8 image.c - implements most of the basic functions of Imager and much of the rest
14 c = i_color_new(red, green, blue, alpha);
22 image.c implements the basic functions to create and destroy image and
23 color objects for Imager.
25 =head1 FUNCTION REFERENCE
27 Some of these functions are internal.
38 #define minmax(a,b,i) ( ((a>=i)?a: ( (b<=i)?b:i )) )
40 /* Hack around an obscure linker bug on solaris - probably due to builtin gcc thingies */
41 void fake(void) { ceil(1); }
43 static int i_ppix_d(i_img *im, int x, int y, i_color *val);
44 static int i_gpix_d(i_img *im, int x, int y, i_color *val);
45 static int i_glin_d(i_img *im, int l, int r, int y, i_color *vals);
46 static int i_plin_d(i_img *im, int l, int r, int y, i_color *vals);
47 static int i_ppixf_d(i_img *im, int x, int y, i_fcolor *val);
48 static int i_gpixf_d(i_img *im, int x, int y, i_fcolor *val);
49 static int i_glinf_d(i_img *im, int l, int r, int y, i_fcolor *vals);
50 static int i_plinf_d(i_img *im, int l, int r, int y, i_fcolor *vals);
51 static int i_gsamp_d(i_img *im, int l, int r, int y, i_sample_t *samps, int *chans, int chan_count);
52 static int i_gsampf_d(i_img *im, int l, int r, int y, i_fsample_t *samps, int *chans, int chan_count);
55 =item ICL_new_internal(r, g, b, a)
57 Return a new color object with values passed to it.
59 r - red component (range: 0 - 255)
60 g - green component (range: 0 - 255)
61 b - blue component (range: 0 - 255)
62 a - alpha component (range: 0 - 255)
68 ICL_new_internal(unsigned char r,unsigned char g,unsigned char b,unsigned char a) {
71 mm_log((1,"ICL_new_internal(r %d,g %d,b %d,a %d)\n", r, g, b, a));
73 if ( (cl=mymalloc(sizeof(i_color))) == NULL) m_fatal(2,"malloc() error\n");
78 mm_log((1,"(%p) <- ICL_new_internal\n",cl));
84 =item ICL_set_internal(cl, r, g, b, a)
86 Overwrite a color with new values.
88 cl - pointer to color object
89 r - red component (range: 0 - 255)
90 g - green component (range: 0 - 255)
91 b - blue component (range: 0 - 255)
92 a - alpha component (range: 0 - 255)
98 ICL_set_internal(i_color *cl,unsigned char r,unsigned char g,unsigned char b,unsigned char a) {
99 mm_log((1,"ICL_set_internal(cl* %p,r %d,g %d,b %d,a %d)\n",cl,r,g,b,a));
101 if ( (cl=mymalloc(sizeof(i_color))) == NULL)
102 m_fatal(2,"malloc() error\n");
107 mm_log((1,"(%p) <- ICL_set_internal\n",cl));
113 =item ICL_add(dst, src, ch)
115 Add src to dst inplace - dst is modified.
117 dst - pointer to destination color object
118 src - pointer to color object that is added
119 ch - number of channels
125 ICL_add(i_color *dst,i_color *src,int ch) {
128 tmp=dst->channel[i]+src->channel[i];
129 dst->channel[i]= tmp>255 ? 255:tmp;
136 Dump color information to log - strictly for debugging.
138 cl - pointer to color object
144 ICL_info(i_color *cl) {
145 mm_log((1,"i_color_info(cl* %p)\n",cl));
146 mm_log((1,"i_color_info: (%d,%d,%d,%d)\n",cl->rgba.r,cl->rgba.g,cl->rgba.b,cl->rgba.a));
152 Destroy ancillary data for Color object.
154 cl - pointer to color object
160 ICL_DESTROY(i_color *cl) {
161 mm_log((1,"ICL_DESTROY(cl* %p)\n",cl));
166 =item i_fcolor_new(double r, double g, double b, double a)
170 i_fcolor *i_fcolor_new(double r, double g, double b, double a) {
173 mm_log((1,"i_fcolor_new(r %g,g %g,b %g,a %g)\n", r, g, b, a));
175 if ( (cl=mymalloc(sizeof(i_fcolor))) == NULL) m_fatal(2,"malloc() error\n");
180 mm_log((1,"(%p) <- i_fcolor_new\n",cl));
186 =item i_fcolor_destroy(i_fcolor *cl)
190 void i_fcolor_destroy(i_fcolor *cl) {
195 =item IIM_base_8bit_direct (static)
197 A static i_img object used to initialize direct 8-bit per sample images.
201 static i_img IIM_base_8bit_direct =
203 0, /* channels set */
204 0, 0, 0, /* xsize, ysize, bytes */
207 i_direct_type, /* type */
210 { 0, 0, NULL }, /* tags */
213 i_ppix_d, /* i_f_ppix */
214 i_ppixf_d, /* i_f_ppixf */
215 i_plin_d, /* i_f_plin */
216 i_plinf_d, /* i_f_plinf */
217 i_gpix_d, /* i_f_gpix */
218 i_gpixf_d, /* i_f_gpixf */
219 i_glin_d, /* i_f_glin */
220 i_glinf_d, /* i_f_glinf */
221 i_gsamp_d, /* i_f_gsamp */
222 i_gsampf_d, /* i_f_gsampf */
226 NULL, /* i_f_addcolors */
227 NULL, /* i_f_getcolors */
228 NULL, /* i_f_colorcount */
229 NULL, /* i_f_maxcolors */
230 NULL, /* i_f_findcolor */
231 NULL, /* i_f_setcolors */
233 NULL, /* i_f_destroy */
236 /*static void set_8bit_direct(i_img *im) {
237 im->i_f_ppix = i_ppix_d;
238 im->i_f_ppixf = i_ppixf_d;
239 im->i_f_plin = i_plin_d;
240 im->i_f_plinf = i_plinf_d;
241 im->i_f_gpix = i_gpix_d;
242 im->i_f_gpixf = i_gpixf_d;
243 im->i_f_glin = i_glin_d;
244 im->i_f_glinf = i_glinf_d;
247 im->i_f_addcolor = NULL;
248 im->i_f_getcolor = NULL;
249 im->i_f_colorcount = NULL;
250 im->i_f_findcolor = NULL;
254 =item IIM_new(x, y, ch)
256 Creates a new image object I<x> pixels wide, and I<y> pixels high with I<ch> channels.
263 IIM_new(int x,int y,int ch) {
265 mm_log((1,"IIM_new(x %d,y %d,ch %d)\n",x,y,ch));
267 im=i_img_empty_ch(NULL,x,y,ch);
269 mm_log((1,"(%p) <- IIM_new\n",im));
275 IIM_DESTROY(i_img *im) {
276 mm_log((1,"IIM_DESTROY(im* %p)\n",im));
286 Create new image reference - notice that this isn't an object yet and
287 this should be fixed asap.
