8 image.c - implements most of the basic functions of Imager and much of the rest
14 c = i_color_new(red, green, blue, alpha);
22 image.c implements the basic functions to create and destroy image and
23 color objects for Imager.
25 =head1 FUNCTION REFERENCE
27 Some of these functions are internal.
38 #define minmax(a,b,i) ( ((a>=i)?a: ( (b<=i)?b:i )) )
40 /* Hack around an obscure linker bug on solaris - probably due to builtin gcc thingies */
41 static void fake(void) { ceil(1); }
43 static int i_ppix_d(i_img *im, int x, int y, i_color *val);
44 static int i_gpix_d(i_img *im, int x, int y, i_color *val);
45 static int i_glin_d(i_img *im, int l, int r, int y, i_color *vals);
46 static int i_plin_d(i_img *im, int l, int r, int y, i_color *vals);
47 static int i_ppixf_d(i_img *im, int x, int y, i_fcolor *val);
48 static int i_gpixf_d(i_img *im, int x, int y, i_fcolor *val);
49 static int i_glinf_d(i_img *im, int l, int r, int y, i_fcolor *vals);
50 static int i_plinf_d(i_img *im, int l, int r, int y, i_fcolor *vals);
51 static int i_gsamp_d(i_img *im, int l, int r, int y, i_sample_t *samps, const int *chans, int chan_count);
52 static int i_gsampf_d(i_img *im, int l, int r, int y, i_fsample_t *samps, const int *chans, int chan_count);
53 /*static int i_psamp_d(i_img *im, int l, int r, int y, i_sample_t *samps, int *chans, int chan_count);
54 static int i_psampf_d(i_img *im, int l, int r, int y, i_fsample_t *samps, int *chans, int chan_count);*/
57 =item ICL_new_internal(r, g, b, a)
59 Return a new color object with values passed to it.
61 r - red component (range: 0 - 255)
62 g - green component (range: 0 - 255)
63 b - blue component (range: 0 - 255)
64 a - alpha component (range: 0 - 255)
70 ICL_new_internal(unsigned char r,unsigned char g,unsigned char b,unsigned char a) {
73 mm_log((1,"ICL_new_internal(r %d,g %d,b %d,a %d)\n", r, g, b, a));
75 if ( (cl=mymalloc(sizeof(i_color))) == NULL) m_fatal(2,"malloc() error\n");
80 mm_log((1,"(%p) <- ICL_new_internal\n",cl));
86 =item ICL_set_internal(cl, r, g, b, a)
88 Overwrite a color with new values.
90 cl - pointer to color object
91 r - red component (range: 0 - 255)
92 g - green component (range: 0 - 255)
93 b - blue component (range: 0 - 255)
94 a - alpha component (range: 0 - 255)
100 ICL_set_internal(i_color *cl,unsigned char r,unsigned char g,unsigned char b,unsigned char a) {
101 mm_log((1,"ICL_set_internal(cl* %p,r %d,g %d,b %d,a %d)\n",cl,r,g,b,a));
103 if ( (cl=mymalloc(sizeof(i_color))) == NULL)
104 m_fatal(2,"malloc() error\n");
109 mm_log((1,"(%p) <- ICL_set_internal\n",cl));
115 =item ICL_add(dst, src, ch)
117 Add src to dst inplace - dst is modified.
119 dst - pointer to destination color object
120 src - pointer to color object that is added
121 ch - number of channels
127 ICL_add(i_color *dst,i_color *src,int ch) {
130 tmp=dst->channel[i]+src->channel[i];
131 dst->channel[i]= tmp>255 ? 255:tmp;
138 Dump color information to log - strictly for debugging.
140 cl - pointer to color object
146 ICL_info(i_color *cl) {
147 mm_log((1,"i_color_info(cl* %p)\n",cl));
148 mm_log((1,"i_color_info: (%d,%d,%d,%d)\n",cl->rgba.r,cl->rgba.g,cl->rgba.b,cl->rgba.a));
154 Destroy ancillary data for Color object.
156 cl - pointer to color object
162 ICL_DESTROY(i_color *cl) {
163 mm_log((1,"ICL_DESTROY(cl* %p)\n",cl));
168 =item i_fcolor_new(double r, double g, double b, double a)
172 i_fcolor *i_fcolor_new(double r, double g, double b, double a) {
175 mm_log((1,"i_fcolor_new(r %g,g %g,b %g,a %g)\n", r, g, b, a));
177 if ( (cl=mymalloc(sizeof(i_fcolor))) == NULL) m_fatal(2,"malloc() error\n");
182 mm_log((1,"(%p) <- i_fcolor_new\n",cl));
188 =item i_fcolor_destroy(i_fcolor *cl)
192 void i_fcolor_destroy(i_fcolor *cl) {
197 =item IIM_base_8bit_direct (static)
199 A static i_img object used to initialize direct 8-bit per sample images.
203 static i_img IIM_base_8bit_direct =
205 0, /* channels set */
206 0, 0, 0, /* xsize, ysize, bytes */
209 i_direct_type, /* type */
212 { 0, 0, NULL }, /* tags */
215 i_ppix_d, /* i_f_ppix */
216 i_ppixf_d, /* i_f_ppixf */
217 i_plin_d, /* i_f_plin */
218 i_plinf_d, /* i_f_plinf */
219 i_gpix_d, /* i_f_gpix */
220 i_gpixf_d, /* i_f_gpixf */
221 i_glin_d, /* i_f_glin */
222 i_glinf_d, /* i_f_glinf */
223 i_gsamp_d, /* i_f_gsamp */
224 i_gsampf_d, /* i_f_gsampf */
228 NULL, /* i_f_addcolors */
229 NULL, /* i_f_getcolors */
230 NULL, /* i_f_colorcount */
231 NULL, /* i_f_maxcolors */
232 NULL, /* i_f_findcolor */
233 NULL, /* i_f_setcolors */
235 NULL, /* i_f_destroy */
238 /*static void set_8bit_direct(i_img *im) {
239 im->i_f_ppix = i_ppix_d;
240 im->i_f_ppixf = i_ppixf_d;
241 im->i_f_plin = i_plin_d;
242 im->i_f_plinf = i_plinf_d;
243 im->i_f_gpix = i_gpix_d;
244 im->i_f_gpixf = i_gpixf_d;
245 im->i_f_glin = i_glin_d;
246 im->i_f_glinf = i_glinf_d;
249 im->i_f_addcolor = NULL;
250 im->i_f_getcolor = NULL;
251 im->i_f_colorcount = NULL;
252 im->i_f_findcolor = NULL;
256 =item IIM_new(x, y, ch)
