1 #define IMAGER_NO_CONTEXT
10 i_ppix_norm(i_img *im, i_img_dim x, i_img_dim y, i_color const *col) {
19 switch (im->channels) {
22 i_adapt_colors(2, 4, &work, 1);
23 i_gpix(im, x, y, &src);
24 remains = 255 - work.channel[1];
25 src.channel[0] = (src.channel[0] * remains
26 + work.channel[0] * work.channel[1]) / 255;
27 return i_ppix(im, x, y, &src);
31 i_adapt_colors(2, 4, &work, 1);
32 i_gpix(im, x, y, &src);
33 remains = 255 - work.channel[1];
34 dest_alpha = work.channel[1] + remains * src.channel[1] / 255;
35 if (work.channel[1] == 255) {
36 return i_ppix(im, x, y, &work);
39 src.channel[0] = (work.channel[1] * work.channel[0]
40 + remains * src.channel[0] * src.channel[1] / 255) / dest_alpha;
41 src.channel[1] = dest_alpha;
42 return i_ppix(im, x, y, &src);
47 i_gpix(im, x, y, &src);
48 remains = 255 - work.channel[3];
49 src.channel[0] = (src.channel[0] * remains
50 + work.channel[0] * work.channel[3]) / 255;
51 src.channel[1] = (src.channel[1] * remains
52 + work.channel[1] * work.channel[3]) / 255;
53 src.channel[2] = (src.channel[2] * remains
54 + work.channel[2] * work.channel[3]) / 255;
55 return i_ppix(im, x, y, &src);
59 i_gpix(im, x, y, &src);
60 remains = 255 - work.channel[3];
61 dest_alpha = work.channel[3] + remains * src.channel[3] / 255;
62 if (work.channel[3] == 255) {
63 return i_ppix(im, x, y, &work);
66 src.channel[0] = (work.channel[3] * work.channel[0]
67 + remains * src.channel[0] * src.channel[3] / 255) / dest_alpha;
68 src.channel[1] = (work.channel[3] * work.channel[1]
69 + remains * src.channel[1] * src.channel[3] / 255) / dest_alpha;
70 src.channel[2] = (work.channel[3] * work.channel[2]
71 + remains * src.channel[2] * src.channel[3] / 255) / dest_alpha;
72 src.channel[3] = dest_alpha;
73 return i_ppix(im, x, y, &src);
80 cfill_from_btm(i_img *im, i_fill_t *fill, struct i_bitmap *btm,
81 i_img_dim bxmin, i_img_dim bxmax, i_img_dim bymin, i_img_dim bymax);
84 i_mmarray_cr(i_mmarray *ar,i_img_dim l) {
89 alloc_size = sizeof(minmax) * l;
90 /* check for overflow */
91 if (alloc_size / l != sizeof(minmax)) {
92 fprintf(stderr, "overflow calculating memory allocation");
95 ar->data=mymalloc(alloc_size); /* checked 5jul05 tonyc */
96 for(i=0;i<l;i++) { ar->data[i].max=-1; ar->data[i].min=MAXINT; }
100 i_mmarray_dst(i_mmarray *ar) {
102 if (ar->data != NULL) { myfree(ar->data); ar->data=NULL; }
106 i_mmarray_add(i_mmarray *ar,i_img_dim x,i_img_dim y) {
107 if (y>-1 && y<ar->lines)
109 if (x<ar->data[y].min) ar->data[y].min=x;
110 if (x>ar->data[y].max) ar->data[y].max=x;
115 i_mmarray_gmin(i_mmarray *ar,i_img_dim y) {
116 if (y>-1 && y<ar->lines) return ar->data[y].min;
121 i_mmarray_getm(i_mmarray *ar,i_img_dim y) {
122 if (y>-1 && y<ar->lines) return ar->data[y].max;
129 i_mmarray_render(i_img *im,i_mmarray *ar,i_color *val) {
131 for(i=0;i<ar->lines;i++) if (ar->data[i].max!=-1) for(x=ar->data[i].min;x<ar->data[i].max;x++) i_ppix(im,x,i,val);
137 i_arcdraw(i_img_dim x1, i_img_dim y1, i_img_dim x2, i_img_dim y2, i_mmarray *ar) {
141 alpha=(double)(y2-y1)/(double)(x2-x1);