297 mm_log((1,"i_img_struct()\n"));
298 if ( (im=mymalloc(sizeof(i_img))) == NULL)
299 m_fatal(2,"malloc() error\n");
301 *im = IIM_base_8bit_direct;
309 mm_log((1,"(%p) <- i_img_struct\n",im));
314 =item i_img_empty(im, x, y)
316 Re-new image reference (assumes 3 channels)
319 x - xsize of destination image
320 y - ysize of destination image
322 **FIXME** what happens if a live image is passed in here?
324 Should this just call i_img_empty_ch()?
330 i_img_empty(i_img *im,int x,int y) {
331 mm_log((1,"i_img_empty(*im %p, x %d, y %d)\n",im, x, y));
332 return i_img_empty_ch(im, x, y, 3);
336 =item i_img_empty_ch(im, x, y, ch)
338 Re-new image reference
341 x - xsize of destination image
342 y - ysize of destination image
343 ch - number of channels
349 i_img_empty_ch(i_img *im,int x,int y,int ch) {
350 mm_log((1,"i_img_empty_ch(*im %p, x %d, y %d, ch %d)\n", im, x, y, ch));
352 if ( (im=mymalloc(sizeof(i_img))) == NULL)
353 m_fatal(2,"malloc() error\n");
355 memcpy(im, &IIM_base_8bit_direct, sizeof(i_img));
356 i_tags_new(&im->tags);
360 im->ch_mask = MAXINT;
361 im->bytes=x*y*im->channels;
362 if ( (im->idata=mymalloc(im->bytes)) == NULL) m_fatal(2,"malloc() error\n");
363 memset(im->idata,0,(size_t)im->bytes);
367 mm_log((1,"(%p) <- i_img_empty_ch\n",im));
372 =item i_img_exorcise(im)
382 i_img_exorcise(i_img *im) {
383 mm_log((1,"i_img_exorcise(im* 0x%x)\n",im));
384 i_tags_destroy(&im->tags);
386 (im->i_f_destroy)(im);
387 if (im->idata != NULL) { myfree(im->idata); }
393 im->i_f_ppix=i_ppix_d;
394 im->i_f_gpix=i_gpix_d;
395 im->i_f_plin=i_plin_d;
396 im->i_f_glin=i_glin_d;
401 =item i_img_destroy(im)
403 Destroy image and free data via exorcise.
411 i_img_destroy(i_img *im) {
412 mm_log((1,"i_img_destroy(im %p)\n",im));
414 if (im) { myfree(im); }
418 =item i_img_info(im, info)
420 Return image information
423 info - pointer to array to return data
425 info is an array of 4 integers with the following values:
430 info[3] - channel mask
437 i_img_info(i_img *im,int *info) {
438 mm_log((1,"i_img_info(im 0x%x)\n",im));
440 mm_log((1,"i_img_info: xsize=%d ysize=%d channels=%d mask=%ud\n",im->xsize,im->ysize,im->channels,im->ch_mask));
441 mm_log((1,"i_img_info: idata=0x%d\n",im->idata));
444 info[2] = im->channels;
445 info[3] = im->ch_mask;
455 =item i_img_setmask(im, ch_mask)
457 Set the image channel mask for I<im> to I<ch_mask>.
462 i_img_setmask(i_img *im,int ch_mask) { im->ch_mask=ch_mask; }
466 =item i_img_getmask(im)
468 Get the image channel mask for I<im>.
473 i_img_getmask(i_img *im) { return im->ch_mask; }
476 =item i_img_getchannels(im)
478 Get the number of channels in I<im>.
483 i_img_getchannels(i_img *im) { return im->channels; }
487 =item i_ppix(im, x, y, col)
489 Sets the pixel at (I<x>,I<y>) in I<im> to I<col>.
491 Returns true if the pixel could be set, false if x or y is out of
497 (i_ppix)(i_img *im, int x, int y, i_color *val) { return im->i_f_ppix(im, x, y, val); }
500 =item i_gpix(im, x, y, &col)
502 Get the pixel at (I<x>,I<y>) in I<im> into I<col>.
504 Returns true if the pixel could be retrieved, false otherwise.
509 (i_gpix)(i_img *im, int x, int y, i_color *val) { return im->i_f_gpix(im, x, y, val); }
512 =item i_ppix_pch(im, x, y, ch)
514 Get the value from the channel I<ch> for pixel (I<x>,I<y>) from I<im>
517 Returns zero if x or y is out of range.
519 Warning: this ignores the vptr interface for images.
524 i_gpix_pch(i_img *im,int x,int y,int ch) {
526 if (x>-1 && x<im->xsize && y>-1 && y<im->ysize) return ((float)im->idata[(x+y*im->xsize)*im->channels+ch]/255);
532 =item i_copyto_trans(im, src, x1, y1, x2, y2, tx, ty, trans)
534 (x1,y1) (x2,y2) specifies the region to copy (in the source coordinates)
535 (tx,ty) specifies the upper left corner for the target image.
536 pass NULL in trans for non transparent i_colors.