258 Creates a new image object I<x> pixels wide, and I<y> pixels high with I<ch> channels.
265 IIM_new(int x,int y,int ch) {
267 mm_log((1,"IIM_new(x %d,y %d,ch %d)\n",x,y,ch));
269 im=i_img_empty_ch(NULL,x,y,ch);
271 mm_log((1,"(%p) <- IIM_new\n",im));
277 IIM_DESTROY(i_img *im) {
278 mm_log((1,"IIM_DESTROY(im* %p)\n",im));
288 Create new image reference - notice that this isn't an object yet and
289 this should be fixed asap.
299 mm_log((1,"i_img_struct()\n"));
300 if ( (im=mymalloc(sizeof(i_img))) == NULL)
301 m_fatal(2,"malloc() error\n");
303 *im = IIM_base_8bit_direct;
311 mm_log((1,"(%p) <- i_img_struct\n",im));
316 =item i_img_empty(im, x, y)
318 Re-new image reference (assumes 3 channels)
321 x - xsize of destination image
322 y - ysize of destination image
324 **FIXME** what happens if a live image is passed in here?
326 Should this just call i_img_empty_ch()?
332 i_img_empty(i_img *im,int x,int y) {
333 mm_log((1,"i_img_empty(*im %p, x %d, y %d)\n",im, x, y));
334 return i_img_empty_ch(im, x, y, 3);
338 =item i_img_empty_ch(im, x, y, ch)
340 Re-new image reference
343 x - xsize of destination image
344 y - ysize of destination image
345 ch - number of channels
351 i_img_empty_ch(i_img *im,int x,int y,int ch) {
352 mm_log((1,"i_img_empty_ch(*im %p, x %d, y %d, ch %d)\n", im, x, y, ch));
354 if ( (im=mymalloc(sizeof(i_img))) == NULL)
355 m_fatal(2,"malloc() error\n");
357 memcpy(im, &IIM_base_8bit_direct, sizeof(i_img));
358 i_tags_new(&im->tags);
362 im->ch_mask = MAXINT;
363 im->bytes=x*y*im->channels;
364 if ( (im->idata=mymalloc(im->bytes)) == NULL) m_fatal(2,"malloc() error\n");
365 memset(im->idata,0,(size_t)im->bytes);
369 mm_log((1,"(%p) <- i_img_empty_ch\n",im));
374 =item i_img_exorcise(im)
384 i_img_exorcise(i_img *im) {
385 mm_log((1,"i_img_exorcise(im* 0x%x)\n",im));
386 i_tags_destroy(&im->tags);
388 (im->i_f_destroy)(im);
389 if (im->idata != NULL) { myfree(im->idata); }
395 im->i_f_ppix=i_ppix_d;
396 im->i_f_gpix=i_gpix_d;
397 im->i_f_plin=i_plin_d;
398 im->i_f_glin=i_glin_d;
403 =item i_img_destroy(im)
405 Destroy image and free data via exorcise.
413 i_img_destroy(i_img *im) {
414 mm_log((1,"i_img_destroy(im %p)\n",im));
416 if (im) { myfree(im); }
420 =item i_img_info(im, info)
422 Return image information
425 info - pointer to array to return data
427 info is an array of 4 integers with the following values:
432 info[3] - channel mask
439 i_img_info(i_img *im,int *info) {
440 mm_log((1,"i_img_info(im 0x%x)\n",im));
442 mm_log((1,"i_img_info: xsize=%d ysize=%d channels=%d mask=%ud\n",im->xsize,im->ysize,im->channels,im->ch_mask));
443 mm_log((1,"i_img_info: idata=0x%d\n",im->idata));
446 info[2] = im->channels;
447 info[3] = im->ch_mask;
457 =item i_img_setmask(im, ch_mask)
459 Set the image channel mask for I<im> to I<ch_mask>.
464 i_img_setmask(i_img *im,int ch_mask) { im->ch_mask=ch_mask; }
468 =item i_img_getmask(im)
470 Get the image channel mask for I<im>.
475 i_img_getmask(i_img *im) { return im->ch_mask; }
478 =item i_img_getchannels(im)
480 Get the number of channels in I<im>.
485 i_img_getchannels(i_img *im) { return im->channels; }
490 =item i_copyto_trans(im, src, x1, y1, x2, y2, tx, ty, trans)
492 (x1,y1) (x2,y2) specifies the region to copy (in the source coordinates)
493 (tx,ty) specifies the upper left corner for the target image.
494 pass NULL in trans for non transparent i_colors.
500 i_copyto_trans(i_img *im,i_img *src,int x1,int y1,int x2,int y2,int tx,int ty,i_color *trans) {
502 int x,y,t,ttx,tty,tt,ch;
504 mm_log((1,"i_copyto_trans(im* %p,src 0x%x, x1 %d, y1 %d, x2 %d, y2 %d, tx %d, ty %d, trans* 0x%x)\n",
505 im, src, x1, y1, x2, y2, tx, ty, trans));
507 if (x2<x1) { t=x1; x1=x2; x2=t; }
508 if (y2<y1) { t=y1; y1=y2; y2=t; }
520 for(ch=0;ch<im->channels;ch++) if (trans->channel[ch]!=pv.channel[ch]) tt++;
521 if (tt) i_ppix(im,ttx,tty,&pv);
522 } else i_ppix(im,ttx,tty,&pv);
530 =item i_copyto(dest, src, x1, y1, x2, y2, tx, ty)