142 if (fabs(alpha) <= 1)
144 if (x2<x1) { temp=x1; x1=x2; x2=temp; temp=y1; y1=y2; y2=temp; }
148 i_mmarray_add(ar,x1,(i_img_dim)(dsec+0.5));
156 if (y2<y1) { temp=x1; x1=x2; x2=temp; temp=y1; y1=y2; y2=temp; }
160 i_mmarray_add(ar,(i_img_dim)(dsec+0.5),y1);
168 i_mmarray_info(i_mmarray *ar) {
170 for(i=0;i<ar->lines;i++)
171 if (ar->data[i].max!=-1)
172 printf("line %"i_DF ": min=%" i_DF ", max=%" i_DF ".\n",
173 i_DFc(i), i_DFc(ar->data[i].min), i_DFc(ar->data[i].max));
177 i_arc_minmax(i_int_hlines *hlines,i_img_dim x,i_img_dim y, double rad,float d1,float d2) {
182 i_mmarray_cr(&dot, hlines->limit_y);
184 x1=(i_img_dim)(x+0.5+rad*cos(d1*PI/180.0));
185 y1=(i_img_dim)(y+0.5+rad*sin(d1*PI/180.0));
186 fx=(float)x1; fy=(float)y1;
188 /* printf("x1: %d.\ny1: %d.\n",x1,y1); */
189 i_arcdraw(x, y, x1, y1, &dot);
191 x1=(i_img_dim)(x+0.5+rad*cos(d2*PI/180.0));
192 y1=(i_img_dim)(y+0.5+rad*sin(d2*PI/180.0));
194 for(f=d1;f<=d2;f+=0.01)
195 i_mmarray_add(&dot,(i_img_dim)(x+0.5+rad*cos(f*PI/180.0)),(i_img_dim)(y+0.5+rad*sin(f*PI/180.0)));
197 /* printf("x1: %d.\ny1: %d.\n",x1,y1); */
198 i_arcdraw(x, y, x1, y1, &dot);
200 /* render the minmax values onto the hlines */
201 for (y = 0; y < dot.lines; y++) {
202 if (dot.data[y].max!=-1) {
203 i_img_dim minx, width;
204 minx = dot.data[y].min;
205 width = dot.data[y].max - dot.data[y].min + 1;
206 i_int_hlines_add(hlines, y, minx, width);
215 i_arc_hlines(i_int_hlines *hlines,i_img_dim x,i_img_dim y,double rad,float d1,float d2) {
217 i_arc_minmax(hlines, x, y, rad, d1, d2);
220 i_arc_minmax(hlines, x, y, rad, d1, 360);
221 i_arc_minmax(hlines, x, y, rad, 0, d2);
226 =item i_arc(im, x, y, rad, d1, d2, color)
229 =synopsis i_arc(im, 50, 50, 20, 45, 135, &color);
231 Fills an arc centered at (x,y) with radius I<rad> covering the range
232 of angles in degrees from d1 to d2, with the color.
238 i_arc(i_img *im, i_img_dim x, i_img_dim y,double rad,double d1,double d2,const i_color *val) {
241 i_int_init_hlines_img(&hlines, im);
243 i_arc_hlines(&hlines, x, y, rad, d1, d2);
245 i_int_hlines_fill_color(im, &hlines, val);
247 i_int_hlines_destroy(&hlines);
251 =item i_arc_cfill(im, x, y, rad, d1, d2, fill)
254 =synopsis i_arc_cfill(im, 50, 50, 35, 90, 135, fill);
256 Fills an arc centered at (x,y) with radius I<rad> covering the range
257 of angles in degrees from d1 to d2, with the fill object.
262 #define MIN_CIRCLE_STEPS 8
263 #define MAX_CIRCLE_STEPS 360
266 i_arc_cfill(i_img *im, i_img_dim x, i_img_dim y,double rad,double d1,double d2,i_fill_t *fill) {
269 i_int_init_hlines_img(&hlines, im);
271 i_arc_hlines(&hlines, x, y, rad, d1, d2);
273 i_int_hlines_fill_fill(im, &hlines, fill);
275 i_int_hlines_destroy(&hlines);
279 arc_poly(int *count, double **xvals, double **yvals,
280 double x, double y, double rad, double d1, double d2) {
281 double d1_rad, d2_rad;
283 i_img_dim steps, point_count;
286 /* normalize the angles */
289 if (d2 >= 360) { /* default is 361 */
303 d1_rad = d1 * PI / 180;
304 d2_rad = d2 * PI / 180;
306 /* how many segments for the curved part?