542 i_copyto_trans(i_img *im,i_img *src,int x1,int y1,int x2,int y2,int tx,int ty,i_color *trans) {
544 int x,y,t,ttx,tty,tt,ch;
546 mm_log((1,"i_copyto_trans(im* %p,src 0x%x, x1 %d, y1 %d, x2 %d, y2 %d, tx %d, ty %d, trans* 0x%x)\n",
547 im, src, x1, y1, x2, y2, tx, ty, trans));
549 if (x2<x1) { t=x1; x1=x2; x2=t; }
550 if (y2<y1) { t=y1; y1=y2; y2=t; }
562 for(ch=0;ch<im->channels;ch++) if (trans->channel[ch]!=pv.channel[ch]) tt++;
563 if (tt) i_ppix(im,ttx,tty,&pv);
564 } else i_ppix(im,ttx,tty,&pv);
572 =item i_copyto(dest, src, x1, y1, x2, y2, tx, ty)
574 Copies image data from the area (x1,y1)-[x2,y2] in the source image to
575 a rectangle the same size with it's top-left corner at (tx,ty) in the
578 If x1 > x2 or y1 > y2 then the corresponding co-ordinates are swapped.
584 i_copyto(i_img *im, i_img *src, int x1, int y1, int x2, int y2, int tx, int ty) {
585 int x, y, t, ttx, tty;
587 if (x2<x1) { t=x1; x1=x2; x2=t; }
588 if (y2<y1) { t=y1; y1=y2; y2=t; }
590 mm_log((1,"i_copyto(im* %p, src %p, x1 %d, y1 %d, x2 %d, y2 %d, tx %d, ty %d)\n",
591 im, src, x1, y1, x2, y2, tx, ty));
593 if (im->bits == i_8_bits) {
596 for(y=y1; y<y2; y++) {
598 for(x=x1; x<x2; x++) {
599 i_gpix(src, x, y, &pv);
600 i_ppix(im, ttx, tty, &pv);
609 for(y=y1; y<y2; y++) {
611 for(x=x1; x<x2; x++) {
612 i_gpixf(src, x, y, &pv);
613 i_ppixf(im, ttx, tty, &pv);
622 =item i_copy(im, src)
624 Copies the contents of the image I<src> over the image I<im>.
630 i_copy(i_img *im, i_img *src) {
633 mm_log((1,"i_copy(im* %p,src %p)\n", im, src));
637 if (src->type == i_direct_type) {
638 if (src->bits == i_8_bits) {
640 i_img_empty_ch(im, x1, y1, src->channels);
641 pv = mymalloc(sizeof(i_color) * x1);
643 for (y = 0; y < y1; ++y) {
644 i_glin(src, 0, x1, y, pv);
645 i_plin(im, 0, x1, y, pv);
651 if (src->bits == i_16_bits)
652 i_img_16_new_low(im, x1, y1, src->channels);
653 else if (src->bits == i_double_bits)
654 i_img_double_new_low(im, x1, y1, src->channels);
656 fprintf(stderr, "i_copy(): Unknown image bit size %d\n", src->bits);
657 return; /* I dunno */
660 pv = mymalloc(sizeof(i_fcolor) * x1);
661 for (y = 0; y < y1; ++y) {
662 i_glinf(src, 0, x1, y, pv);
663 i_plinf(im, 0, x1, y, pv);
675 i_img_pal_new_low(im, x1, y1, src->channels, i_maxcolors(src));
676 /* copy across the palette */
677 count = i_colorcount(src);
678 for (index = 0; index < count; ++index) {
679 i_getcolors(src, index, &temp, 1);
680 i_addcolors(im, &temp, 1);
683 vals = mymalloc(sizeof(i_palidx) * x1);
684 for (y = 0; y < y1; ++y) {
685 i_gpal(src, 0, x1, y, vals);
686 i_ppal(im, 0, x1, y, vals);
694 =item i_rubthru(im, src, tx, ty)
696 Takes the image I<src> and applies it at an original (I<tx>,I<ty>) in I<im>.
698 The alpha channel of each pixel in I<src> is used to control how much
699 the existing colour in I<im> is replaced, if it is 255 then the colour
700 is completely replaced, if it is 0 then the original colour is left
707 i_rubthru(i_img *im,i_img *src,int tx,int ty) {
714 mm_log((1,"i_rubthru(im %p, src %p, tx %d, ty %d)\n", im, src, tx, ty));
717 if (im->channels == 3 && src->channels == 4) {
719 chans[0] = 0; chans[1] = 1; chans[2] = 2;
722 else if (im->channels == 3 && src->channels == 2) {
724 chans[0] = chans[1] = chans[2] = 0;
727 else if (im->channels == 1 && src->channels == 2) {
733 i_push_error(0, "rubthru can only work where (dest, src) channels are (3,4), (3,2) or (1,2)");
738 /* if you change this code, please make sure the else branch is
739 changed in a similar fashion - TC */
741 i_color pv, orig, dest;
743 for(x=0; x<src->xsize; x++) {
745 for(y=0;y<src->ysize;y++) {
746 /* fprintf(stderr,"reading (%d,%d) writing (%d,%d).\n",x,y,ttx,tty); */
747 i_gpix(src, x, y, &pv);
748 i_gpix(im, ttx, tty, &orig);
749 alpha = pv.channel[alphachan];
750 for (ch = 0; ch < chancount; ++ch) {
751 dest.channel[ch] = (alpha * pv.channel[chans[ch]]
752 + (255 - alpha) * orig.channel[ch])/255;
754 i_ppix(im, ttx, tty, &dest);
762 i_fcolor pv, orig, dest;
765 for(x=0; x<src->xsize; x++) {
767 for(y=0;y<src->ysize;y++) {
768 /* fprintf(stderr,"reading (%d,%d) writing (%d,%d).\n",x,y,ttx,tty); */
769 i_gpixf(src, x, y, &pv);
770 i_gpixf(im, ttx, tty, &orig);
771 alpha = pv.channel[alphachan];
772 for (ch = 0; ch < chancount; ++ch) {
773 dest.channel[ch] = alpha * pv.channel[chans[ch]]
774 + (1 - alpha) * orig.channel[ch];
776 i_ppixf(im, ttx, tty, &dest);
788 =item i_flipxy(im, axis)