532 Copies image data from the area (x1,y1)-[x2,y2] in the source image to
533 a rectangle the same size with it's top-left corner at (tx,ty) in the
536 If x1 > x2 or y1 > y2 then the corresponding co-ordinates are swapped.
542 i_copyto(i_img *im, i_img *src, int x1, int y1, int x2, int y2, int tx, int ty) {
543 int x, y, t, ttx, tty;
545 if (x2<x1) { t=x1; x1=x2; x2=t; }
546 if (y2<y1) { t=y1; y1=y2; y2=t; }
548 mm_log((1,"i_copyto(im* %p, src %p, x1 %d, y1 %d, x2 %d, y2 %d, tx %d, ty %d)\n",
549 im, src, x1, y1, x2, y2, tx, ty));
551 if (im->bits == i_8_bits) {
554 for(y=y1; y<y2; y++) {
556 for(x=x1; x<x2; x++) {
557 i_gpix(src, x, y, &pv);
558 i_ppix(im, ttx, tty, &pv);
567 for(y=y1; y<y2; y++) {
569 for(x=x1; x<x2; x++) {
570 i_gpixf(src, x, y, &pv);
571 i_ppixf(im, ttx, tty, &pv);
580 =item i_copy(im, src)
582 Copies the contents of the image I<src> over the image I<im>.
588 i_copy(i_img *im, i_img *src) {
591 mm_log((1,"i_copy(im* %p,src %p)\n", im, src));
595 if (src->type == i_direct_type) {
596 if (src->bits == i_8_bits) {
598 i_img_empty_ch(im, x1, y1, src->channels);
599 pv = mymalloc(sizeof(i_color) * x1);
601 for (y = 0; y < y1; ++y) {
602 i_glin(src, 0, x1, y, pv);
603 i_plin(im, 0, x1, y, pv);
609 if (src->bits == i_16_bits)
610 i_img_16_new_low(im, x1, y1, src->channels);
611 else if (src->bits == i_double_bits)
612 i_img_double_new_low(im, x1, y1, src->channels);
614 fprintf(stderr, "i_copy(): Unknown image bit size %d\n", src->bits);
615 return; /* I dunno */
618 pv = mymalloc(sizeof(i_fcolor) * x1);
619 for (y = 0; y < y1; ++y) {
620 i_glinf(src, 0, x1, y, pv);
621 i_plinf(im, 0, x1, y, pv);
633 i_img_pal_new_low(im, x1, y1, src->channels, i_maxcolors(src));
634 /* copy across the palette */
635 count = i_colorcount(src);
636 for (index = 0; index < count; ++index) {
637 i_getcolors(src, index, &temp, 1);
638 i_addcolors(im, &temp, 1);
641 vals = mymalloc(sizeof(i_palidx) * x1);
642 for (y = 0; y < y1; ++y) {
643 i_gpal(src, 0, x1, y, vals);
644 i_ppal(im, 0, x1, y, vals);
652 =item i_rubthru(im, src, tx, ty)
654 Takes the image I<src> and applies it at an original (I<tx>,I<ty>) in I<im>.
656 The alpha channel of each pixel in I<src> is used to control how much
657 the existing colour in I<im> is replaced, if it is 255 then the colour
658 is completely replaced, if it is 0 then the original colour is left
665 i_rubthru(i_img *im,i_img *src,int tx,int ty) {
672 mm_log((1,"i_rubthru(im %p, src %p, tx %d, ty %d)\n", im, src, tx, ty));
675 if (im->channels == 3 && src->channels == 4) {
677 chans[0] = 0; chans[1] = 1; chans[2] = 2;
680 else if (im->channels == 3 && src->channels == 2) {
682 chans[0] = chans[1] = chans[2] = 0;
685 else if (im->channels == 1 && src->channels == 2) {
691 i_push_error(0, "rubthru can only work where (dest, src) channels are (3,4), (3,2) or (1,2)");
696 /* if you change this code, please make sure the else branch is
697 changed in a similar fashion - TC */
699 i_color pv, orig, dest;
701 for(x=0; x<src->xsize; x++) {
703 for(y=0;y<src->ysize;y++) {
704 /* fprintf(stderr,"reading (%d,%d) writing (%d,%d).\n",x,y,ttx,tty); */
705 i_gpix(src, x, y, &pv);
706 i_gpix(im, ttx, tty, &orig);
707 alpha = pv.channel[alphachan];
708 for (ch = 0; ch < chancount; ++ch) {
709 dest.channel[ch] = (alpha * pv.channel[chans[ch]]
710 + (255 - alpha) * orig.channel[ch])/255;
712 i_ppix(im, ttx, tty, &dest);
720 i_fcolor pv, orig, dest;
723 for(x=0; x<src->xsize; x++) {
725 for(y=0;y<src->ysize;y++) {
726 /* fprintf(stderr,"reading (%d,%d) writing (%d,%d).\n",x,y,ttx,tty); */
727 i_gpixf(src, x, y, &pv);
728 i_gpixf(im, ttx, tty, &orig);
729 alpha = pv.channel[alphachan];
730 for (ch = 0; ch < chancount; ++ch) {
731 dest.channel[ch] = alpha * pv.channel[chans[ch]]
732 + (1 - alpha) * orig.channel[ch];
734 i_ppixf(im, ttx, tty, &dest);
746 =item i_flipxy(im, axis)