307 we do a maximum of one per degree, with a minimum of 8/circle
308 we try to aim at having about one segment per 2 pixels
309 Work it out per circle to get a step size.
311 I was originally making steps = circum/2 but that looked horrible.
313 I think there might be an issue in the polygon filler.
315 circum = 2 * PI * rad;
317 if (steps > MAX_CIRCLE_STEPS)
318 steps = MAX_CIRCLE_STEPS;
319 else if (steps < MIN_CIRCLE_STEPS)
320 steps = MIN_CIRCLE_STEPS;
322 angle_inc = 2 * PI / steps;
324 point_count = steps + 5; /* rough */
325 /* point_count is always relatively small, so allocation won't overflow */
326 *xvals = mymalloc(point_count * sizeof(double)); /* checked 17feb2005 tonyc */
327 *yvals = mymalloc(point_count * sizeof(double)); /* checked 17feb2005 tonyc */
329 /* from centre to edge at d1 */
332 (*xvals)[1] = x + rad * cos(d1_rad);
333 (*yvals)[1] = y + rad * sin(d1_rad);
336 /* step around the curve */
337 while (d1_rad < d2_rad) {
338 (*xvals)[*count] = x + rad * cos(d1_rad);
339 (*yvals)[*count] = y + rad * sin(d1_rad);
344 /* finish off the curve */
345 (*xvals)[*count] = x + rad * cos(d2_rad);
346 (*yvals)[*count] = y + rad * sin(d2_rad);
351 =item i_arc_aa(im, x, y, rad, d1, d2, color)
354 =synopsis i_arc_aa(im, 50, 50, 35, 90, 135, &color);
356 Anti-alias fills an arc centered at (x,y) with radius I<rad> covering
357 the range of angles in degrees from d1 to d2, with the color.
363 i_arc_aa(i_img *im, double x, double y, double rad, double d1, double d2,
364 const i_color *val) {
365 double *xvals, *yvals;
368 arc_poly(&count, &xvals, &yvals, x, y, rad, d1, d2);
370 i_poly_aa(im, count, xvals, yvals, val);
377 =item i_arc_aa_cfill(im, x, y, rad, d1, d2, fill)
380 =synopsis i_arc_aa_cfill(im, 50, 50, 35, 90, 135, fill);
382 Anti-alias fills an arc centered at (x,y) with radius I<rad> covering
383 the range of angles in degrees from d1 to d2, with the fill object.
389 i_arc_aa_cfill(i_img *im, double x, double y, double rad, double d1, double d2,
391 double *xvals, *yvals;
394 arc_poly(&count, &xvals, &yvals, x, y, rad, d1, d2);
396 i_poly_aa_cfill(im, count, xvals, yvals, fill);
402 /* Temporary AA HACK */
405 typedef i_img_dim frac;
406 static frac float_to_frac(double x) { return (frac)(0.5+x*16.0); }
410 polar_to_plane(double cx, double cy, float angle, double radius, frac *x, frac *y) {
411 *x = float_to_frac(cx+radius*cos(angle));
412 *y = float_to_frac(cy+radius*sin(angle));
417 make_minmax_list(pIMCTX, i_mmarray *dot, double x, double y, double radius) {
419 float astep = radius>0.1 ? .5/radius : 10;
420 frac cx, cy, lx, ly, sx, sy;
422 im_log((aIMCTX, 1, "make_minmax_list(dot %p, x %.2f, y %.2f, radius %.2f)\n", dot, x, y, radius));
424 polar_to_plane(x, y, angle, radius, &sx, &sy);
426 for(angle = 0.0; angle<361; angle +=astep) {
428 polar_to_plane(x, y, angle, radius, &cx, &cy);
431 if (fabs(cx-lx) > fabs(cy-ly)) {
434 ccx = lx; lx = cx; cx = ccx;
435 ccy = ly; ly = cy; cy = ccy;
438 for(ccx=lx; ccx<=cx; ccx++) {
439 ccy = ly + ((cy-ly)*(ccx-lx))/(cx-lx);
440 i_mmarray_add(dot, ccx, ccy);
446 ccy = ly; ly = cy; cy = ccy;
447 ccx = lx; lx = cx; cx = ccx;
450 for(ccy=ly; ccy<=cy; ccy++) {
