{color});
1684 i_draw($self->{IMG},$opts{x1}, $opts{y1}, $opts{x2}, $opts{y2}, $opts{color});
1689 # Draws a line between an ordered set of points - It more or less just transforms this
1690 # into a list of lines.
1694 my ($pt,$ls,@points);
1695 my $dflcl=i_color_new(0,0,0,0);
1696 my %opts=(color=>$dflcl,@_);
1698 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1700 if (exists($opts{points})) { @points=@{$opts{points}}; }
1701 if (!exists($opts{points}) and exists($opts{'x'}) and exists($opts{'y'}) ) {
1702 @points=map { [ $opts{'x'}->[$_],$opts{'y'}->[$_] ] } (0..(scalar @{$opts{'x'}}-1));
1705 # print Dumper(\@points);
1707 if ($opts{antialias}) {
1709 if (defined($ls)) { i_line_aa($self->{IMG},$ls->[0],$ls->[1],$pt->[0],$pt->[1],$opts{color}); }
1714 if (defined($ls)) { i_draw($self->{IMG},$ls->[0],$ls->[1],$pt->[0],$pt->[1],$opts{color}); }
1721 # this the multipoint bezier curve
1722 # this is here more for testing that actual usage since
1723 # this is not a good algorithm. Usually the curve would be
1724 # broken into smaller segments and each done individually.
1728 my ($pt,$ls,@points);
1729 my $dflcl=i_color_new(0,0,0,0);
1730 my %opts=(color=>$dflcl,@_);
1732 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1734 if (exists $opts{points}) {
1735 $opts{'x'}=map { $_->[0]; } @{$opts{'points'}};
1736 $opts{'y'}=map { $_->[1]; } @{$opts{'points'}};
1739 unless ( @{$opts{'x'}} and @{$opts{'x'}} == @{$opts{'y'}} ) {
1740 $self->{ERRSTR}='Missing or invalid points.';
1744 i_bezier_multi($self->{IMG},$opts{'x'},$opts{'y'},$opts{'color'});
1750 my %opts = ( color=>Imager::Color->new(255, 255, 255), @_ );
1752 unless (exists $opts{x} && exists $opts{'y'}) {
1753 $self->{ERRSTR} = "missing seed x and y parameters";
1758 unless (UNIVERSAL::isa($opts{fill}, 'Imager::Fill')) {
1759 # assume it's a hash ref
1760 require 'Imager/Fill.pm';
1761 $opts{fill} = Imager::Fill->new(%{$opts{fill}});
1763 i_flood_cfill($self->{IMG}, $opts{x}, $opts{'y'}, $opts{fill}{fill});
1766 i_flood_fill($self->{IMG}, $opts{x}, $opts{'y'}, $opts{color});
1772 # make an identity matrix of the given size
1776 my $matrix = [ map { [ (0) x $size ] } 1..$size ];
1777 for my $c (0 .. ($size-1)) {
1778 $matrix->[$c][$c] = 1;
1783 # general function to convert an image
1785 my ($self, %opts) = @_;
1788 # the user can either specify a matrix or preset
1789 # the matrix overrides the preset
1790 if (!exists($opts{matrix})) {
1791 unless (exists($opts{preset})) {
1792 $self->{ERRSTR} = "convert() needs a matrix or preset";
1796 if ($opts{preset} eq 'gray' || $opts{preset} eq 'grey') {
1797 # convert to greyscale, keeping the alpha channel if any
1798 if ($self->getchannels == 3) {
1799 $matrix = [ [ 0.222, 0.707, 0.071 ] ];
1801 elsif ($self->getchannels == 4) {
1802 # preserve the alpha channel
1803 $matrix = [ [ 0.222, 0.707, 0.071, 0 ],
1808 $matrix = _identity($self->getchannels);
1811 elsif ($opts{preset} eq 'noalpha') {
1812 # strip the alpha channel
1813 if ($self->getchannels == 2 or $self->getchannels == 4) {
1814 $matrix = _identity($self->getchannels);
1815 pop(@$matrix); # lose the alpha entry
1818 $matrix = _identity($self->getchannels);
1821 elsif ($opts{preset} eq 'red' || $opts{preset} eq 'channel0') {
1823 $matrix = [ [ 1 ] ];
1825 elsif ($opts{preset} eq 'green' || $opts{preset} eq 'channel1') {
1826 $matrix = [ [ 0, 1 ] ];
1828 elsif ($opts{preset} eq 'blue' || $opts{preset} eq 'channel2') {
1829 $matrix = [ [ 0, 0, 1 ] ];
1831 elsif ($opts{preset} eq 'alpha') {
1832 if ($self->getchannels == 2 or $self->getchannels == 4) {
1833 $matrix = [ [ (0) x ($self->getchannels-1), 1 ] ];
1836 # the alpha is just 1 <shrug>
1837 $matrix = [ [ (0) x $self->getchannels, 1 ] ];
1840 elsif ($opts{preset} eq 'rgb') {
1841 if ($self->getchannels == 1) {
1842 $matrix = [ [ 1 ], [ 1 ], [ 1 ] ];
1844 elsif ($self->getchannels == 2) {
1845 # preserve the alpha channel
1846 $matrix = [ [ 1, 0 ], [ 1, 0 ], [ 1, 0 ], [ 0, 1 ] ];
1849 $matrix = _identity($self->getchannels);
1852 elsif ($opts{preset} eq 'addalpha') {
1853 if ($self->getchannels == 1) {
1854 $matrix = _identity(2);
1856 elsif ($self->getchannels == 3) {
1857 $matrix = _identity(4);
1860 $matrix = _identity($self->getchannels);
1864 $self->{ERRSTR} = "Unknown convert preset $opts{preset}";
1870 $matrix = $opts{matrix};
1873 my $new = Imager->new();
1874 $new->{IMG} = i_img_new();
1875 unless (i_convert($new->{IMG}, $self->{IMG}, $matrix)) {
1876 # most likely a bad matrix
1877 $self->{ERRSTR} = _error_as_msg();
1884 # general function to map an image through lookup tables
1887 my ($self, %opts) = @_;
1888 my @chlist = qw( red green blue alpha );
1890 if (!exists($opts{'maps'})) {
1891 # make maps from channel maps
1893 for $chnum (0..$#chlist) {
1894 if (exists $opts{$chlist[$chnum]}) {
1895 $opts{'maps'}[$chnum] = $opts{$chlist[$chnum]};
1896 } elsif (exists $opts{'all'}) {
1897 $opts{'maps'}[$chnum] = $opts{'all'};
1901 if ($opts{'maps'} and $self->{IMG}) {
1902 i_map($self->{IMG}, $opts{'maps'} );
1907 # destructive border - image is shrunk by one pixel all around
1910 my ($self,%opts)=@_;
1911 my($tx,$ty)=($self->getwidth()-1,$self->getheight()-1);
1912 $self->polyline('x'=>[0,$tx,$tx,0,0],'y'=>[0,0,$ty,$ty,0],%opts);
1916 # Get the width of an image
1920 if (!defined($self->{IMG})) { $self->{ERRSTR} = 'image is empty'; return undef; }
1921 return (i_img_info($self->{IMG}))[0];
1924 # Get the height of an image
1928 if (!defined($self->{IMG})) { $self->{ERRSTR} = 'image is empty'; return undef; }
1929 return (i_img_info($self->{IMG}))[1];
1932 # Get number of channels in an image
1936 if (!defined($self->{IMG})) { $self->{ERRSTR} = 'image is empty'; return undef; }
1937 return i_img_getchannels($self->{IMG});
1944 if (!defined($self->{IMG})) { $self->{ERRSTR} = 'image is empty'; return undef; }
1945 return i_img_getmask($self->{IMG});
1953 if (!defined($self->{IMG})) { $self->{ERRSTR} = 'image is empty'; return undef; }