748 Flips the image inplace around the axis specified.
749 Returns 0 if parameters are invalid.
752 axis - 0 = x, 1 = y, 2 = both
758 i_flipxy(i_img *im, int direction) {
759 int x, x2, y, y2, xm, ym;
763 mm_log((1, "i_flipxy(im %p, direction %d)\n", im, direction ));
768 case XAXIS: /* Horizontal flip */
771 for(y=0; y<ym; y++) {
773 for(x=0; x<xm; x++) {
775 i_gpix(im, x, y, &val1);
776 i_gpix(im, x2, y, &val2);
777 i_ppix(im, x, y, &val2);
778 i_ppix(im, x2, y, &val1);
783 case YAXIS: /* Vertical flip */
787 for(y=0; y<ym; y++) {
788 for(x=0; x<xm; x++) {
790 i_gpix(im, x, y, &val1);
791 i_gpix(im, x, y2, &val2);
792 i_ppix(im, x, y, &val2);
793 i_ppix(im, x, y2, &val1);
798 case XYAXIS: /* Horizontal and Vertical flip */
802 for(y=0; y<ym; y++) {
804 for(x=0; x<xm; x++) {
806 i_gpix(im, x, y, &val1);
807 i_gpix(im, x2, y2, &val2);
808 i_ppix(im, x, y, &val2);
809 i_ppix(im, x2, y2, &val1);
811 i_gpix(im, x2, y, &val1);
812 i_gpix(im, x, y2, &val2);
813 i_ppix(im, x2, y, &val2);
814 i_ppix(im, x, y2, &val1);
819 if (xm*2 != xs) { /* odd number of column */
820 mm_log((1, "i_flipxy: odd number of columns\n"));
823 for(y=0; y<ym; y++) {
825 i_gpix(im, x, y, &val1);
826 i_gpix(im, x, y2, &val2);
827 i_ppix(im, x, y, &val2);
828 i_ppix(im, x, y2, &val1);
832 if (ym*2 != ys) { /* odd number of rows */
833 mm_log((1, "i_flipxy: odd number of rows\n"));
836 for(x=0; x<xm; x++) {
838 i_gpix(im, x, y, &val1);
839 i_gpix(im, x2, y, &val2);
840 i_ppix(im, x, y, &val2);
841 i_ppix(im, x2, y, &val1);
847 mm_log((1, "i_flipxy: direction is invalid\n" ));
865 if ((x >= 2.0) || (x <= -2.0)) return (0.0);
866 else if (x == 0.0) return (1.0);
867 else return(sin(PIx) / PIx * sin(PIx2) / PIx2);
871 =item i_scaleaxis(im, value, axis)
873 Returns a new image object which is I<im> scaled by I<value> along
874 wither the x-axis (I<axis> == 0) or the y-axis (I<axis> == 1).
880 i_scaleaxis(i_img *im, float Value, int Axis) {
881 int hsize, vsize, i, j, k, l, lMax, iEnd, jEnd;
882 int LanczosWidthFactor;
883 float *l0, *l1, OldLocation;
886 float F, PictureValue[MAXCHANNELS];
888 i_color val,val1,val2;
891 mm_log((1,"i_scaleaxis(im %p,Value %.2f,Axis %d)\n",im,Value,Axis));
894 hsize = (int)(0.5 + im->xsize * Value);
901 vsize = (int)(0.5 + im->ysize * Value);
907 new_img = i_img_empty_ch(NULL, hsize, vsize, im->channels);
909 /* 1.4 is a magic number, setting it to 2 will cause rather blurred images */
910 LanczosWidthFactor = (Value >= 1) ? 1 : (int) (1.4/Value);
911 lMax = LanczosWidthFactor << 1;
913 l0 = mymalloc(lMax * sizeof(float));
914 l1 = mymalloc(lMax * sizeof(float));
916 for (j=0; j<jEnd; j++) {
917 OldLocation = ((float) j) / Value;
918 T = (int) (OldLocation);
919 F = OldLocation - (float) T;
921 for (l = 0; l<lMax; l++) {
922 l0[lMax-l-1] = Lanczos(((float) (lMax-l-1) + F) / (float) LanczosWidthFactor);
923 l1[l] = Lanczos(((float) (l+1) - F) / (float) LanczosWidthFactor);
926 /* Make sure filter is normalized */
928 for(l=0; l<lMax; l++) {
932 t /= (float)LanczosWidthFactor;
934 for(l=0; l<lMax; l++) {
941 for (i=0; i<iEnd; i++) {
942 for (k=0; k<im->channels; k++) PictureValue[k] = 0.0;
943 for (l=0; l<lMax; l++) {
946 mx = (mx < 0) ? 0 : mx;
947 Mx = (Mx >= im->xsize) ? im->xsize-1 : Mx;
949 i_gpix(im, Mx, i, &val1);
950 i_gpix(im, mx, i, &val2);
952 for (k=0; k<im->channels; k++) {
953 PictureValue[k] += l1[l] * val1.channel[k];
954 PictureValue[k] += l0[lMax-l-1] * val2.channel[k];
957 for(k=0;k<im->channels;k++) {
958 psave = (short)(0.5+(PictureValue[k] / LanczosWidthFactor));
959 val.channel[k]=minmax(0,255,psave);
961 i_ppix(new_img, j, i, &val);
966 for (i=0; i<iEnd; i++) {
967 for (k=0; k<im->channels; k++) PictureValue[k] = 0.0;
968 for (l=0; l < lMax; l++) {
971 mx = (mx < 0) ? 0 : mx;
972 Mx = (Mx >= im->ysize) ? im->ysize-1 : Mx;
974 i_gpix(im, i, Mx, &val1);
975 i_gpix(im, i, mx, &val2);
976 for (k=0; k<im->channels; k++) {
977 PictureValue[k] += l1[l] * val1.channel[k];
978 PictureValue[k] += l0[lMax-l-1] * val2.channel[k];
981 for (k=0; k<im->channels; k++) {
982 psave = (short)(0.5+(PictureValue[k] / LanczosWidthFactor));
983 val.channel[k] = minmax(0, 255, psave);
985 i_ppix(new_img, i, j, &val);
993 mm_log((1,"(%p) <- i_scaleaxis\n", new_img));
1000 =item i_scale_nn(im, scx, scy)
1002 Scale by using nearest neighbor
1003 Both axes scaled at the same time since
1004 nothing is gained by doing it in two steps
1011 i_scale_nn(i_img *im, float scx, float scy) {
1013 int nxsize,nysize,nx,ny;
1017 mm_log((1,"i_scale_nn(im 0x%x,scx %.2f,scy %.2f)\n",im,scx,scy));
1019 nxsize = (int) ((float) im->xsize * scx);
1020 nysize = (int) ((float) im->ysize * scy);
1022 new_img=i_img_empty_ch(NULL,nxsize,nysize,im->channels);
1024 for(ny=0;ny<nysize;ny++) for(nx=0;nx<nxsize;nx++) {
1025 i_gpix(im,((float)nx)/scx,((float)ny)/scy,&val);
1026 i_ppix(new_img,nx,ny,&val);
1029 mm_log((1,"(0x%x) <- i_scale_nn\n",new_img));
1035 =item i_sametype(i_img *im, int xsize, int ysize)