451 if (cy-ly) ccx = lx + ((cx-lx)*(ccy-ly))/(cy-ly); else ccx = lx;
452 i_mmarray_add(dot, ccx, ccy);
458 /* Get the number of subpixels covered */
462 i_pixel_coverage(i_mmarray *dot, i_img_dim x, i_img_dim y) {
468 for(cy=y*16; cy<(y+1)*16; cy++) {
469 frac tmin = dot->data[cy].min;
470 frac tmax = dot->data[cy].max;
472 if (tmax == -1 || tmin > maxx || tmax < minx) continue;
474 if (tmin < minx) tmin = minx;
475 if (tmax > maxx) tmax = maxx;
483 =item i_circle_aa(im, x, y, rad, color)
486 =synopsis i_circle_aa(im, 50, 50, 45, &color);
488 Anti-alias fills a circle centered at (x,y) for radius I<rad> with
494 i_circle_aa(i_img *im, double x, double y, double rad, const i_color *val) {
500 im_log((aIMCTX, 1, "i_circle_aa(im %p, centre(" i_DFp "), rad %.2f, val %p)\n",
501 im, i_DFcp(x, y), rad, val));
503 i_mmarray_cr(&dot,16*im->ysize);
504 make_minmax_list(aIMCTX, &dot, x, y, rad);
506 for(ly = 0; ly<im->ysize; ly++) {
507 int ix, cy, minx = INT_MAX, maxx = INT_MIN;
509 /* Find the left/rightmost set subpixels */
510 for(cy = 0; cy<16; cy++) {
511 frac tmin = dot.data[ly*16+cy].min;
512 frac tmax = dot.data[ly*16+cy].max;
513 if (tmax == -1) continue;
515 if (minx > tmin) minx = tmin;
516 if (maxx < tmax) maxx = tmax;
519 if (maxx == INT_MIN) continue; /* no work to be done for this row of pixels */
523 for(ix=minx; ix<=maxx; ix++) {
524 int cnt = i_pixel_coverage(&dot, ix, ly);
525 if (cnt>255) cnt = 255;
526 if (cnt) { /* should never be true */
528 float ratio = (float)cnt/255.0;
529 i_gpix(im, ix, ly, &temp);
530 for(ch=0;ch<im->channels; ch++) temp.channel[ch] = (unsigned char)((float)val->channel[ch]*ratio + (float)temp.channel[ch]*(1.0-ratio));
531 i_ppix(im, ix, ly, &temp);
539 =item i_circle_out(im, x, y, r, col)
542 =synopsis i_circle_out(im, 50, 50, 45, &color);
544 Draw a circle outline centered at (x,y) with radius r,
553 (x, y) - the center of the circle
557 r - the radius of the circle in pixels, must be non-negative
561 Returns non-zero on success.
569 i_circle_out(i_img *im, i_img_dim xc, i_img_dim yc, i_img_dim r,
570 const i_color *col) {
576 im_clear_error(aIMCTX);
579 im_push_error(aIMCTX, 0, "circle: radius must be non-negative");
583 i_ppix(im, xc+r, yc, col);
584 i_ppix(im, xc-r, yc, col);
585 i_ppix(im, xc, yc+r, col);
586 i_ppix(im, xc, yc-r, col);
603 i_ppix(im, xc + x, yc + y, col);
604 i_ppix(im, xc + x, yc - y, col);
605 i_ppix(im, xc - x, yc + y, col);
606 i_ppix(im, xc - x, yc - y, col);
608 i_ppix(im, xc + y, yc + x, col);
609 i_ppix(im, xc + y, yc - x, col);
610 i_ppix(im, xc - y, yc + x, col);
611 i_ppix(im, xc - y, yc - x, col);
621 Convert an angle in degrees into an angle measure we can generate
622 simply from the numbers we have when drawing the circle.
628 arc_seg(double angle, int scale) {
629 i_img_dim seg = (angle + 45) / 90;
630 double remains = angle - seg * 90; /* should be in the range [-45,45] */
634 if (seg == 4 && remains > 0)
637 return scale * (seg * 2 + sin(remains * PI/180));
641 =item i_arc_out(im, x, y, r, d1, d2, col)
644 =synopsis i_arc_out(im, 50, 50, 45, 45, 135, &color);
646 Draw an arc outline centered at (x,y) with radius r, non-anti-aliased
647 over the angle range d1 through d2 degrees.