790 Flips the image inplace around the axis specified.
791 Returns 0 if parameters are invalid.
794 axis - 0 = x, 1 = y, 2 = both
800 i_flipxy(i_img *im, int direction) {
801 int x, x2, y, y2, xm, ym;
805 mm_log((1, "i_flipxy(im %p, direction %d)\n", im, direction ));
810 case XAXIS: /* Horizontal flip */
813 for(y=0; y<ym; y++) {
815 for(x=0; x<xm; x++) {
817 i_gpix(im, x, y, &val1);
818 i_gpix(im, x2, y, &val2);
819 i_ppix(im, x, y, &val2);
820 i_ppix(im, x2, y, &val1);
825 case YAXIS: /* Vertical flip */
829 for(y=0; y<ym; y++) {
830 for(x=0; x<xm; x++) {
832 i_gpix(im, x, y, &val1);
833 i_gpix(im, x, y2, &val2);
834 i_ppix(im, x, y, &val2);
835 i_ppix(im, x, y2, &val1);
840 case XYAXIS: /* Horizontal and Vertical flip */
844 for(y=0; y<ym; y++) {
846 for(x=0; x<xm; x++) {
848 i_gpix(im, x, y, &val1);
849 i_gpix(im, x2, y2, &val2);
850 i_ppix(im, x, y, &val2);
851 i_ppix(im, x2, y2, &val1);
853 i_gpix(im, x2, y, &val1);
854 i_gpix(im, x, y2, &val2);
855 i_ppix(im, x2, y, &val2);
856 i_ppix(im, x, y2, &val1);
861 if (xm*2 != xs) { /* odd number of column */
862 mm_log((1, "i_flipxy: odd number of columns\n"));
865 for(y=0; y<ym; y++) {
867 i_gpix(im, x, y, &val1);
868 i_gpix(im, x, y2, &val2);
869 i_ppix(im, x, y, &val2);
870 i_ppix(im, x, y2, &val1);
874 if (ym*2 != ys) { /* odd number of rows */
875 mm_log((1, "i_flipxy: odd number of rows\n"));
878 for(x=0; x<xm; x++) {
880 i_gpix(im, x, y, &val1);
881 i_gpix(im, x2, y, &val2);
882 i_ppix(im, x, y, &val2);
883 i_ppix(im, x2, y, &val1);
889 mm_log((1, "i_flipxy: direction is invalid\n" ));
907 if ((x >= 2.0) || (x <= -2.0)) return (0.0);
908 else if (x == 0.0) return (1.0);
909 else return(sin(PIx) / PIx * sin(PIx2) / PIx2);
913 =item i_scaleaxis(im, value, axis)
915 Returns a new image object which is I<im> scaled by I<value> along
916 wither the x-axis (I<axis> == 0) or the y-axis (I<axis> == 1).
922 i_scaleaxis(i_img *im, float Value, int Axis) {
923 int hsize, vsize, i, j, k, l, lMax, iEnd, jEnd;
924 int LanczosWidthFactor;
925 float *l0, *l1, OldLocation;
928 float F, PictureValue[MAXCHANNELS];
930 i_color val,val1,val2;
933 mm_log((1,"i_scaleaxis(im %p,Value %.2f,Axis %d)\n",im,Value,Axis));
936 hsize = (int)(0.5 + im->xsize * Value);
943 vsize = (int)(0.5 + im->ysize * Value);
949 new_img = i_img_empty_ch(NULL, hsize, vsize, im->channels);
951 /* 1.5 is a magic number, setting it to 2 will cause rather blurred images */
952 LanczosWidthFactor = (Value >= 1) ? 1 : (int) (1.4/Value);
953 lMax = LanczosWidthFactor << 1;
955 l0 = mymalloc(lMax * sizeof(float));
956 l1 = mymalloc(lMax * sizeof(float));
958 for (j=0; j<jEnd; j++) {
959 OldLocation = ((float) j) / Value;
960 T = (int) (OldLocation);
961 F = OldLocation - (float) T;
963 for (l = 0; l<lMax; l++) {
964 l0[lMax-l-1] = Lanczos(((float) (lMax-l-1) + F) / (float) LanczosWidthFactor);
965 l1[l] = Lanczos(((float) (l+1) - F) / (float) LanczosWidthFactor);
968 /* Make sure filter is normalized */
970 for(l=0; l<lMax; l++) {
974 t /= (float)LanczosWidthFactor;
976 for(l=0; l<lMax; l++) {
983 for (i=0; i<iEnd; i++) {
984 for (k=0; k<im->channels; k++) PictureValue[k] = 0.0;
985 for (l=0; l < lMax; l++) {
986 i_gpix(im, T+l+1, i, &val1);
987 i_gpix(im, T-lMax+l+1, i, &val2);
988 for (k=0; k<im->channels; k++) {
989 PictureValue[k] += l1[l] * val1.channel[k];
990 PictureValue[k] += l0[lMax-l-1] * val2.channel[k];
993 for(k=0;k<im->channels;k++) {
994 psave = (short)(0.5+(PictureValue[k] / LanczosWidthFactor));
995 val.channel[k]=minmax(0,255,psave);
997 i_ppix(new_img, j, i, &val);
1002 for (i=0; i<iEnd; i++) {
1003 for (k=0; k<im->channels; k++) PictureValue[k] = 0.0;
1004 for (l=0; l < lMax; l++) {
1005 i_gpix(im, i, T+l+1, &val1);
1006 i_gpix(im, i, T-lMax+l+1, &val2);
1007 for (k=0; k<im->channels; k++) {
1008 PictureValue[k] += l1[l] * val1.channel[k];
1009 PictureValue[k] += l0[lMax-l-1] * val2.channel[k];
1012 for (k=0; k<im->channels; k++) {
1013 psave = (short)( PictureValue[k] / LanczosWidthFactor);
1014 val.channel[k] = minmax(0, 255, psave);
1016 i_ppix(new_img, i, j, &val);
1024 mm_log((1,"(%p) <- i_scaleaxis\n", new_img));
1031 =item i_scale_nn(im, scx, scy)
1033 Scale by using nearest neighbor
1034 Both axes scaled at the same time since
1035 nothing is gained by doing it in two steps
1042 i_scale_nn(i_img *im, float scx, float scy) {
1044 int nxsize,nysize,nx,ny;
1048 mm_log((1,"i_scale_nn(im 0x%x,scx %.2f,scy %.2f)\n",im,scx,scy));
1050 nxsize = (int) ((float) im->xsize * scx);
1051 nysize = (int) ((float) im->ysize * scy);
1053 new_img=i_img_empty_ch(NULL,nxsize,nysize,im->channels);
1055 for(ny=0;ny<nysize;ny++) for(nx=0;nx<nxsize;nx++) {
1056 i_gpix(im,((float)nx)/scx,((float)ny)/scy,&val);
1057 i_ppix(new_img,nx,ny,&val);
1060 mm_log((1,"(0x%x) <- i_scale_nn\n",new_img));
1066 =item i_sametype(i_img *im, int xsize, int ysize)