1037 Returns an image of the same type (sample size, channels, paletted/direct).
1039 For paletted images the palette is copied from the source.
1044 i_img *i_sametype(i_img *src, int xsize, int ysize) {
1045 if (src->type == i_direct_type) {
1046 if (src->bits == 8) {
1047 return i_img_empty_ch(NULL, xsize, ysize, src->channels);
1049 else if (src->bits == i_16_bits) {
1050 return i_img_16_new(xsize, ysize, src->channels);
1052 else if (src->bits == i_double_bits) {
1053 return i_img_double_new(xsize, ysize, src->channels);
1056 i_push_error(0, "Unknown image bits");
1064 i_img *targ = i_img_pal_new(xsize, ysize, src->channels, i_maxcolors(src));
1065 for (i = 0; i < i_colorcount(src); ++i) {
1066 i_getcolors(src, i, &col, 1);
1067 i_addcolors(targ, &col, 1);
1075 =item i_sametype_chans(i_img *im, int xsize, int ysize, int channels)
1077 Returns an image of the same type (sample size).
1079 For paletted images the equivalent direct type is returned.
1084 i_img *i_sametype_chans(i_img *src, int xsize, int ysize, int channels) {
1085 if (src->bits == 8) {
1086 return i_img_empty_ch(NULL, xsize, ysize, channels);
1088 else if (src->bits == i_16_bits) {
1089 return i_img_16_new(xsize, ysize, channels);
1091 else if (src->bits == i_double_bits) {
1092 return i_img_double_new(xsize, ysize, channels);
1095 i_push_error(0, "Unknown image bits");
1101 =item i_transform(im, opx, opxl, opy, opyl, parm, parmlen)
1103 Spatially transforms I<im> returning a new image.
1105 opx for a length of opxl and opy for a length of opy are arrays of
1106 operators that modify the x and y positions to retreive the pixel data from.
1108 parm and parmlen define extra parameters that the operators may use.
1110 Note that this function is largely superseded by the more flexible
1111 L<transform.c/i_transform2>.
1113 Returns the new image.
1115 The operators for this function are defined in L<stackmach.c>.
1120 i_transform(i_img *im, int *opx,int opxl,int *opy,int opyl,double parm[],int parmlen) {
1122 int nxsize,nysize,nx,ny;
1126 mm_log((1,"i_transform(im 0x%x, opx 0x%x, opxl %d, opy 0x%x, opyl %d, parm 0x%x, parmlen %d)\n",im,opx,opxl,opy,opyl,parm,parmlen));
1129 nysize = im->ysize ;
1131 new_img=i_img_empty_ch(NULL,nxsize,nysize,im->channels);
1132 /* fprintf(stderr,"parm[2]=%f\n",parm[2]); */
1133 for(ny=0;ny<nysize;ny++) for(nx=0;nx<nxsize;nx++) {
1134 /* parm[parmlen-2]=(double)nx;
1135 parm[parmlen-1]=(double)ny; */
1140 /* fprintf(stderr,"(%d,%d) ->",nx,ny); */
1141 rx=i_op_run(opx,opxl,parm,parmlen);
1142 ry=i_op_run(opy,opyl,parm,parmlen);
1143 /* fprintf(stderr,"(%f,%f)\n",rx,ry); */
1144 i_gpix(im,rx,ry,&val);
1145 i_ppix(new_img,nx,ny,&val);
1148 mm_log((1,"(0x%x) <- i_transform\n",new_img));
1153 =item i_img_diff(im1, im2)
1155 Calculates the sum of the squares of the differences between
1156 correspoding channels in two images.
1158 If the images are not the same size then only the common area is
1159 compared, hence even if images are different sizes this function
1165 i_img_diff(i_img *im1,i_img *im2) {
1166 int x,y,ch,xb,yb,chb;
1170 mm_log((1,"i_img_diff(im1 0x%x,im2 0x%x)\n",im1,im2));
1172 xb=(im1->xsize<im2->xsize)?im1->xsize:im2->xsize;
1173 yb=(im1->ysize<im2->ysize)?im1->ysize:im2->ysize;
1174 chb=(im1->channels<im2->channels)?im1->channels:im2->channels;
1176 mm_log((1,"i_img_diff: xb=%d xy=%d chb=%d\n",xb,yb,chb));
1179 for(y=0;y<yb;y++) for(x=0;x<xb;x++) {
1180 i_gpix(im1,x,y,&val1);
1181 i_gpix(im2,x,y,&val2);
1183 for(ch=0;ch<chb;ch++) tdiff+=(val1.channel[ch]-val2.channel[ch])*(val1.channel[ch]-val2.channel[ch]);
1185 mm_log((1,"i_img_diff <- (%.2f)\n",tdiff));
1189 /* just a tiny demo of haar wavelets */
1197 i_img *new_img,*new_img2;
1198 i_color val1,val2,dval1,dval2;
1206 /* horizontal pass */
1208 new_img=i_img_empty_ch(NULL,fx*2,fy*2,im->channels);
1209 new_img2=i_img_empty_ch(NULL,fx*2,fy*2,im->channels);
1212 for(y=0;y<my;y++) for(x=0;x<fx;x++) {
1213 i_gpix(im,x*2,y,&val1);
1214 i_gpix(im,x*2+1,y,&val2);
1215 for(ch=0;ch<im->channels;ch++) {
1216 dval1.channel[ch]=(val1.channel[ch]+val2.channel[ch])/2;
1217 dval2.channel[ch]=(255+val1.channel[ch]-val2.channel[ch])/2;
1219 i_ppix(new_img,x,y,&dval1);
1220 i_ppix(new_img,x+fx,y,&dval2);
1223 for(y=0;y<fy;y++) for(x=0;x<mx;x++) {
1224 i_gpix(new_img,x,y*2,&val1);
1225 i_gpix(new_img,x,y*2+1,&val2);
1226 for(ch=0;ch<im->channels;ch++) {
1227 dval1.channel[ch]=(val1.channel[ch]+val2.channel[ch])/2;
1228 dval2.channel[ch]=(255+val1.channel[ch]-val2.channel[ch])/2;
1230 i_ppix(new_img2,x,y,&dval1);
1231 i_ppix(new_img2,x,y+fy,&dval2);
1234 i_img_destroy(new_img);
1239 =item i_count_colors(im, maxc)
1241 returns number of colors or -1
1242 to indicate that it was more than max colors
1247 i_count_colors(i_img *im,int maxc) {
1254 mm_log((1,"i_count_colors(im 0x%08X,maxc %d)\n"));
1261 for(y=0;y<ysize;y++) for(x=0;x<xsize;x++) {
1262 i_gpix(im,x,y,&val);
1263 colorcnt+=octt_add(ct,val.rgb.r,val.rgb.g,val.rgb.b);