655 (x, y) - the center of the circle
659 r - the radius of the circle in pixels, must be non-negative
663 d1, d2 - the range of angles to draw the arc over, in degrees.
667 Returns non-zero on success.
675 i_arc_out(i_img *im, i_img_dim xc, i_img_dim yc, i_img_dim r,
676 double d1, double d2, const i_color *col) {
680 i_img_dim segs[2][2];
683 i_img_dim seg_d1, seg_d2;
685 i_img_dim scale = r + 1;
686 i_img_dim seg1 = scale * 2;
687 i_img_dim seg2 = scale * 4;
688 i_img_dim seg3 = scale * 6;
689 i_img_dim seg4 = scale * 8;
691 im_clear_error(aIMCTX);
694 im_push_error(aIMCTX, 0, "arc: radius must be non-negative");
698 return i_circle_out(im, xc, yc, r, col);
701 d1 += 360 * floor((-d1 + 359) / 360);
703 d2 += 360 * floor((-d2 + 359) / 360);
706 seg_d1 = arc_seg(d1, scale);
707 seg_d2 = arc_seg(d2, scale);
708 if (seg_d2 < seg_d1) {
709 /* split into two segments */
722 for (seg_num = 0; seg_num < seg_count; ++seg_num) {
723 i_img_dim seg_start = segs[seg_num][0];
724 i_img_dim seg_end = segs[seg_num][1];
726 i_ppix(im, xc+r, yc, col);
727 if (seg_start <= seg1 && seg_end >= seg1)
728 i_ppix(im, xc, yc+r, col);
729 if (seg_start <= seg2 && seg_end >= seg2)
730 i_ppix(im, xc-r, yc, col);
731 if (seg_start <= seg3 && seg_end >= seg3)
732 i_ppix(im, xc, yc-r, col);
750 if (seg_start <= sin_th && seg_end >= sin_th)
751 i_ppix(im, xc + x, yc + y, col);
752 if (seg_start <= seg1 - sin_th && seg_end >= seg1 - sin_th)
753 i_ppix(im, xc + y, yc + x, col);
755 if (seg_start <= seg1 + sin_th && seg_end >= seg1 + sin_th)
756 i_ppix(im, xc - y, yc + x, col);
757 if (seg_start <= seg2 - sin_th && seg_end >= seg2 - sin_th)
758 i_ppix(im, xc - x, yc + y, col);
760 if (seg_start <= seg2 + sin_th && seg_end >= seg2 + sin_th)
761 i_ppix(im, xc - x, yc - y, col);
762 if (seg_start <= seg3 - sin_th && seg_end >= seg3 - sin_th)
763 i_ppix(im, xc - y, yc - x, col);
765 if (seg_start <= seg3 + sin_th && seg_end >= seg3 + sin_th)
766 i_ppix(im, xc + y, yc - x, col);
767 if (seg_start <= seg4 - sin_th && seg_end >= seg4 - sin_th)
768 i_ppix(im, xc + x, yc - y, col);
776 cover(i_img_dim r, i_img_dim j) {
777 double rjsqrt = sqrt(r*r - j*j);
779 return ceil(rjsqrt) - rjsqrt;
783 =item i_circle_out_aa(im, xc, yc, r, col)
785 =synopsis i_circle_out_aa(im, 50, 50, 45, &color);
787 Draw a circle outline centered at (x,y) with radius r, anti-aliased.
795 (xc, yc) - the center of the circle
799 r - the radius of the circle in pixels, must be non-negative
803 col - an i_color for the color to draw in.