1954 i_img_setmask( $self->{IMG} , $opts{mask} );
1957 # Get number of colors in an image
1961 my %opts=(maxcolors=>2**30,@_);
1962 if (!defined($self->{IMG})) { $self->{ERRSTR}='image is empty'; return undef; }
1963 my $rc=i_count_colors($self->{IMG},$opts{'maxcolors'});
1964 return ($rc==-1? undef : $rc);
1967 # draw string to an image
1971 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1973 my %input=('x'=>0, 'y'=>0, @_);
1974 $input{string}||=$input{text};
1976 unless(exists $input{string}) {
1977 $self->{ERRSTR}="missing required parameter 'string'";
1981 unless($input{font}) {
1982 $self->{ERRSTR}="missing required parameter 'font'";
1986 unless ($input{font}->draw(image=>$self, %input)) {
1987 $self->{ERRSTR} = $self->_error_as_msg();
1994 # Shortcuts that can be exported
1996 sub newcolor { Imager::Color->new(@_); }
1997 sub newfont { Imager::Font->new(@_); }
1999 *NC=*newcolour=*newcolor;
2006 #### Utility routines
2009 ref $_[0] ? $_[0]->{ERRSTR} : $ERRSTR
2012 # Default guess for the type of an image from extension
2014 sub def_guess_type {
2017 $ext=($name =~ m/\.([^\.]+)$/)[0];
2018 return 'tiff' if ($ext =~ m/^tiff?$/);
2019 return 'jpeg' if ($ext =~ m/^jpe?g$/);
2020 return 'pnm' if ($ext =~ m/^p[pgb]m$/);
2021 return 'png' if ($ext eq "png");
2022 return 'bmp' if ($ext eq "bmp" || $ext eq "dib");
2023 return 'gif' if ($ext eq "gif");
2027 # get the minimum of a list
2031 for(@_) { if ($_<$mx) { $mx=$_; }}
2035 # get the maximum of a list
2039 for(@_) { if ($_>$mx) { $mx=$_; }}
2043 # string stuff for iptc headers
2047 $str = substr($str,3);
2048 $str =~ s/[\n\r]//g;
2055 # A little hack to parse iptc headers.
2060 my($caption,$photogr,$headln,$credit);
2062 my $str=$self->{IPTCRAW};
2066 @ar=split(/8BIM/,$str);
2071 @sar=split(/\034\002/);
2072 foreach $item (@sar) {
2073 if ($item =~ m/^x/) {
2074 $caption=&clean($item);
2077 if ($item =~ m/^P/) {
2078 $photogr=&clean($item);
2081 if ($item =~ m/^i/) {
2082 $headln=&clean($item);
2085 if ($item =~ m/^n/) {
2086 $credit=&clean($item);
2092 return (caption=>$caption,photogr=>$photogr,headln=>$headln,credit=>$credit);
2095 # Autoload methods go after =cut, and are processed by the autosplit program.
2099 # Below is the stub of documentation for your module. You better edit it!
2103 Imager - Perl extension for Generating 24 bit Images
2107 use Imager qw(init);
2110 $img = Imager->new();
2111 $img->open(file=>'image.ppm',type=>'pnm')
2112 || print "failed: ",$img->{ERRSTR},"\n";
2113 $scaled=$img->scale(xpixels=>400,ypixels=>400);
2114 $scaled->write(file=>'sc_image.ppm',type=>'pnm')
2115 || print "failed: ",$scaled->{ERRSTR},"\n";
2119 Imager is a module for creating and altering images - It is not meant
2120 as a replacement or a competitor to ImageMagick or GD. Both are
2121 excellent packages and well supported.
2125 Almost all functions take the parameters in the hash fashion.
2128 $img->open(file=>'lena.png',type=>'png');
2132 $img->open(file=>'lena.png');
2134 =head2 Basic concept
2136 An Image object is created with C<$img = Imager-E<gt>new()> Should
2137 this fail for some reason an explanation can be found in
2138 C<$Imager::ERRSTR> usually error messages are stored in
2139 C<$img-E<gt>{ERRSTR}>, but since no object is created this is the only
2140 way to give back errors. C<$Imager::ERRSTR> is also used to report
2141 all errors not directly associated with an image object. Examples:
2143 $img=Imager->new(); # This is an empty image (size is 0 by 0)
2144 $img->open(file=>'lena.png',type=>'png'); # initializes from file
2146 or if you want to create an empty image:
2148 $img=Imager->new(xsize=>400,ysize=>300,channels=>4);
2150 This example creates a completely black image of width 400 and
2151 height 300 and 4 channels.
2153 If you have an existing image, use img_set() to change it's dimensions
2154 - this will destroy any existing image data:
2156 $img->img_set(xsize=>500, ysize=>500, channels=>4);
2158 To create paletted images, set the 'type' parameter to 'paletted':
2160 $img = Imager->new(xsize=>200, ysize=>200, channels=>3, type=>'paletted');
2162 which creates an image with a maxiumum of 256 colors, which you can
2163 change by supplying the C<maxcolors> parameter.
2165 You can create a new paletted image from an existing image using the
2166 to_paletted() method:
2168 $palimg = $img->to_paletted(\%opts)
2170 where %opts contains the options specified under L<Quantization options>.
2172 You can convert a paletted image (or any image) to an 8-bit/channel
2175 $rgbimg = $img->to_rgb8;
2177 Warning: if you draw on a paletted image with colors that aren't in
2178 the palette, the image will be internally converted to a normal image.
2180 For improved color precision you can use the bits parameter to specify
2181 16 bites per channel:
2183 $img = Imager->new(xsize=>200, ysize=>200, channels=>3, bits=>16);
2185 Note that as of this writing all functions should work on 16-bit
2186 images, but at only 8-bit/channel precision.
2188 Currently only 8 and 16/bit per channel image types are available,
2189 this may change later.
2191 Color objects are created by calling the Imager::Color->new()
2194 $color = Imager::Color->new($red, $green, $blue);
2195 $color = Imager::Color->new($red, $green, $blue, $alpha);
2196 $color = Imager::Color->new("#C0C0FF"); # html color specification
2198 This object can then be passed to functions that require a color parameter.
2200 Coordinates in Imager have the origin in the upper left corner. The
2201 horizontal coordinate increases to the right and the vertical
2204 =head2 Reading and writing images
2206 C<$img-E<gt>read()> generally takes two parameters, 'file' and 'type'.
2207 If the type of the file can be determined from the suffix of the file
2208 it can be omitted. Format dependant parameters are: For images of
2209 type 'raw' two extra parameters are needed 'xsize' and 'ysize', if the
2210 'channel' parameter is omitted for type 'raw' it is assumed to be 3.