1264 if (colorcnt > maxc) { octt_delete(ct); return -1; }
1273 =head2 8-bit per sample image internal functions
1275 These are the functions installed in an 8-bit per sample image.
1279 =item i_ppix_d(im, x, y, col)
1283 This is the function kept in the i_f_ppix member of an i_img object.
1284 It does a normal store of a pixel into the image with range checking.
1286 Returns 0 if the pixel could be set, -1 otherwise.
1292 i_ppix_d(i_img *im, int x, int y, i_color *val) {
1295 if ( x>-1 && x<im->xsize && y>-1 && y<im->ysize ) {
1296 for(ch=0;ch<im->channels;ch++)
1297 if (im->ch_mask&(1<<ch))
1298 im->idata[(x+y*im->xsize)*im->channels+ch]=val->channel[ch];
1301 return -1; /* error was clipped */
1305 =item i_gpix_d(im, x, y, &col)
1309 This is the function kept in the i_f_gpix member of an i_img object.
1310 It does normal retrieval of a pixel from the image with range checking.
1312 Returns 0 if the pixel could be set, -1 otherwise.
1318 i_gpix_d(i_img *im, int x, int y, i_color *val) {
1320 if (x>-1 && x<im->xsize && y>-1 && y<im->ysize) {
1321 for(ch=0;ch<im->channels;ch++)
1322 val->channel[ch]=im->idata[(x+y*im->xsize)*im->channels+ch];
1325 for(ch=0;ch<im->channels;ch++) val->channel[ch] = 0;
1326 return -1; /* error was cliped */
1330 =item i_glin_d(im, l, r, y, vals)
1332 Reads a line of data from the image, storing the pixels at vals.
1334 The line runs from (l,y) inclusive to (r,y) non-inclusive
1336 vals should point at space for (r-l) pixels.
1338 l should never be less than zero (to avoid confusion about where to
1339 put the pixels in vals).
1341 Returns the number of pixels copied (eg. if r, l or y is out of range)
1347 i_glin_d(i_img *im, int l, int r, int y, i_color *vals) {
1349 unsigned char *data;
1350 if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) {
1353 data = im->idata + (l+y*im->xsize) * im->channels;
1355 for (i = 0; i < count; ++i) {
1356 for (ch = 0; ch < im->channels; ++ch)
1357 vals[i].channel[ch] = *data++;
1367 =item i_plin_d(im, l, r, y, vals)
1369 Writes a line of data into the image, using the pixels at vals.
1371 The line runs from (l,y) inclusive to (r,y) non-inclusive
1373 vals should point at (r-l) pixels.
1375 l should never be less than zero (to avoid confusion about where to
1376 get the pixels in vals).
1378 Returns the number of pixels copied (eg. if r, l or y is out of range)
1384 i_plin_d(i_img *im, int l, int r, int y, i_color *vals) {
1386 unsigned char *data;
1387 if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) {
1390 data = im->idata + (l+y*im->xsize) * im->channels;
1392 for (i = 0; i < count; ++i) {
1393 for (ch = 0; ch < im->channels; ++ch) {
1394 if (im->ch_mask & (1 << ch))
1395 *data = vals[i].channel[ch];
1407 =item i_ppixf_d(im, x, y, val)
1413 i_ppixf_d(i_img *im, int x, int y, i_fcolor *val) {
1416 if ( x>-1 && x<im->xsize && y>-1 && y<im->ysize ) {
1417 for(ch=0;ch<im->channels;ch++)
1418 if (im->ch_mask&(1<<ch)) {
1419 im->idata[(x+y*im->xsize)*im->channels+ch] =
1420 SampleFTo8(val->channel[ch]);
1424 return -1; /* error was clipped */
1428 =item i_gpixf_d(im, x, y, val)
1434 i_gpixf_d(i_img *im, int x, int y, i_fcolor *val) {
1436 if (x>-1 && x<im->xsize && y>-1 && y<im->ysize) {
1437 for(ch=0;ch<im->channels;ch++) {
1439 Sample8ToF(im->idata[(x+y*im->xsize)*im->channels+ch]);
1443 return -1; /* error was cliped */
1447 =item i_glinf_d(im, l, r, y, vals)
1449 Reads a line of data from the image, storing the pixels at vals.
1451 The line runs from (l,y) inclusive to (r,y) non-inclusive
1453 vals should point at space for (r-l) pixels.
1455 l should never be less than zero (to avoid confusion about where to
1456 put the pixels in vals).
1458 Returns the number of pixels copied (eg. if r, l or y is out of range)
1464 i_glinf_d(i_img *im, int l, int r, int y, i_fcolor *vals) {
1466 unsigned char *data;
1467 if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) {
1470 data = im->idata + (l+y*im->xsize) * im->channels;
1472 for (i = 0; i < count; ++i) {
1473 for (ch = 0; ch < im->channels; ++ch)
1474 vals[i].channel[ch] = Sample8ToF(*data++);
1484 =item i_plinf_d(im, l, r, y, vals)
1486 Writes a line of data into the image, using the pixels at vals.
1488 The line runs from (l,y) inclusive to (r,y) non-inclusive
1490 vals should point at (r-l) pixels.