1068 Returns an image of the same type (sample size, channels, paletted/direct).
1070 For paletted images the palette is copied from the source.
1075 i_img *i_sametype(i_img *src, int xsize, int ysize) {
1076 if (src->type == i_direct_type) {
1077 if (src->bits == 8) {
1078 return i_img_empty_ch(NULL, xsize, ysize, src->channels);
1080 else if (src->bits == i_16_bits) {
1081 return i_img_16_new(xsize, ysize, src->channels);
1083 else if (src->bits == i_double_bits) {
1084 return i_img_double_new(xsize, ysize, src->channels);
1087 i_push_error(0, "Unknown image bits");
1095 i_img *targ = i_img_pal_new(xsize, ysize, src->channels, i_maxcolors(src));
1096 for (i = 0; i < i_colorcount(src); ++i) {
1097 i_getcolors(src, i, &col, 1);
1098 i_addcolors(targ, &col, 1);
1106 =item i_transform(im, opx, opxl, opy, opyl, parm, parmlen)
1108 Spatially transforms I<im> returning a new image.
1110 opx for a length of opxl and opy for a length of opy are arrays of
1111 operators that modify the x and y positions to retreive the pixel data from.
1113 parm and parmlen define extra parameters that the operators may use.
1115 Note that this function is largely superseded by the more flexible
1116 L<transform.c/i_transform2>.
1118 Returns the new image.
1120 The operators for this function are defined in L<stackmach.c>.
1125 i_transform(i_img *im, int *opx,int opxl,int *opy,int opyl,double parm[],int parmlen) {
1127 int nxsize,nysize,nx,ny;
1131 mm_log((1,"i_transform(im 0x%x, opx 0x%x, opxl %d, opy 0x%x, opyl %d, parm 0x%x, parmlen %d)\n",im,opx,opxl,opy,opyl,parm,parmlen));
1134 nysize = im->ysize ;
1136 new_img=i_img_empty_ch(NULL,nxsize,nysize,im->channels);
1137 /* fprintf(stderr,"parm[2]=%f\n",parm[2]); */
1138 for(ny=0;ny<nysize;ny++) for(nx=0;nx<nxsize;nx++) {
1139 /* parm[parmlen-2]=(double)nx;
1140 parm[parmlen-1]=(double)ny; */
1145 /* fprintf(stderr,"(%d,%d) ->",nx,ny); */
1146 rx=op_run(opx,opxl,parm,parmlen);
1147 ry=op_run(opy,opyl,parm,parmlen);
1148 /* fprintf(stderr,"(%f,%f)\n",rx,ry); */
1149 i_gpix(im,rx,ry,&val);
1150 i_ppix(new_img,nx,ny,&val);
1153 mm_log((1,"(0x%x) <- i_transform\n",new_img));
1158 =item i_img_diff(im1, im2)
1160 Calculates the sum of the squares of the differences between
1161 correspoding channels in two images.
1163 If the images are not the same size then only the common area is
1164 compared, hence even if images are different sizes this function
1170 i_img_diff(i_img *im1,i_img *im2) {
1171 int x,y,ch,xb,yb,chb;
1175 mm_log((1,"i_img_diff(im1 0x%x,im2 0x%x)\n",im1,im2));
1177 xb=(im1->xsize<im2->xsize)?im1->xsize:im2->xsize;
1178 yb=(im1->ysize<im2->ysize)?im1->ysize:im2->ysize;
1179 chb=(im1->channels<im2->channels)?im1->channels:im2->channels;
1181 mm_log((1,"i_img_diff: xb=%d xy=%d chb=%d\n",xb,yb,chb));
1184 for(y=0;y<yb;y++) for(x=0;x<xb;x++) {
1185 i_gpix(im1,x,y,&val1);
1186 i_gpix(im2,x,y,&val2);
1188 for(ch=0;ch<chb;ch++) tdiff+=(val1.channel[ch]-val2.channel[ch])*(val1.channel[ch]-val2.channel[ch]);
1190 mm_log((1,"i_img_diff <- (%.2f)\n",tdiff));
1194 /* just a tiny demo of haar wavelets */
1202 i_img *new_img,*new_img2;
1203 i_color val1,val2,dval1,dval2;
1211 /* horizontal pass */
1213 new_img=i_img_empty_ch(NULL,fx*2,fy*2,im->channels);
1214 new_img2=i_img_empty_ch(NULL,fx*2,fy*2,im->channels);
1217 for(y=0;y<my;y++) for(x=0;x<fx;x++) {
1218 i_gpix(im,x*2,y,&val1);
1219 i_gpix(im,x*2+1,y,&val2);
1220 for(ch=0;ch<im->channels;ch++) {
1221 dval1.channel[ch]=(val1.channel[ch]+val2.channel[ch])/2;
1222 dval2.channel[ch]=(255+val1.channel[ch]-val2.channel[ch])/2;
1224 i_ppix(new_img,x,y,&dval1);
1225 i_ppix(new_img,x+fx,y,&dval2);
1228 for(y=0;y<fy;y++) for(x=0;x<mx;x++) {
1229 i_gpix(new_img,x,y*2,&val1);
1230 i_gpix(new_img,x,y*2+1,&val2);
1231 for(ch=0;ch<im->channels;ch++) {
1232 dval1.channel[ch]=(val1.channel[ch]+val2.channel[ch])/2;
1233 dval2.channel[ch]=(255+val1.channel[ch]-val2.channel[ch])/2;
1235 i_ppix(new_img2,x,y,&dval1);
1236 i_ppix(new_img2,x,y+fy,&dval2);
1239 i_img_destroy(new_img);
1244 =item i_count_colors(im, maxc)
1246 returns number of colors or -1
1247 to indicate that it was more than max colors
1252 i_count_colors(i_img *im,int maxc) {
1259 mm_log((1,"i_count_colors(im 0x%08X,maxc %d)\n"));
1266 for(y=0;y<ysize;y++) for(x=0;x<xsize;x++) {
1267 i_gpix(im,x,y,&val);
1268 colorcnt+=octt_add(ct,val.rgb.r,val.rgb.g,val.rgb.b);
1269 if (colorcnt > maxc) { octt_delete(ct); return -1; }
1276 symbol_table_t symbol_table={i_has_format,ICL_set_internal,ICL_info,
1277 i_img_new,i_img_empty,i_img_empty_ch,i_img_exorcise,
1278 i_img_info,i_img_setmask,i_img_getmask,i_ppix,i_gpix,
1279 i_box,i_draw,i_arc,i_copyto,i_copyto_trans,i_rubthru};