807 Returns non-zero on success.
811 Based on "Fast Anti-Aliased Circle Generation", Xiaolin Wu, Graphics
814 I use floating point for I<D> since for large circles the precision of
815 a [0,255] value isn't sufficient when approaching the end of the
821 i_circle_out_aa(i_img *im, i_img_dim xc, i_img_dim yc, i_img_dim r, const i_color *col) {
824 i_color workc = *col;
825 int orig_alpha = col->channel[3];
828 im_clear_error(aIMCTX);
830 im_push_error(aIMCTX, 0, "arc: radius must be non-negative");
836 i_ppix_norm(im, xc+i, yc+j, col);
837 i_ppix_norm(im, xc-i, yc+j, col);
838 i_ppix_norm(im, xc+j, yc+i, col);
839 i_ppix_norm(im, xc+j, yc-i, col);
846 cv = (int)(d * 255 + 0.5);
852 workc.channel[3] = orig_alpha * inv_cv / 255;
853 i_ppix_norm(im, xc+i, yc+j, &workc);
854 i_ppix_norm(im, xc-i, yc+j, &workc);
855 i_ppix_norm(im, xc+i, yc-j, &workc);
856 i_ppix_norm(im, xc-i, yc-j, &workc);
859 i_ppix_norm(im, xc+j, yc+i, &workc);
860 i_ppix_norm(im, xc-j, yc+i, &workc);
861 i_ppix_norm(im, xc+j, yc-i, &workc);
862 i_ppix_norm(im, xc-j, yc-i, &workc);
866 workc.channel[3] = orig_alpha * cv / 255;
867 i_ppix_norm(im, xc+i-1, yc+j, &workc);
868 i_ppix_norm(im, xc-i+1, yc+j, &workc);
869 i_ppix_norm(im, xc+i-1, yc-j, &workc);
870 i_ppix_norm(im, xc-i+1, yc-j, &workc);
873 i_ppix_norm(im, xc+j, yc+i-1, &workc);
874 i_ppix_norm(im, xc-j, yc+i-1, &workc);
875 i_ppix_norm(im, xc+j, yc-i+1, &workc);
876 i_ppix_norm(im, xc-j, yc-i+1, &workc);
886 =item i_arc_out_aa(im, xc, yc, r, d1, d2, col)
888 =synopsis i_arc_out_aa(im, 50, 50, 45, 45, 125, &color);
890 Draw a circle arc outline centered at (x,y) with radius r, from angle
891 d1 degrees through angle d2 degrees, anti-aliased.
899 (xc, yc) - the center of the circle
903 r - the radius of the circle in pixels, must be non-negative
907 d1, d2 - the range of angle in degrees to draw the arc through. If
908 d2-d1 >= 360 a full circle is drawn.
912 Returns non-zero on success.
916 Based on "Fast Anti-Aliased Circle Generation", Xiaolin Wu, Graphics
922 i_arc_out_aa(i_img *im, i_img_dim xc, i_img_dim yc, i_img_dim r, double d1, double d2, const i_color *col) {
925 i_color workc = *col;
926 i_img_dim segs[2][2];
929 i_img_dim seg_d1, seg_d2;
931 int orig_alpha = col->channel[3];
932 i_img_dim scale = r + 1;
933 i_img_dim seg1 = scale * 2;
934 i_img_dim seg2 = scale * 4;
935 i_img_dim seg3 = scale * 6;
936 i_img_dim seg4 = scale * 8;
939 im_clear_error(aIMCTX);
941 im_push_error(aIMCTX, 0, "arc: radius must be non-negative");
945 return i_circle_out_aa(im, xc, yc, r, col);
948 d1 += 360 * floor((-d1 + 359) / 360);
950 d2 += 360 * floor((-d2 + 359) / 360);
953 seg_d1 = arc_seg(d1, scale);
954 seg_d2 = arc_seg(d2, scale);
955 if (seg_d2 < seg_d1) {
956 /* split into two segments */
969 for (seg_num = 0; seg_num < seg_count; ++seg_num) {
970 i_img_dim seg_start = segs[seg_num][0];
971 i_img_dim seg_end = segs[seg_num][1];
978 i_ppix_norm(im, xc+i, yc+j, col);
979 if (seg_start <= seg1 && seg_end >= seg1)
980 i_ppix_norm(im, xc+j, yc+i, col);