2211 gif and png images might have a palette are converted to truecolor bit
2212 when read. Alpha channel is preserved for png images irregardless of
2213 them being in RGB or gray colorspace. Similarly grayscale jpegs are
2214 one channel images after reading them. For jpeg images the iptc
2215 header information (stored in the APP13 header) is avaliable to some
2216 degree. You can get the raw header with C<$img-E<gt>{IPTCRAW}>, but
2217 you can also retrieve the most basic information with
2218 C<%hsh=$img-E<gt>parseiptc()> as always patches are welcome. pnm has no
2219 extra options. Examples:
2221 $img = Imager->new();
2222 $img->read(file=>"cover.jpg") or die $img->errstr; # gets type from name
2224 $img = Imager->new();
2225 { local(*FH,$/); open(FH,"file.gif") or die $!; $a=<FH>; }
2226 $img->read(data=>$a,type=>'gif') or die $img->errstr;
2228 The second example shows how to read an image from a scalar, this is
2229 usefull if your data originates from somewhere else than a filesystem
2230 such as a database over a DBI connection.
2232 When writing to a tiff image file you can also specify the 'class'
2233 parameter, which can currently take a single value, "fax". If class
2234 is set to fax then a tiff image which should be suitable for faxing
2235 will be written. For the best results start with a grayscale image.
2236 By default the image is written at fine resolution you can override
2237 this by setting the "fax_fine" parameter to 0.
2239 If you are reading from a gif image file, you can supply a 'colors'
2240 parameter which must be a reference to a scalar. The referenced
2241 scalar will receive an array reference which contains the colors, each
2242 represented as an Imager::Color object.
2244 If you already have an open file handle, for example a socket or a
2245 pipe, you can specify the 'fd' parameter instead of supplying a
2246 filename. Please be aware that you need to use fileno() to retrieve
2247 the file descriptor for the file:
2249 $img->read(fd=>fileno(FILE), type=>'gif') or die $img->errstr;
2251 For writing using the 'fd' option you will probably want to set $| for
2252 that descriptor, since the writes to the file descriptor bypass Perl's
2253 (or the C libraries) buffering. Setting $| should avoid out of order
2254 output. For example a common idiom when writing a CGI script is:
2256 # the $| _must_ come before you send the content-type
2258 print "Content-Type: image/jpeg\n\n";
2259 $img->write(fd=>fileno(STDOUT), type=>'jpeg') or die $img->errstr;
2261 *Note that load() is now an alias for read but will be removed later*
2263 C<$img-E<gt>write> has the same interface as C<read()>. The earlier
2264 comments on C<read()> for autodetecting filetypes apply. For jpegs
2265 quality can be adjusted via the 'jpegquality' parameter (0-100). The
2266 number of colorplanes in gifs are set with 'gifplanes' and should be
2267 between 1 (2 color) and 8 (256 colors). It is also possible to choose
2268 between two quantizing methods with the parameter 'gifquant'. If set
2269 to mc it uses the mediancut algorithm from either giflibrary. If set
2270 to lm it uses a local means algorithm. It is then possible to give
2271 some extra settings. lmdither is the dither deviation amount in pixels
2272 (manhattan distance). lmfixed can be an array ref who holds an array
2273 of Imager::Color objects. Note that the local means algorithm needs
2274 much more cpu time but also gives considerable better results than the
2275 median cut algorithm.
2277 Currently just for gif files, you can specify various options for the
2278 conversion from Imager's internal RGB format to the target's indexed
2279 file format. If you set the gifquant option to 'gen', you can use the
2280 options specified under L<Quantization options>.
2282 To see what Imager is compiled to support the following code snippet
2286 print "@{[keys %Imager::formats]}";
2288 When reading raw images you need to supply the width and height of the
2289 image in the xsize and ysize options:
2291 $img->read(file=>'foo.raw', xsize=>100, ysize=>100)
2292 or die "Cannot read raw image\n";
2294 If your input file has more channels than you want, or (as is common),
2295 junk in the fourth channel, you can use the datachannels and
2296 storechannels options to control the number of channels in your input
2297 file and the resulting channels in your image. For example, if your
2298 input image uses 32-bits per pixel with red, green, blue and junk
2299 values for each pixel you could do:
2301 $img->read(file=>'foo.raw', xsize=>100, ysize=>100, datachannels=>4,
2303 or die "Cannot read raw image\n";
2305 Normally the raw image is expected to have the value for channel 1
2306 immediately following channel 0 and channel 2 immediately following
2307 channel 1 for each pixel. If your input image has all the channel 0
2308 values for the first line of the image, followed by all the channel 1
2309 values for the first line and so on, you can use the interleave option:
2311 $img->read(file=>'foo.raw', xsize=100, ysize=>100, interleave=>1)
2312 or die "Cannot read raw image\n";
2314 =head2 Multi-image files
2316 Currently just for gif files, you can create files that contain more
2321 Imager->write_multi(\%opts, @images)
2323 Where %opts describes 4 possible types of outputs:
2329 This is C<gif> for gif animations.
2333 A code reference which is called with a single parameter, the data to
2334 be written. You can also specify $opts{maxbuffer} which is the
2335 maximum amount of data buffered. Note that there can be larger writes
2336 than this if the file library writes larger blocks. A smaller value
2337 maybe useful for writing to a socket for incremental display.
2341 The file descriptor to save the images to.
2345 The name of the file to write to.
2347 %opts may also include the keys from L<Gif options> and L<Quantization
2352 You must also specify the file format using the 'type' option.
2354 The current aim is to support other multiple image formats in the
2355 future, such as TIFF, and to support reading multiple images from a
2361 # ... code to put images in @images
2362 Imager->write_multi({type=>'gif',
2364 gif_delays=>[ (10) x @images ] },
2368 You can read multi-image files (currently only GIF files) using the
2369 read_multi() method:
2371 my @imgs = Imager->read_multi(file=>'foo.gif')
2372 or die "Cannot read images: ",Imager->errstr;
2374 The possible parameters for read_multi() are:
2380 The name of the file to read in.
2384 A filehandle to read in. This can be the name of a filehandle, but it
2385 will need the package name, no attempt is currently made to adjust
2386 this to the caller's package.
2390 The numeric file descriptor of an open file (or socket).
2394 A function to be called to read in data, eg. reading a blob from a
2395 database incrementally.
2399 The data of the input file in memory.
2403 The type of file. If the file is parameter is given and provides
2404 enough information to guess the type, then this parameter is optional.
2408 Note: you cannot use the callback or data parameter with giflib
2409 versions before 4.0.
2411 When reading from a GIF file with read_multi() the images are returned
2416 These options can be specified when calling write_multi() for gif
2417 files, when writing a single image with the gifquant option set to
2418 'gen', or for direct calls to i_writegif_gen and i_writegif_callback.
2420 Note that some viewers will ignore some of these options
2421 (gif_user_input in particular).
2425 =item gif_each_palette
2427 Each image in the gif file has it's own palette if this is non-zero.
2428 All but the first image has a local colour table (the first uses the
2429 global colour table.
2433 The images are written interlaced if this is non-zero.
2437 A reference to an array containing the delays between images, in 1/100
2440 If you want the same delay for every frame you can simply set this to
2441 the delay in 1/100 seconds.
2443 =item gif_user_input
2445 A reference to an array contains user input flags. If the given flag
2446 is non-zero the image viewer should wait for input before displaying
2451 A reference to an array of image disposal methods. These define what
2452 should be done to the image before displaying the next one. These are
2453 integers, where 0 means unspecified, 1 means the image should be left
2454 in place, 2 means restore to background colour and 3 means restore to
2457 =item gif_tran_color
2459 A reference to an Imager::Color object, which is the colour to use for
2460 the palette entry used to represent transparency in the palette. You
2461 need to set the transp option (see L<Quantization options>) for this
2466 A reference to an array of references to arrays which represent screen
2467 positions for each image.
2469 =item gif_loop_count
2471 If this is non-zero the Netscape loop extension block is generated,
2472 which makes the animation of the images repeat.