1285 =head2 8-bit per sample image internal functions
1287 These are the functions installed in an 8-bit per sample image.
1291 =item i_ppix_d(im, x, y, col)
1295 This is the function kept in the i_f_ppix member of an i_img object.
1296 It does a normal store of a pixel into the image with range checking.
1298 Returns 0 if the pixel could be set, -1 otherwise.
1303 i_ppix_d(i_img *im, int x, int y, i_color *val) {
1306 if ( x>-1 && x<im->xsize && y>-1 && y<im->ysize ) {
1307 for(ch=0;ch<im->channels;ch++)
1308 if (im->ch_mask&(1<<ch))
1309 im->idata[(x+y*im->xsize)*im->channels+ch]=val->channel[ch];
1312 return -1; /* error was clipped */
1316 =item i_gpix_d(im, x, y, &col)
1320 This is the function kept in the i_f_gpix member of an i_img object.
1321 It does normal retrieval of a pixel from the image with range checking.
1323 Returns 0 if the pixel could be set, -1 otherwise.
1328 i_gpix_d(i_img *im, int x, int y, i_color *val) {
1330 if (x>-1 && x<im->xsize && y>-1 && y<im->ysize) {
1331 for(ch=0;ch<im->channels;ch++)
1332 val->channel[ch]=im->idata[(x+y*im->xsize)*im->channels+ch];
1335 return -1; /* error was cliped */
1339 =item i_glin_d(im, l, r, y, vals)
1341 Reads a line of data from the image, storing the pixels at vals.
1343 The line runs from (l,y) inclusive to (r,y) non-inclusive
1345 vals should point at space for (r-l) pixels.
1347 l should never be less than zero (to avoid confusion about where to
1348 put the pixels in vals).
1350 Returns the number of pixels copied (eg. if r, l or y is out of range)
1355 i_glin_d(i_img *im, int l, int r, int y, i_color *vals) {
1357 unsigned char *data;
1358 if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) {
1361 data = im->idata + (l+y*im->xsize) * im->channels;
1363 for (i = 0; i < count; ++i) {
1364 for (ch = 0; ch < im->channels; ++ch)
1365 vals[i].channel[ch] = *data++;
1375 =item i_plin_d(im, l, r, y, vals)
1377 Writes a line of data into the image, using the pixels at vals.
1379 The line runs from (l,y) inclusive to (r,y) non-inclusive
1381 vals should point at (r-l) pixels.
1383 l should never be less than zero (to avoid confusion about where to
1384 get the pixels in vals).
1386 Returns the number of pixels copied (eg. if r, l or y is out of range)
1391 i_plin_d(i_img *im, int l, int r, int y, i_color *vals) {
1393 unsigned char *data;
1394 if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) {
1397 data = im->idata + (l+y*im->xsize) * im->channels;
1399 for (i = 0; i < count; ++i) {
1400 for (ch = 0; ch < im->channels; ++ch) {
1401 if (im->ch_mask & (1 << ch))
1402 *data = vals[i].channel[ch];
1414 =item i_ppixf_d(im, x, y, val)
1419 i_ppixf_d(i_img *im, int x, int y, i_fcolor *val) {
1422 if ( x>-1 && x<im->xsize && y>-1 && y<im->ysize ) {
1423 for(ch=0;ch<im->channels;ch++)
1424 if (im->ch_mask&(1<<ch)) {
1425 im->idata[(x+y*im->xsize)*im->channels+ch] =
1426 SampleFTo8(val->channel[ch]);
1430 return -1; /* error was clipped */
1434 =item i_gpixf_d(im, x, y, val)
1439 i_gpixf_d(i_img *im, int x, int y, i_fcolor *val) {
1441 if (x>-1 && x<im->xsize && y>-1 && y<im->ysize) {
1442 for(ch=0;ch<im->channels;ch++) {
1444 Sample8ToF(im->idata[(x+y*im->xsize)*im->channels+ch]);
1448 return -1; /* error was cliped */
1452 =item i_glinf_d(im, l, r, y, vals)
1454 Reads a line of data from the image, storing the pixels at vals.
1456 The line runs from (l,y) inclusive to (r,y) non-inclusive
1458 vals should point at space for (r-l) pixels.
1460 l should never be less than zero (to avoid confusion about where to
1461 put the pixels in vals).
1463 Returns the number of pixels copied (eg. if r, l or y is out of range)
1468 i_glinf_d(i_img *im, int l, int r, int y, i_fcolor *vals) {
1470 unsigned char *data;
1471 if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) {
1474 data = im->idata + (l+y*im->xsize) * im->channels;
1476 for (i = 0; i < count; ++i) {
1477 for (ch = 0; ch < im->channels; ++ch)
1478 vals[i].channel[ch] = Sample8ToF(*data++);
1488 =item i_plinf_d(im, l, r, y, vals)
1490 Writes a line of data into the image, using the pixels at vals.
1492 The line runs from (l,y) inclusive to (r,y) non-inclusive
1494 vals should point at (r-l) pixels.