1492 l should never be less than zero (to avoid confusion about where to
1493 get the pixels in vals).
1495 Returns the number of pixels copied (eg. if r, l or y is out of range)
1501 i_plinf_d(i_img *im, int l, int r, int y, i_fcolor *vals) {
1503 unsigned char *data;
1504 if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) {
1507 data = im->idata + (l+y*im->xsize) * im->channels;
1509 for (i = 0; i < count; ++i) {
1510 for (ch = 0; ch < im->channels; ++ch) {
1511 if (im->ch_mask & (1 << ch))
1512 *data = SampleFTo8(vals[i].channel[ch]);
1524 =item i_gsamp_d(i_img *im, int l, int r, int y, i_sample_t *samps, int *chans, int chan_count)
1526 Reads sample values from im for the horizontal line (l, y) to (r-1,y)
1527 for the channels specified by chans, an array of int with chan_count
1530 Returns the number of samples read (which should be (r-l) * bits_set(chan_mask)
1536 i_gsamp_d(i_img *im, int l, int r, int y, i_sample_t *samps,
1537 const int *chans, int chan_count) {
1538 int ch, count, i, w;
1539 unsigned char *data;
1541 if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) {
1544 data = im->idata + (l+y*im->xsize) * im->channels;
1549 /* make sure we have good channel numbers */
1550 for (ch = 0; ch < chan_count; ++ch) {
1551 if (chans[ch] < 0 || chans[ch] >= im->channels) {
1552 i_push_errorf(0, "No channel %d in this image", chans[ch]);
1556 for (i = 0; i < w; ++i) {
1557 for (ch = 0; ch < chan_count; ++ch) {
1558 *samps++ = data[chans[ch]];
1561 data += im->channels;
1565 for (i = 0; i < w; ++i) {
1566 for (ch = 0; ch < chan_count; ++ch) {
1567 *samps++ = data[ch];
1570 data += im->channels;
1582 =item i_gsampf_d(i_img *im, int l, int r, int y, i_fsample_t *samps, int *chans, int chan_count)
1584 Reads sample values from im for the horizontal line (l, y) to (r-1,y)
1585 for the channels specified by chan_mask, where bit 0 is the first
1588 Returns the number of samples read (which should be (r-l) * bits_set(chan_mask)
1594 i_gsampf_d(i_img *im, int l, int r, int y, i_fsample_t *samps,
1595 const int *chans, int chan_count) {
1596 int ch, count, i, w;
1597 unsigned char *data;
1598 for (ch = 0; ch < chan_count; ++ch) {
1599 if (chans[ch] < 0 || chans[ch] >= im->channels) {
1600 i_push_errorf(0, "No channel %d in this image", chans[ch]);
1603 if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) {
1606 data = im->idata + (l+y*im->xsize) * im->channels;
1611 /* make sure we have good channel numbers */
1612 for (ch = 0; ch < chan_count; ++ch) {
1613 if (chans[ch] < 0 || chans[ch] >= im->channels) {
1614 i_push_errorf(0, "No channel %d in this image", chans[ch]);
1618 for (i = 0; i < w; ++i) {
1619 for (ch = 0; ch < chan_count; ++ch) {
1620 *samps++ = Sample8ToF(data[chans[ch]]);
1623 data += im->channels;
1627 for (i = 0; i < w; ++i) {
1628 for (ch = 0; ch < chan_count; ++ch) {
1629 *samps++ = Sample8ToF(data[ch]);
1632 data += im->channels;
1645 =head2 Image method wrappers
1647 These functions provide i_fsample_t functions in terms of their
1648 i_sample_t versions.
1652 =item i_ppixf_fp(i_img *im, int x, int y, i_fcolor *pix)
1657 int i_ppixf_fp(i_img *im, int x, int y, i_fcolor *pix) {
1661 for (ch = 0; ch < im->channels; ++ch)
1662 temp.channel[ch] = SampleFTo8(pix->channel[ch]);
1664 return i_ppix(im, x, y, &temp);
1668 =item i_gpixf_fp(i_img *im, int x, int y, i_fcolor *pix)
1672 int i_gpixf_fp(i_img *im, int x, int y, i_fcolor *pix) {
1676 if (i_gpix(im, x, y, &temp)) {
1677 for (ch = 0; ch < im->channels; ++ch)
1678 pix->channel[ch] = Sample8ToF(temp.channel[ch]);
1686 =item i_plinf_fp(i_img *im, int l, int r, int y, i_fcolor *pix)
1690 int i_plinf_fp(i_img *im, int l, int r, int y, i_fcolor *pix) {
1693 if (y >= 0 && y < im->ysize && l < im->xsize && l >= 0) {
1699 work = mymalloc(sizeof(i_color) * (r-l));
1700 for (i = 0; i < r-l; ++i) {
1701 for (ch = 0; ch < im->channels; ++ch)
1702 work[i].channel[ch] = SampleFTo8(pix[i].channel[ch]);
1704 ret = i_plin(im, l, r, y, work);
1719 =item i_glinf_fp(i_img *im, int l, int r, int y, i_fcolor *pix)
1723 int i_glinf_fp(i_img *im, int l, int r, int y, i_fcolor *pix) {
1726 if (y >= 0 && y < im->ysize && l < im->xsize && l >= 0) {
1732 work = mymalloc(sizeof(i_color) * (r-l));
1733 ret = i_plin(im, l, r, y, work);
1734 for (i = 0; i < r-l; ++i) {
1735 for (ch = 0; ch < im->channels; ++ch)
1736 pix[i].channel[ch] = Sample8ToF(work[i].channel[ch]);
1752 =item i_gsampf_fp(i_img *im, int l, int r, int y, i_fsample_t *samp, int *chans, int chan_count)
1756 int i_gsampf_fp(i_img *im, int l, int r, int y, i_fsample_t *samp,
1757 int const *chans, int chan_count) {
1760 if (y >= 0 && y < im->ysize && l < im->xsize && l >= 0) {
1766 work = mymalloc(sizeof(i_sample_t) * (r-l));
1767 ret = i_gsamp(im, l, r, y, work, chans, chan_count);
1768 for (i = 0; i < ret; ++i) {
1769 samp[i] = Sample8ToF(work[i]);
1787 =head2 Palette wrapper functions
1789 Used for virtual images, these forward palette calls to a wrapped image,
1790 assuming the wrapped image is the first pointer in the structure that
1791 im->ext_data points at.