2474 This is currently unimplemented due to some limitations in giflib.
2478 =head2 Quantization options
2480 These options can be specified when calling write_multi() for gif
2481 files, when writing a single image with the gifquant option set to
2482 'gen', or for direct calls to i_writegif_gen and i_writegif_callback.
2488 A arrayref of colors that are fixed. Note that some color generators
2493 The type of transparency processing to perform for images with an
2494 alpha channel where the output format does not have a proper alpha
2495 channel (eg. gif). This can be any of:
2501 No transparency processing is done. (default)
2505 Pixels more transparent that tr_threshold are rendered as transparent.
2509 An error diffusion dither is done on the alpha channel. Note that
2510 this is independent of the translation performed on the colour
2511 channels, so some combinations may cause undesired artifacts.
2515 The ordered dither specified by tr_orddith is performed on the alpha
2520 This will only be used if the image has an alpha channel, and if there
2521 is space in the palette for a transparency colour.
2525 The highest alpha value at which a pixel will be made transparent when
2526 transp is 'threshold'. (0-255, default 127)
2530 The type of error diffusion to perform on the alpha channel when
2531 transp is 'errdiff'. This can be any defined error diffusion type
2532 except for custom (see errdiff below).
2536 The type of ordered dither to perform on the alpha channel when transp
2537 is 'ordered'. Possible values are:
2543 A semi-random map is used. The map is the same each time.
2555 horizontal line dither.
2559 vertical line dither.
2565 diagonal line dither
2571 diagonal line dither
2575 dot matrix dither (currently the default). This is probably the best
2576 for displays (like web pages).
2580 A custom dither matrix is used - see tr_map
2586 When tr_orddith is custom this defines an 8 x 8 matrix of integers
2587 representing the transparency threshold for pixels corresponding to
2588 each position. This should be a 64 element array where the first 8
2589 entries correspond to the first row of the matrix. Values should be
2594 Defines how the quantization engine will build the palette(s).
2595 Currently this is ignored if 'translate' is 'giflib', but that may
2596 change. Possible values are:
2602 Only colors supplied in 'colors' are used.
2606 The web color map is used (need url here.)
2610 The original code for generating the color map (Addi's code) is used.
2614 Other methods may be added in the future.
2618 A arrayref containing Imager::Color objects, which represents the
2619 starting set of colors to use in translating the images. webmap will
2620 ignore this. The final colors used are copied back into this array
2621 (which is expanded if necessary.)
2625 The maximum number of colors to use in the image.
2629 The method used to translate the RGB values in the source image into
2630 the colors selected by make_colors. Note that make_colors is ignored
2631 whene translate is 'giflib'.
2633 Possible values are:
2639 The giflib native quantization function is used.
2643 The closest color available is used.
2647 The pixel color is modified by perturb, and the closest color is chosen.
2651 An error diffusion dither is performed.
2655 It's possible other transate values will be added.
2659 The type of error diffusion dither to perform. These values (except
2660 for custom) can also be used in tr_errdif.
2666 Floyd-Steinberg dither
2670 Jarvis, Judice and Ninke dither
2678 Custom. If you use this you must also set errdiff_width,
2679 errdiff_height and errdiff_map.
2685 =item errdiff_height
2691 When translate is 'errdiff' and errdiff is 'custom' these define a
2692 custom error diffusion map. errdiff_width and errdiff_height define
2693 the size of the map in the arrayref in errdiff_map. errdiff_orig is
2694 an integer which indicates the current pixel position in the top row
2699 When translate is 'perturb' this is the magnitude of the random bias
2700 applied to each channel of the pixel before it is looked up in the
2705 =head2 Obtaining/setting attributes of images
2707 To get the size of an image in pixels the C<$img-E<gt>getwidth()> and
2708 C<$img-E<gt>getheight()> are used.
2710 To get the number of channels in
2711 an image C<$img-E<gt>getchannels()> is used. $img-E<gt>getmask() and
2712 $img-E<gt>setmask() are used to get/set the channel mask of the image.
2714 $mask=$img->getmask();
2715 $img->setmask(mask=>1+2); # modify red and green only
2716 $img->setmask(mask=>8); # modify alpha only
2717 $img->setmask(mask=>$mask); # restore previous mask
2719 The mask of an image describes which channels are updated when some
2720 operation is performed on an image. Naturally it is not possible to
2721 apply masks to operations like scaling that alter the dimensions of
2724 It is possible to have Imager find the number of colors in an image
2725 by using C<$img-E<gt>getcolorcount()>. It requires memory proportionally
2726 to the number of colors in the image so it is possible to have it
2727 stop sooner if you only need to know if there are more than a certain number
2728 of colors in the image. If there are more colors than asked for
2729 the function return undef. Examples:
2731 if (!defined($img->getcolorcount(maxcolors=>512)) {
2732 print "Less than 512 colors in image\n";
2735 The bits() method retrieves the number of bits used to represent each
2736 channel in a pixel, typically 8. The type() method returns either
2737 'direct' for truecolor images or 'paletted' for paletted images. The
2738 virtual() method returns non-zero if the image contains no actual
2739 pixels, for example masked images.
2741 =head2 Paletted Images
2743 In general you can work with paletted images in the same way as RGB
2744 images, except that if you attempt to draw to a paletted image with a
2745 color that is not in the image's palette, the image will be converted
2746 to an RGB image. This means that drawing on a paletted image with
2747 anti-aliasing enabled will almost certainly convert the image to RGB.
2749 You can add colors to a paletted image with the addcolors() method:
2751 my @colors = ( Imager::Color->new(255, 0, 0),
2752 Imager::Color->new(0, 255, 0) );
2753 my $index = $img->addcolors(colors=>\@colors);
2755 The return value is the index of the first color added, or undef if
2756 adding the colors would overflow the palette.
2758 Once you have colors in the palette you can overwrite them with the
2761 $img->setcolors(start=>$start, colors=>\@colors);
2763 Returns true on success.
2765 To retrieve existing colors from the palette use the getcolors() method:
2767 # get the whole palette
2768 my @colors = $img->getcolors();
2769 # get a single color
2770 my $color = $img->getcolors(start=>$index);
2771 # get a range of colors
2772 my @colors = $img->getcolors(start=>$index, count=>$count);
2774 To quickly find a color in the palette use findcolor():
2776 my $index = $img->findcolor(color=>$color);
2778 which returns undef on failure, or the index of the color.
2780 You can get the current palette size with $img->colorcount, and the
2781 maximum size of the palette with $img->maxcolors.
2783 =head2 Drawing Methods
2785 IMPLEMENTATION MORE OR LESS DONE CHECK THE TESTS
2786 DOCUMENTATION OF THIS SECTION OUT OF SYNC
2788 It is possible to draw with graphics primitives onto images. Such
2789 primitives include boxes, arcs, circles and lines. A reference
2790 oriented list follows.
2793 $img->box(color=>$blue,xmin=>10,ymin=>30,xmax=>200,ymax=>300,filled=>1);
2795 The above example calls the C<box> method for the image and the box
2796 covers the pixels with in the rectangle specified. If C<filled> is
2797 ommited it is drawn as an outline. If any of the edges of the box are
2798 ommited it will snap to the outer edge of the image in that direction.
2799 Also if a color is omitted a color with (255,255,255,255) is used
2803 $img->arc(color=>$red, r=20, x=>200, y=>100, d1=>10, d2=>20 );
2805 This creates a filled red arc with a 'center' at (200, 100) and spans
2806 10 degrees and the slice has a radius of 20. SEE section on BUGS.