1496 l should never be less than zero (to avoid confusion about where to
1497 get the pixels in vals).
1499 Returns the number of pixels copied (eg. if r, l or y is out of range)
1504 i_plinf_d(i_img *im, int l, int r, int y, i_fcolor *vals) {
1506 unsigned char *data;
1507 if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) {
1510 data = im->idata + (l+y*im->xsize) * im->channels;
1512 for (i = 0; i < count; ++i) {
1513 for (ch = 0; ch < im->channels; ++ch) {
1514 if (im->ch_mask & (1 << ch))
1515 *data = SampleFTo8(vals[i].channel[ch]);
1527 =item i_gsamp_d(i_img *im, int l, int r, int y, i_sample_t *samps, int *chans, int chan_count)
1529 Reads sample values from im for the horizontal line (l, y) to (r-1,y)
1530 for the channels specified by chans, an array of int with chan_count
1533 Returns the number of samples read (which should be (r-l) * bits_set(chan_mask)
1537 int i_gsamp_d(i_img *im, int l, int r, int y, i_sample_t *samps,
1538 int *chans, int chan_count) {
1539 int ch, count, i, w;
1540 unsigned char *data;
1542 if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) {
1545 data = im->idata + (l+y*im->xsize) * im->channels;
1550 /* make sure we have good channel numbers */
1551 for (ch = 0; ch < chan_count; ++ch) {
1552 if (chans[ch] < 0 || chans[ch] >= im->channels) {
1553 i_push_errorf(0, "No channel %d in this image", chans[ch]);
1557 for (i = 0; i < w; ++i) {
1558 for (ch = 0; ch < chan_count; ++ch) {
1559 *samps++ = data[chans[ch]];
1562 data += im->channels;
1566 for (i = 0; i < w; ++i) {
1567 for (ch = 0; ch < chan_count; ++ch) {
1568 *samps++ = data[ch];
1571 data += im->channels;
1583 =item i_gsampf_d(i_img *im, int l, int r, int y, i_fsample_t *samps, int *chans, int chan_count)
1585 Reads sample values from im for the horizontal line (l, y) to (r-1,y)
1586 for the channels specified by chan_mask, where bit 0 is the first
1589 Returns the number of samples read (which should be (r-l) * bits_set(chan_mask)
1593 int i_gsampf_d(i_img *im, int l, int r, int y, i_fsample_t *samps,
1594 int *chans, int chan_count) {
1595 int ch, count, i, w;
1596 unsigned char *data;
1597 for (ch = 0; ch < chan_count; ++ch) {
1598 if (chans[ch] < 0 || chans[ch] >= im->channels) {
1599 i_push_errorf(0, "No channel %d in this image", chans[ch]);
1602 if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) {
1605 data = im->idata + (l+y*im->xsize) * im->channels;
1610 /* make sure we have good channel numbers */
1611 for (ch = 0; ch < chan_count; ++ch) {
1612 if (chans[ch] < 0 || chans[ch] >= im->channels) {
1613 i_push_errorf(0, "No channel %d in this image", chans[ch]);
1617 for (i = 0; i < w; ++i) {
1618 for (ch = 0; ch < chan_count; ++ch) {
1619 *samps++ = Sample8ToF(data[chans[ch]]);
1622 data += im->channels;
1626 for (i = 0; i < w; ++i) {
1627 for (ch = 0; ch < chan_count; ++ch) {
1628 *samps++ = Sample8ToF(data[ch]);
1631 data += im->channels;
1644 =head2 Image method wrappers
1646 These functions provide i_fsample_t functions in terms of their
1647 i_sample_t versions.
1651 =item i_ppixf_fp(i_img *im, int x, int y, i_fcolor *pix)
1656 int i_ppixf_fp(i_img *im, int x, int y, i_fcolor *pix) {
1660 for (ch = 0; ch < im->channels; ++ch)
1661 temp.channel[ch] = SampleFTo8(pix->channel[ch]);
1663 return i_ppix(im, x, y, &temp);
1667 =item i_gpixf_fp(i_img *im, int x, int y, i_fcolor *pix)
1671 int i_gpixf_fp(i_img *im, int x, int y, i_fcolor *pix) {
1675 if (i_gpix(im, x, y, &temp)) {
1676 for (ch = 0; ch < im->channels; ++ch)
1677 pix->channel[ch] = Sample8ToF(temp.channel[ch]);
1685 =item i_plinf_fp(i_img *im, int l, int r, int y, i_fcolor *pix)
1689 int i_plinf_fp(i_img *im, int l, int r, int y, i_fcolor *pix) {
1692 if (y >= 0 && y < im->ysize && l < im->xsize && l >= 0) {
1698 work = mymalloc(sizeof(i_color) * (r-l));
1699 for (i = 0; i < r-l; ++i) {
1700 for (ch = 0; ch < im->channels; ++ch)
1701 work[i].channel[ch] = SampleFTo8(pix[i].channel[ch]);
1703 ret = i_plin(im, l, r, y, work);
1718 =item i_glinf_fp(i_img *im, int l, int r, int y, i_fcolor *pix)
1722 int i_glinf_fp(i_img *im, int l, int r, int y, i_fcolor *pix) {
1725 if (y >= 0 && y < im->ysize && l < im->xsize && l >= 0) {
1731 work = mymalloc(sizeof(i_color) * (r-l));
1732 ret = i_plin(im, l, r, y, work);
1733 for (i = 0; i < r-l; ++i) {
1734 for (ch = 0; ch < im->channels; ++ch)
1735 pix[i].channel[ch] = Sample8ToF(work[i].channel[ch]);
1751 =item i_gsampf_fp(i_img *im, int l, int r, int y, i_fsample_t *samp, int *chans, int chan_count)
1755 int i_gsampf_fp(i_img *im, int l, int r, int y, i_fsample_t *samp,
1756 int *chans, int chan_count) {
1759 if (y >= 0 && y < im->ysize && l < im->xsize && l >= 0) {
1765 work = mymalloc(sizeof(i_sample_t) * (r-l));
1766 ret = i_gsamp(im, l, r, y, work, chans, chan_count);
1767 for (i = 0; i < ret; ++i) {
1768 samp[i] = Sample8ToF(work[i]);
1786 =head2 Palette wrapper functions
1788 Used for virtual images, these forward palette calls to a wrapped image,
1789 assuming the wrapped image is the first pointer in the structure that
1790 im->ext_data points at.