1795 =item i_addcolors_forward(i_img *im, i_color *colors, int count)
1799 int i_addcolors_forward(i_img *im, i_color *colors, int count) {
1800 return i_addcolors(*(i_img **)im->ext_data, colors, count);
1804 =item i_getcolors_forward(i_img *im, int i, i_color *color, int count)
1808 int i_getcolors_forward(i_img *im, int i, i_color *color, int count) {
1809 return i_getcolors(*(i_img **)im->ext_data, i, color, count);
1813 =item i_setcolors_forward(i_img *im, int i, i_color *color, int count)
1817 int i_setcolors_forward(i_img *im, int i, i_color *color, int count) {
1818 return i_setcolors(*(i_img **)im->ext_data, i, color, count);
1822 =item i_colorcount_forward(i_img *im)
1826 int i_colorcount_forward(i_img *im) {
1827 return i_colorcount(*(i_img **)im->ext_data);
1831 =item i_maxcolors_forward(i_img *im)
1835 int i_maxcolors_forward(i_img *im) {
1836 return i_maxcolors(*(i_img **)im->ext_data);
1840 =item i_findcolor_forward(i_img *im, i_color *color, i_palidx *entry)
1844 int i_findcolor_forward(i_img *im, i_color *color, i_palidx *entry) {
1845 return i_findcolor(*(i_img **)im->ext_data, color, entry);
1851 =head2 Stream reading and writing wrapper functions
1855 =item i_gen_reader(i_gen_read_data *info, char *buf, int length)
1857 Performs general read buffering for file readers that permit reading
1858 to be done through a callback.
1860 The final callback gets two parameters, a I<need> value, and a I<want>
1861 value, where I<need> is the amount of data that the file library needs
1862 to read, and I<want> is the amount of space available in the buffer
1863 maintained by these functions.
1865 This means if you need to read from a stream that you don't know the
1866 length of, you can return I<need> bytes, taking the performance hit of
1867 possibly expensive callbacks (eg. back to perl code), or if you are
1868 reading from a stream where it doesn't matter if some data is lost, or
1869 if the total length of the stream is known, you can return I<want>
1876 i_gen_reader(i_gen_read_data *gci, char *buf, int length) {
1879 if (length < gci->length - gci->cpos) {
1881 memcpy(buf, gci->buffer+gci->cpos, length);
1882 gci->cpos += length;
1887 memcpy(buf, gci->buffer+gci->cpos, gci->length-gci->cpos);
1888 total += gci->length - gci->cpos;
1889 length -= gci->length - gci->cpos;
1890 buf += gci->length - gci->cpos;
1891 if (length < (int)sizeof(gci->buffer)) {
1895 && (did_read = (gci->cb)(gci->userdata, gci->buffer, length,
1896 sizeof(gci->buffer))) > 0) {
1898 gci->length = did_read;
1900 copy_size = i_min(length, gci->length);
1901 memcpy(buf, gci->buffer, copy_size);
1902 gci->cpos += copy_size;
1905 length -= copy_size;
1909 /* just read the rest - too big for our buffer*/
1911 while ((did_read = (gci->cb)(gci->userdata, buf, length, length)) > 0) {
1921 =item i_gen_read_data_new(i_read_callback_t cb, char *userdata)
1923 For use by callback file readers to initialize the reader buffer.
1925 Allocates, initializes and returns the reader buffer.
1927 See also L<image.c/free_gen_read_data> and L<image.c/i_gen_reader>.
1932 i_gen_read_data_new(i_read_callback_t cb, char *userdata) {
1933 i_gen_read_data *self = mymalloc(sizeof(i_gen_read_data));
1935 self->userdata = userdata;
1943 =item i_free_gen_read_data(i_gen_read_data *)
1949 void i_free_gen_read_data(i_gen_read_data *self) {
1954 =item i_gen_writer(i_gen_write_data *info, char const *data, int size)
1956 Performs write buffering for a callback based file writer.
1958 Failures are considered fatal, if a write fails then data will be
1965 i_gen_write_data *self,
1969 if (self->filledto && self->filledto+size > self->maxlength) {
1970 if (self->cb(self->userdata, self->buffer, self->filledto)) {
1978 if (self->filledto+size <= self->maxlength) {
1980 memcpy(self->buffer+self->filledto, data, size);
1981 self->filledto += size;
1984 /* doesn't fit - hand it off */
1985 return self->cb(self->userdata, data, size);
1989 =item i_gen_write_data_new(i_write_callback_t cb, char *userdata, int max_length)
1991 Allocates and initializes the data structure used by i_gen_writer.
1993 This should be released with L<image.c/i_free_gen_write_data>
1997 i_gen_write_data *i_gen_write_data_new(i_write_callback_t cb,
1998 char *userdata, int max_length)
2000 i_gen_write_data *self = mymalloc(sizeof(i_gen_write_data));
2002 self->userdata = userdata;
2003 self->maxlength = i_min(max_length, sizeof(self->buffer));
2004 if (self->maxlength < 0)
2005 self->maxlength = sizeof(self->buffer);
2012 =item i_free_gen_write_data(i_gen_write_data *info, int flush)
2014 Cleans up the write buffer.
2016 Will flush any left-over data if I<flush> is non-zero.
2018 Returns non-zero if flush is zero or if info->cb() returns non-zero.
2020 Return zero only if flush is non-zero and info->cb() returns zero.
2026 int i_free_gen_write_data(i_gen_write_data *info, int flush)
2028 int result = !flush ||
2029 info->filledto == 0 ||
2030 info->cb(info->userdata, info->buffer, info->filledto);
2041 Arnar M. Hrafnkelsson <addi@umich.edu>
2043 Tony Cook <tony@develop-help.com>