2808 Both the arc() and box() methods can take a C<fill> parameter which
2809 can either be an Imager::Fill object, or a reference to a hash
2810 containing the parameters used to create the fill:
2812 $img->box(xmin=>10, ymin=>30, xmax=>150, ymax=>60,
2813 fill => { hatch=>'cross2' });
2815 my $fill = Imager::Fill->new(hatch=>'stipple');
2816 $img->box(fill=>$fill);
2818 See L<Imager::Fill> for the type of fills you can use.
2821 $img->circle(color=>$green, r=50, x=>200, y=>100);
2823 This creates a green circle with its center at (200, 100) and has a
2827 $img->line(color=>$green, x1=10, x2=>100,
2828 y1=>20, y2=>50, antialias=>1 );
2830 That draws an antialiased line from (10,100) to (20,50).
2833 $img->polyline(points=>[[$x0,$y0],[$x1,$y1],[$x2,$y2]],color=>$red);
2834 $img->polyline(x=>[$x0,$x1,$x2], y=>[$y0,$y1,$y2], antialias=>1);
2836 Polyline is used to draw multilple lines between a series of points.
2837 The point set can either be specified as an arrayref to an array of
2838 array references (where each such array represents a point). The
2839 other way is to specify two array references.
2841 You can fill a region that all has the same color using the
2842 flood_fill() method, for example:
2844 $img->flood_fill(x=>50, y=>50, color=>$color);
2846 will fill all regions the same color connected to the point (50, 50).
2848 You can also use a general fill, so you could fill the same region
2849 with a check pattern using:
2851 $img->flood_fill(x=>50, y=>50, fill=>{ hatch=>'check2x2' });
2853 See L<Imager::Fill> for more information on general fills.
2855 =head2 Text rendering
2857 Text rendering is described in the Imager::Font manpage.
2859 =head2 Image resizing
2861 To scale an image so porportions are maintained use the
2862 C<$img-E<gt>scale()> method. if you give either a xpixels or ypixels
2863 parameter they will determine the width or height respectively. If
2864 both are given the one resulting in a larger image is used. example:
2865 C<$img> is 700 pixels wide and 500 pixels tall.
2867 $img->scale(xpixels=>400); # 400x285
2868 $img->scale(ypixels=>400); # 560x400
2870 $img->scale(xpixels=>400,ypixels=>400); # 560x400
2871 $img->scale(xpixels=>400,ypixels=>400,type=>min); # 400x285
2873 $img->scale(scalefactor=>0.25); 175x125 $img->scale(); # 350x250
2875 if you want to create low quality previews of images you can pass
2876 C<qtype=E<gt>'preview'> to scale and it will use nearest neighbor
2877 sampling instead of filtering. It is much faster but also generates
2878 worse looking images - especially if the original has a lot of sharp
2879 variations and the scaled image is by more than 3-5 times smaller than
2882 If you need to scale images per axis it is best to do it simply by
2883 calling scaleX and scaleY. You can pass either 'scalefactor' or
2884 'pixels' to both functions.
2886 Another way to resize an image size is to crop it. The parameters
2887 to crop are the edges of the area that you want in the returned image.
2888 If a parameter is omited a default is used instead.
2890 $newimg = $img->crop(left=>50, right=>100, top=>10, bottom=>100);
2891 $newimg = $img->crop(left=>50, top=>10, width=>50, height=>90);
2892 $newimg = $img->crop(left=>50, right=>100); # top
2894 You can also specify width and height parameters which will produce a
2895 new image cropped from the center of the input image, with the given
2898 $newimg = $img->crop(width=>50, height=>50);
2900 The width and height parameters take precedence over the left/right
2901 and top/bottom parameters respectively.
2903 =head2 Copying images
2905 To create a copy of an image use the C<copy()> method. This is usefull
2906 if you want to keep an original after doing something that changes the image
2907 inplace like writing text.
2911 To copy an image to onto another image use the C<paste()> method.
2913 $dest->paste(left=>40,top=>20,img=>$logo);
2915 That copies the entire C<$logo> image onto the C<$dest> image so that the
2916 upper left corner of the C<$logo> image is at (40,20).
2919 =head2 Flipping images
2921 An inplace horizontal or vertical flip is possible by calling the
2922 C<flip()> method. If the original is to be preserved it's possible to
2923 make a copy first. The only parameter it takes is the C<dir>
2924 parameter which can take the values C<h>, C<v>, C<vh> and C<hv>.
2926 $img->flip(dir=>"h"); # horizontal flip
2927 $img->flip(dir=>"vh"); # vertical and horizontal flip
2928 $nimg = $img->copy->flip(dir=>"v"); # make a copy and flip it vertically
2930 =head2 Rotating images
2932 Use the rotate() method to rotate an image.
2934 To rotate by an exact amount in degrees or radians, use the 'degrees'
2935 or 'radians' parameter:
2937 my $rot20 = $img->rotate(degrees=>20);
2938 my $rotpi4 = $img->rotate(radians=>3.14159265/4);
2940 To rotate in steps of 90 degrees, use the 'right' parameter:
2942 my $rotated = $img->rotate(right=>270);
2944 Rotations are clockwise for positive values.
2946 =head2 Blending Images
2948 To put an image or a part of an image directly
2949 into another it is best to call the C<paste()> method on the image you
2952 $img->paste(img=>$srcimage,left=>30,top=>50);
2954 That will take paste C<$srcimage> into C<$img> with the upper
2955 left corner at (30,50). If no values are given for C<left>
2956 or C<top> they will default to 0.
2958 A more complicated way of blending images is where one image is
2959 put 'over' the other with a certain amount of opaqueness. The
2960 method that does this is rubthrough.
2962 $img->rubthrough(src=>$srcimage,tx=>30,ty=>50);
2964 That will take the image C<$srcimage> and overlay it with the upper
2965 left corner at (30,50). You can rub 2 or 4 channel images onto a 3
2966 channel image, or a 2 channel image onto a 1 channel image. The last
2967 channel is used as an alpha channel.
2972 A special image method is the filter method. An example is:
2974 $img->filter(type=>'autolevels');
2976 This will call the autolevels filter. Here is a list of the filters
2977 that are always avaliable in Imager. This list can be obtained by
2978 running the C<filterlist.perl> script that comes with the module
2982 autolevels lsat(0.1) usat(0.1) skew(0)
2983 bumpmap bump elevation(0) lightx lighty st(2)
2986 fountain xa ya xb yb ftype(linear) repeat(none) combine(none)
2987 super_sample(none) ssample_param(4) segments(see below)
2989 gradgen xo yo colors dist
2992 noise amount(3) subtype(0)
2993 postlevels levels(10)
2994 radnoise xo(100) yo(100) ascale(17.0) rscale(0.02)
2995 turbnoise xo(0.0) yo(0.0) scale(10.0)
2996 watermark wmark pixdiff(10) tx(0) ty(0)
2998 The default values are in parenthesis. All parameters must have some
2999 value but if a parameter has a default value it may be omitted when
3000 calling the filter function.
3008 scales the value of each channel so that the values in the image will
3009 cover the whole possible range for the channel. I<lsat> and I<usat>
3010 truncate the range by the specified fraction at the top and bottom of
3011 the range respectivly..
3015 uses the channel I<elevation> image I<bump> as a bumpmap on your
3016 image, with the light at (I<lightx>, I<lightty>), with a shadow length
3021 scales each channel by I<intensity>. Values of I<intensity> < 1.0
3022 will reduce the contrast.