1794 =item i_addcolors_forward(i_img *im, i_color *colors, int count)
1798 int i_addcolors_forward(i_img *im, i_color *colors, int count) {
1799 return i_addcolors(*(i_img **)im->ext_data, colors, count);
1803 =item i_getcolors_forward(i_img *im, int i, i_color *color, int count)
1807 int i_getcolors_forward(i_img *im, int i, i_color *color, int count) {
1808 return i_getcolors(*(i_img **)im->ext_data, i, color, count);
1812 =item i_setcolors_forward(i_img *im, int i, i_color *color, int count)
1816 int i_setcolors_forward(i_img *im, int i, i_color *color, int count) {
1817 return i_setcolors(*(i_img **)im->ext_data, i, color, count);
1821 =item i_colorcount_forward(i_img *im)
1825 int i_colorcount_forward(i_img *im) {
1826 return i_colorcount(*(i_img **)im->ext_data);
1830 =item i_maxcolors_forward(i_img *im)
1834 int i_maxcolors_forward(i_img *im) {
1835 return i_maxcolors(*(i_img **)im->ext_data);
1839 =item i_findcolor_forward(i_img *im, i_color *color, i_palidx *entry)
1843 int i_findcolor_forward(i_img *im, i_color *color, i_palidx *entry) {
1844 return i_findcolor(*(i_img **)im->ext_data, color, entry);
1850 =head2 Stream reading and writing wrapper functions
1854 =item i_gen_reader(i_gen_read_data *info, char *buf, int length)
1856 Performs general read buffering for file readers that permit reading
1857 to be done through a callback.
1859 The final callback gets two parameters, a I<need> value, and a I<want>
1860 value, where I<need> is the amount of data that the file library needs
1861 to read, and I<want> is the amount of space available in the buffer
1862 maintained by these functions.
1864 This means if you need to read from a stream that you don't know the
1865 length of, you can return I<need> bytes, taking the performance hit of
1866 possibly expensive callbacks (eg. back to perl code), or if you are
1867 reading from a stream where it doesn't matter if some data is lost, or
1868 if the total length of the stream is known, you can return I<want>
1875 i_gen_reader(i_gen_read_data *gci, char *buf, int length) {
1878 if (length < gci->length - gci->cpos) {
1880 memcpy(buf, gci->buffer+gci->cpos, length);
1881 gci->cpos += length;
1886 memcpy(buf, gci->buffer+gci->cpos, gci->length-gci->cpos);
1887 total += gci->length - gci->cpos;
1888 length -= gci->length - gci->cpos;
1889 buf += gci->length - gci->cpos;
1890 if (length < (int)sizeof(gci->buffer)) {
1894 && (did_read = (gci->cb)(gci->userdata, gci->buffer, length,
1895 sizeof(gci->buffer))) > 0) {
1897 gci->length = did_read;
1899 copy_size = min(length, gci->length);
1900 memcpy(buf, gci->buffer, copy_size);
1901 gci->cpos += copy_size;
1904 length -= copy_size;
1908 /* just read the rest - too big for our buffer*/
1910 while ((did_read = (gci->cb)(gci->userdata, buf, length, length)) > 0) {
1920 =item i_gen_read_data_new(i_read_callback_t cb, char *userdata)
1922 For use by callback file readers to initialize the reader buffer.
1924 Allocates, initializes and returns the reader buffer.
1926 See also L<image.c/free_gen_read_data> and L<image.c/i_gen_reader>.
1931 i_gen_read_data_new(i_read_callback_t cb, char *userdata) {
1932 i_gen_read_data *self = mymalloc(sizeof(i_gen_read_data));
1934 self->userdata = userdata;
1942 =item free_gen_read_data(i_gen_read_data *)
1948 void free_gen_read_data(i_gen_read_data *self) {
1953 =item i_gen_writer(i_gen_write_data *info, char const *data, int size)
1955 Performs write buffering for a callback based file writer.
1957 Failures are considered fatal, if a write fails then data will be
1964 i_gen_write_data *self,
1968 if (self->filledto && self->filledto+size > self->maxlength) {
1969 if (self->cb(self->userdata, self->buffer, self->filledto)) {
1977 if (self->filledto+size <= self->maxlength) {
1979 memcpy(self->buffer+self->filledto, data, size);
1980 self->filledto += size;
1983 /* doesn't fit - hand it off */
1984 return self->cb(self->userdata, data, size);
1988 =item i_gen_write_data_new(i_write_callback_t cb, char *userdata, int max_length)
1990 Allocates and initializes the data structure used by i_gen_writer.
1992 This should be released with L<image.c/free_gen_write_data>
1996 i_gen_write_data *i_gen_write_data_new(i_write_callback_t cb,
1997 char *userdata, int max_length)
1999 i_gen_write_data *self = mymalloc(sizeof(i_gen_write_data));
2001 self->userdata = userdata;
2002 self->maxlength = min(max_length, sizeof(self->buffer));
2003 if (self->maxlength < 0)
2004 self->maxlength = sizeof(self->buffer);
2011 =item free_gen_write_data(i_gen_write_data *info, int flush)
2013 Cleans up the write buffer.
2015 Will flush any left-over data if I<flush> is non-zero.
2017 Returns non-zero if flush is zero or if info->cb() returns non-zero.
2019 Return zero only if flush is non-zero and info->cb() returns zero.
2025 int free_gen_write_data(i_gen_write_data *info, int flush)
2027 int result = !flush ||
2028 info->filledto == 0 ||
2029 info->cb(info->userdata, info->buffer, info->filledto);