3026 performs 2 1-dimensional convolutions on the image using the values
3027 from I<coef>. I<coef> should be have an odd length.
3031 renders a fountain fill, similar to the gradient tool in most paint
3032 software. The default fill is a linear fill from opaque black to
3033 opaque white. The points A(xa, ya) and B(xb, yb) control the way the
3034 fill is performed, depending on the ftype parameter:
3040 the fill ramps from A through to B.
3044 the fill ramps in both directions from A, where AB defines the length
3049 A is the center of a circle, and B is a point on it's circumference.
3050 The fill ramps from the center out to the circumference.
3054 A is the center of a square and B is the center of one of it's sides.
3055 This can be used to rotate the square. The fill ramps out to the
3056 edges of the square.
3060 A is the centre of a circle and B is a point on it's circumference. B
3061 marks the 0 and 360 point on the circle, with the fill ramping
3066 A is the center of a circle and B is a point on it's circumference. B
3067 marks the 0 and point on the circle, with the fill ramping in both
3068 directions to meet opposite.
3072 The I<repeat> option controls how the fill is repeated for some
3073 I<ftype>s after it leaves the AB range:
3079 no repeats, points outside of each range are treated as if they were
3080 on the extreme end of that range.
3084 the fill simply repeats in the positive direction
3088 the fill repeats in reverse and then forward and so on, in the
3093 the fill repeats in both the positive and negative directions (only
3094 meaningful for a linear fill).
3098 as for triangle, but in the negative direction too (only meaningful
3103 By default the fill simply overwrites the whole image (unless you have
3104 parts of the range 0 through 1 that aren't covered by a segment), if
3105 any segments of your fill have any transparency, you can set the
3106 I<combine> option to 'normal' to have the fill combined with the
3107 existing pixels. See the description of I<combine> in L<Imager/Fill>.
3109 If your fill has sharp edges, for example between steps if you use
3110 repeat set to 'triangle', you may see some aliased or ragged edges.
3111 You can enable super-sampling which will take extra samples within the
3112 pixel in an attempt anti-alias the fill.
3114 The possible values for the super_sample option are:
3120 no super-sampling is done
3124 a square grid of points are sampled. The number of points sampled is
3125 the square of ceil(0.5 + sqrt(ssample_param)).
3129 a random set of points within the pixel are sampled. This looks
3130 pretty bad for low ssample_param values.
3134 the points on the radius of a circle within the pixel are sampled.
3135 This seems to produce the best results, but is fairly slow (for now).
3139 You can control the level of sampling by setting the ssample_param
3140 option. This is roughly the number of points sampled, but depends on
3141 the type of sampling.
3143 The segments option is an arrayref of segments. You really should use
3144 the Imager::Fountain class to build your fountain fill. Each segment
3145 is an array ref containing:
3151 a floating point number between 0 and 1, the start of the range of fill parameters covered by this segment.
3155 a floating point number between start and end which can be used to
3156 push the color range towards one end of the segment.
3160 a floating point number between 0 and 1, the end of the range of fill
3161 parameters covered by this segment. This should be greater than
3168 The colors at each end of the segment. These can be either
3169 Imager::Color or Imager::Color::Float objects.
3173 The type of segment, this controls the way the fill parameter varies
3174 over the segment. 0 for linear, 1 for curved (unimplemented), 2 for
3175 sine, 3 for sphere increasing, 4 for sphere decreasing.
3179 The way the color varies within the segment, 0 for simple RGB, 1 for
3180 hue increasing and 2 for hue decreasing.
3184 Don't forgot to use Imager::Fountain instead of building your own.
3185 Really. It even loads GIMP gradient files.
3189 performs a gaussian blur of the image, using I<stddev> as the standard
3190 deviation of the curve used to combine pixels, larger values give
3191 bigger blurs. For a definition of Gaussian Blur, see:
3193 http://www.maths.abdn.ac.uk/~igc/tch/mx4002/notes/node99.html
3197 renders a gradient, with the given I<colors> at the corresponding
3198 points (x,y) in I<xo> and I<yo>. You can specify the way distance is
3199 measured for color blendeing by setting I<dist> to 0 for Euclidean, 1
3200 for Euclidean squared, and 2 for Manhattan distance.
3204 inverts the image, black to white, white to black. All channels are
3205 inverted, including the alpha channel if any.
3209 produces averaged tiles of the given I<size>.
3213 adds noise of the given I<amount> to the image. If I<subtype> is
3214 zero, the noise is even to each channel, otherwise noise is added to
3215 each channel independently.
3219 renders radiant Perlin turbulent noise. The centre of the noise is at
3220 (I<xo>, I<yo>), I<ascale> controls the angular scale of the noise ,
3221 and I<rscale> the radial scale, higher numbers give more detail.
3225 alters the image to have only I<levels> distinct level in each
3230 renders Perlin turbulent noise. (I<xo>, I<yo>) controls the origin of
3231 the noise, and I<scale> the scale of the noise, with lower numbers
3236 applies I<wmark> as a watermark on the image with strength I<pixdiff>,
3237 with an origin at (I<tx>, I<ty>)
3241 A demonstration of most of the filters can be found at:
3243 http://www.develop-help.com/imager/filters.html
3245 (This is a slow link.)
3247 =head2 Color transformations
3249 You can use the convert method to transform the color space of an
3250 image using a matrix. For ease of use some presets are provided.
3252 The convert method can be used to:
3258 convert an RGB or RGBA image to grayscale.
3262 convert a grayscale image to RGB.
3266 extract a single channel from an image.
3270 set a given channel to a particular value (or from another channel)
3274 The currently defined presets are:
3282 converts an RGBA image into a grayscale image with alpha channel, or
3283 an RGB image into a grayscale image without an alpha channel.
3285 This weights the RGB channels at 22.2%, 70.7% and 7.1% respectively.
3289 removes the alpha channel from a 2 or 4 channel image. An identity
3296 extracts the first channel of the image into a single channel image
3302 extracts the second channel of the image into a single channel image
3308 extracts the third channel of the image into a single channel image
3312 extracts the alpha channel of the image into a single channel image.
3314 If the image has 1 or 3 channels (assumed to be grayscale of RGB) then
3315 the resulting image will be all white.
3319 converts a grayscale image to RGB, preserving the alpha channel if any
3323 adds an alpha channel to a grayscale or RGB image. Preserves an
3324 existing alpha channel for a 2 or 4 channel image.
3328 For example, to convert an RGB image into a greyscale image:
3330 $new = $img->convert(preset=>'grey'); # or gray
3332 or to convert a grayscale image to an RGB image:
3334 $new = $img->convert(preset=>'rgb');
3336 The presets aren't necessary simple constants in the code, some are
3337 generated based on the number of channels in the input image.
3339 If you want to perform some other colour transformation, you can use
3340 the 'matrix' parameter.
3342 For each output pixel the following matrix multiplication is done:
3344 channel[0] [ [ $c00, $c01, ... ] inchannel[0]
3345 [ ... ] = ... x [ ... ]
3346 channel[n-1] [ $cn0, ..., $cnn ] ] inchannel[max]
3349 So if you want to swap the red and green channels on a 3 channel image:
3351 $new = $img->convert(matrix=>[ [ 0, 1, 0 ],
3355 or to convert a 3 channel image to greyscale using equal weightings:
3357 $new = $img->convert(matrix=>[ [ 0.333, 0.333, 0.334 ] ])
3359 =head2 Color Mappings
3361 You can use the map method to map the values of each channel of an
3362 image independently using a list of lookup tables. It's important to
3363 realize that the modification is made inplace. The function simply
3364 returns the input image again or undef on failure.
3366 Each channel is mapped independently through a lookup table with 256
3367 entries. The elements in the table should not be less than 0 and not
3368 greater than 255. If they are out of the 0..255 range they are
3369 clamped to the range. If a table does not contain 256 entries it is
3372 Single channels can mapped by specifying their name and the mapping
3373 table. The channel names are C<red>, C<green>, C<blue>, C<alpha>.
3375 @map = map { int( $_/2 } 0..255;
3376 $img->map( red=>\@map );
3378 It is also possible to specify a single map that is applied to all
3379 channels, alpha channel included. For example this applies a gamma
3380 correction with a gamma of 1.4 to the input image.
3383 @map = map { int( 0.5 + 255*($_/255)**$gamma ) } 0..255;
3384 $img->map(all=> \@map);
3386 The C<all> map is used as a default channel, if no other map is
3387 specified for a channel then the C<all> map is used instead. If we
3388 had not wanted to apply gamma to the alpha channel we would have used:
3390 $img->map(all=> \@map, alpha=>[]);
3392 Since C<[]> contains fewer than 256 element the gamma channel is
3395 It is also possible to simply specify an array of maps that are
3396 applied to the images in the rgba order. For example to apply
3397 maps to the C<red> and C<blue> channels one would use:
3399 $img->map(maps=>[\@redmap, [], \@bluemap]);
3403 =head2 Transformations
3405 Another special image method is transform. It can be used to generate
3406 warps and rotations and such features. It can be given the operations
3407 in postfix notation or the module Affix::Infix2Postfix can be used.
3408 Look in the test case t/t55trans.t for an example.
3410 transform() needs expressions (or opcodes) that determine the source
3411 pixel for each target pixel. Source expressions are infix expressions
3412 using any of the +, -, *, / or ** binary operators, the - unary
3413 operator, ( and ) for grouping and the sin() and cos() functions. The
3414 target pixel is input as the variables x and y.
3416 You specify the x and y expressions as xexpr and yexpr respectively.
3417 You can also specify opcodes directly, but that's magic deep enough
3418 that you can look at the source code.
3420 You can still use the transform() function, but the transform2()
3421 function is just as fast and is more likely to be enhanced and
3424 Later versions of Imager also support a transform2() class method
3425 which allows you perform a more general set of operations, rather than
3426 just specifying a spatial transformation as with the transform()
3427 method, you can also perform colour transformations, image synthesis
3428 and image combinations.
3430 transform2() takes an reference to an options hash, and a list of
3431 images to operate one (this list may be empty):
3436 my $img = Imager::transform2(\%opts, @imgs)
3437 or die "transform2 failed: $Imager::ERRSTR";
3439 The options hash may define a transformation function, and optionally:
3445 width - the width of the image in pixels. If this isn't supplied the
3446 width of the first input image is used. If there are no input images
3451 height - the height of the image in pixels. If this isn't supplied
3452 the height of the first input image is used. If there are no input
3453 images an error occurs.
3457 constants - a reference to hash of constants to define for the
3458 expression engine. Some extra constants are defined by Imager
3462 The tranformation function is specified using either the expr or
3463 rpnexpr member of the options.
3467 =item Infix expressions
3469 You can supply infix expressions to transform 2 with the expr keyword.
3471 $opts{expr} = 'return getp1(w-x, h-y)'
3473 The 'expression' supplied follows this general grammar:
3475 ( identifier '=' expr ';' )* 'return' expr
3477 This allows you to simplify your expressions using variables.
3479 A more complex example might be:
3481 $opts{expr} = 'pix = getp1(x,y); return if(value(pix)>0.8,pix*0.8,pix)'
3483 Currently to use infix expressions you must have the Parse::RecDescent
3484 module installed (available from CPAN). There is also what might be a
3485 significant delay the first time you run the infix expression parser
3486 due to the compilation of the expression grammar.
3488 =item Postfix expressions
3490 You can supply postfix or reverse-polish notation expressions to
3491 transform2() through the rpnexpr keyword.
3493 The parser for rpnexpr emulates a stack machine, so operators will
3494 expect to see their parameters on top of the stack. A stack machine
3495 isn't actually used during the image transformation itself.
3497 You can store the value at the top of the stack in a variable called
3498 foo using !foo and retrieve that value again using @foo. The !foo
3499 notation will pop the value from the stack.
3501 An example equivalent to the infix expression above:
3503 $opts{rpnexpr} = 'x y getp1 !pix @pix value 0.8 gt @pix 0.8 * @pix ifp'
3507 transform2() has a fairly rich range of operators.
3511 =item +, *, -, /, %, **
3513 multiplication, addition, subtraction, division, remainder and
3514 exponentiation. Multiplication, addition and subtraction can be used
3515 on colour values too - though you need to be careful - adding 2 white
3516 values together and multiplying by 0.5 will give you grey, not white.
3518 Division by zero (or a small number) just results in a large number.
3519 Modulo zero (or a small number) results in zero.
3521 =item sin(N), cos(N), atan2(y,x)
3523 Some basic trig functions. They work in radians, so you can't just
3526 =item distance(x1, y1, x2, y2)
3528 Find the distance between two points. This is handy (along with
3529 atan2()) for producing circular effects.
3533 Find the square root. I haven't had much use for this since adding
3534 the distance() function.
3538 Find the absolute value.
3540 =item getp1(x,y), getp2(x,y), getp3(x, y)
3542 Get the pixel at position (x,y) from the first, second or third image
3543 respectively. I may add a getpn() function at some point, but this
3544 prevents static checking of the instructions against the number of
3545 images actually passed in.
3547 =item value(c), hue(c), sat(c), hsv(h,s,v)
3549 Separates a colour value into it's value (brightness), hue (colour)
3550 and saturation elements. Use hsv() to put them back together (after
3551 suitable manipulation).
3553 =item red(c), green(c), blue(c), rgb(r,g,b)
3555 Separates a colour value into it's red, green and blue colours. Use
3556 rgb(r,g,b) to put it back together.
3560 Convert a value to an integer. Uses a C int cast, so it may break on
3563 =item if(cond,ntrue,nfalse), if(cond,ctrue,cfalse)
3565 A simple (and inefficient) if function.
3567 =item <=,<,==,>=,>,!=
3569 Relational operators (typically used with if()). Since we're working
3570 with floating point values the equalities are 'near equalities' - an
3571 epsilon value is used.
3573 =item &&, ||, not(n)
3575 Basic logical operators.
3583 =item rpnexpr=>'x 25 % 15 * y 35 % 10 * getp1 !pat x y getp1 !pix @pix sat 0.7 gt @pat @pix ifp'
3585 tiles a smaller version of the input image over itself where the
3586 colour has a saturation over 0.7.
3588 =item rpnexpr=>'x 25 % 15 * y 35 % 10 * getp1 !pat y 360 / !rat x y getp1 1 @rat - pmult @pat @rat pmult padd'
3590 tiles the input image over itself so that at the top of the image the
3591 full-size image is at full strength and at the bottom the tiling is
3594 =item rpnexpr=>'x y getp1 !pix @pix value 0.96 gt @pix sat 0.1 lt and 128 128 255 rgb @pix ifp'
3596 replace pixels that are white or almost white with a palish blue
3598 =item rpnexpr=>'x 35 % 10 * y 45 % 8 * getp1 !pat x y getp1 !pix @pix sat 0.2 lt @pix value 0.9 gt and @pix @pat @pix value 2 / 0.5 + pmult ifp'
3600 Tiles the input image overitself where the image isn't white or almost
3603 =item rpnexpr=>'x y 160 180 distance !d y 180 - x 160 - atan2 !a @d 10 / @a + 3.1416 2 * % !a2 @a2 180 * 3.1416 / 1 @a2 sin 1 + 2 / hsv'
3607 =item rpnexpr=>'x y 160 180 distance !d y 180 - x 160 - atan2 !a @d 10 / @a + 3.1416 2 * % !a2 @a 180 * 3.1416 / 1 @a2 sin 1 + 2 / hsv'
3609 A spiral built on top of a colour wheel.
3613 For details on expression parsing see L<Imager::Expr>. For details on
3614 the virtual machine used to transform the images, see
3615 L<Imager::regmach.pod>.
3617 =head2 Matrix Transformations
3619 Rather than having to write code in a little language, you can use a
3620 matrix to perform transformations, using the matrix_transform()
3623 my $im2 = $im->matrix_transform(matrix=>[ -1, 0, $im->getwidth-1,
3627 By default the output image will be the same size as the input image,
3628 but you can supply the xsize and ysize parameters to change the size.
3630 Rather than building matrices by hand you can use the Imager::Matrix2d
3631 module to build the matrices. This class has methods to allow you to
3632 scale, shear, rotate, translate and reflect, and you can combine these
3633 with an overloaded multiplication operator.
3635 WARNING: the matrix you provide in the matrix operator transforms the
3636 co-ordinates within the B<destination> image to the co-ordinates
3637 within the I<source> image. This can be confusing.
3639 Since Imager has 3 different fairly general ways of transforming an
3640 image spatially, this method also has a yatf() alias. Yet Another
3641 Transformation Function.
3643 =head2 Masked Images
3645 Masked images let you control which pixels are modified in an
3646 underlying image. Where the first channel is completely black in the
3647 mask image, writes to the underlying image are ignored.
3649 For example, given a base image called $img:
3651 my $mask = Imager->new(xsize=>$img->getwidth, ysize=>getheight,
3653 # ... draw something on the mask
3654 my $maskedimg = $img->masked(mask=>$mask);
3656 You can specifiy the region of the underlying image that is masked
3657 using the left, top, right and bottom options.
3659 If you just want a subset of the image, without masking, just specify
3660 the region without specifying a mask.
3664 It is possible to add filters to the module without recompiling the
3665 module itself. This is done by using DSOs (Dynamic shared object)
3666 avaliable on most systems. This way you can maintain our own filters
3667 and not have to get me to add it, or worse patch every new version of
3668 the Module. Modules can be loaded AND UNLOADED at runtime. This
3669 means that you can have a server/daemon thingy that can do something
3672 load_plugin("dynfilt/dyntest.so") || die "unable to load plugin\n";
3673 %hsh=(a=>35,b=>200,type=>lin_stretch);
3675 unload_plugin("dynfilt/dyntest.so") || die "unable to load plugin\n";
3676 $img->write(type=>'pnm',file=>'testout/t60.jpg')
3677 || die "error in write()\n";
3679 Someone decides that the filter is not working as it should -
3680 dyntest.c modified and recompiled.
3682 load_plugin("dynfilt/dyntest.so") || die "unable to load plugin\n";
3685 An example plugin comes with the module - Please send feedback to
3686 addi@umich.edu if you test this.
3688 Note: This seems to test ok on the following systems:
3689 Linux, Solaris, HPUX, OpenBSD, FreeBSD, TRU64/OSF1, AIX.
3690 If you test this on other systems please let me know.
3694 Image tags contain meta-data about the image, ie. information not
3695 stored as pixels of the image.
3697 At the perl level each tag has a name or code and a value, which is an
3698 integer or an arbitrary string. An image can contain more than one
3699 tag with the same name or code.
3701 You can retrieve tags from an image using the tags() method, you can
3702 get all of the tags in an image, as a list of array references, with
3703 the code or name of the tag followed by the value of the tag:
3705 my @alltags = $img->tags;
3707 or you can get all tags that have a given name:
3709 my @namedtags = $img->tags(name=>$name);
3713 my @tags = $img->tags(code=>$code);
3715 You can add tags using the addtag() method, either by name:
3717 my $index = $img->addtag(name=>$name, value=>$value);
3721 my $index = $img->addtag(code=>$code, value=>$value);
3723 You can remove tags with the deltag() method, either by index:
3725 $img->deltag(index=>$index);
3729 $img->deltag(name=>$name);
3733 $img->deltag(code=>$code);
3735 In each case deltag() returns the number of tags deleted.
3737 When you read a GIF image using read_multi(), each image can include
3744 the offset of the image from the left of the "screen" ("Image Left
3749 the offset of the image from the top of the "screen" ("Image Top Position")
3753 non-zero if the image was interlaced ("Interlace Flag")
3755 =item gif_screen_width
3757 =item gif_screen_height
3759 the size of the logical screen ("Logical Screen Width",
3760 "Logical Screen Height")
3764 Non-zero if this image had a local color map.
3766 =item gif_background
3768 The index in the global colormap of the logical screen's background
3769 color. This is only set if the current image uses the global
3772 =item gif_trans_index
3774 The index of the color in the colormap used for transparency. If the
3775 image has a transparency then it is returned as a 4 channel image with
3776 the alpha set to zero in this palette entry. ("Transparent Color Index")
3780 The delay until the next frame is displayed, in 1/100 of a second.
3783 =item gif_user_input
3785 whether or not a user input is expected before continuing (view dependent)
3786 ("User Input Flag").
3790 how the next frame is displayed ("Disposal Method")
3794 the number of loops from the Netscape Loop extension. This may be zero.
3798 the first block of the first gif comment before each image.
3802 Where applicable, the ("name") is the name of that field from the GIF89
3805 The following tags are set in a TIFF image when read, and can be set
3810 =item tiff_resolutionunit
3812 The value of the ResolutionUnit tag. This is ignored on writing if
3813 the i_aspect_only tag is non-zero.
3817 The following tags are set when reading a Windows BMP file is read:
3821 =item bmp_compression
3823 The type of compression, if any.
3825 =item bmp_important_colors
3827 The number of important colors as defined by the writer of the image.
3831 Some standard tags will be implemented as time goes by:
3839 The spatial resolution of the image in pixels per inch. If the image
3840 format uses a different scale, eg. pixels per meter, then this value
3841 is converted. A floating point number stored as a string.
3845 If this is non-zero then the values in i_xres and i_yres are treated
3846 as a ratio only. If the image format does not support aspect ratios
3847 then this is scaled so the smaller value is 72dpi.
3853 box, arc, circle do not support antialiasing yet. arc, is only filled
3854 as of yet. Some routines do not return $self where they should. This
3855 affects code like this, C<$img-E<gt>box()-E<gt>arc()> where an object
3858 When saving Gif images the program does NOT try to shave of extra
3859 colors if it is possible. If you specify 128 colors and there are
3860 only 2 colors used - it will have a 128 colortable anyway.
3864 Arnar M. Hrafnkelsson, addi@umich.edu, and recently lots of assistance
3865 from Tony Cook. See the README for a complete list.
3869 perl(1), Imager::Color(3), Imager::Font(3), Imager::Matrix2d(3),
3870 Affix::Infix2Postfix(3), Parse::RecDescent(3)
3871 http://www.eecs.umich.edu/~addi/perl/Imager/