981 if (seg_start <= seg2 && seg_end >= seg2)
982 i_ppix_norm(im, xc-i, yc+j, col);
983 if (seg_start <= seg3 && seg_end >= seg3)
984 i_ppix_norm(im, xc+j, yc-i, col);
991 cv = (int)(d * 255 + 0.5);
998 workc.channel[3] = orig_alpha * inv_cv / 255;
1000 if (seg_start <= sin_th && seg_end >= sin_th)
1001 i_ppix_norm(im, xc+i, yc+j, &workc);
1002 if (seg_start <= seg2 - sin_th && seg_end >= seg2 - sin_th)
1003 i_ppix_norm(im, xc-i, yc+j, &workc);
1004 if (seg_start <= seg4 - sin_th && seg_end >= seg4 - sin_th)
1005 i_ppix_norm(im, xc+i, yc-j, &workc);
1006 if (seg_start <= seg2 + sin_th && seg_end >= seg2 + sin_th)
1007 i_ppix_norm(im, xc-i, yc-j, &workc);
1010 if (seg_start <= seg1 - sin_th && seg_end >= seg1 - sin_th)
1011 i_ppix_norm(im, xc+j, yc+i, &workc);
1012 if (seg_start <= seg1 + sin_th && seg_end >= seg1 + sin_th)
1013 i_ppix_norm(im, xc-j, yc+i, &workc);
1014 if (seg_start <= seg3 + sin_th && seg_end >= seg3 + sin_th)
1015 i_ppix_norm(im, xc+j, yc-i, &workc);
1016 if (seg_start <= seg3 - sin_th && seg_end >= seg3 - sin_th)
1017 i_ppix_norm(im, xc-j, yc-i, &workc);
1021 workc.channel[3] = orig_alpha * cv / 255;
1022 if (seg_start <= sin_th && seg_end >= sin_th)
1023 i_ppix_norm(im, xc+i-1, yc+j, &workc);
1024 if (seg_start <= seg2 - sin_th && seg_end >= seg2 - sin_th)
1025 i_ppix_norm(im, xc-i+1, yc+j, &workc);
1026 if (seg_start <= seg4 - sin_th && seg_end >= seg4 - sin_th)
1027 i_ppix_norm(im, xc+i-1, yc-j, &workc);
1028 if (seg_start <= seg2 + sin_th && seg_end >= seg2 + sin_th)
1029 i_ppix_norm(im, xc-i+1, yc-j, &workc);
1031 if (seg_start <= seg1 - sin_th && seg_end >= seg1 - sin_th)
1032 i_ppix_norm(im, xc+j, yc+i-1, &workc);
1033 if (seg_start <= seg1 + sin_th && seg_end >= seg1 + sin_th)
1034 i_ppix_norm(im, xc-j, yc+i-1, &workc);
1035 if (seg_start <= seg3 + sin_th && seg_end >= seg3 + sin_th)
1036 i_ppix_norm(im, xc+j, yc-i+1, &workc);
1037 if (seg_start <= seg3 - sin_th && seg_end >= seg3 - sin_th)
1038 i_ppix_norm(im, xc-j, yc-i+1, &workc);
1048 =item i_box(im, x1, y1, x2, y2, color)
1051 =synopsis i_box(im, 0, 0, im->xsize-1, im->ysize-1, &color).
1053 Outlines the box from (x1,y1) to (x2,y2) inclusive with I<color>.
1059 i_box(i_img *im,i_img_dim x1,i_img_dim y1,i_img_dim x2,i_img_dim y2,const i_color *val) {
1061 mm_log((1,"i_box(im* %p, p1(" i_DFp "), p2(" i_DFp "),val %p)\n",
1062 im, i_DFcp(x1,y1), i_DFcp(x2,y2), val));
1063 for(x=x1;x<x2+1;x++) {
1064 i_ppix(im,x,y1,val);
1065 i_ppix(im,x,y2,val);
1067 for(y=y1;y<y2+1;y++) {
1068 i_ppix(im,x1,y,val);
1069 i_ppix(im,x2,y,val);
1074 =item i_box_filled(im, x1, y1, x2, y2, color)
1077 =synopsis i_box_filled(im, 0, 0, im->xsize-1, im->ysize-1, &color);
1079 Fills the box from (x1,y1) to (x2,y2) inclusive with color.
1085 i_box_filled(i_img *im,i_img_dim x1,i_img_dim y1,i_img_dim x2,i_img_dim y2, const i_color *val) {
1086 i_img_dim x, y, width;
1089 mm_log((1,"i_box_filled(im* %p, p1(" i_DFp "), p2(" i_DFp "),val %p)\n",
1090 im, i_DFcp(x1, y1), i_DFcp(x2,y2) ,val));
1092 if (x1 > x2 || y1 > y2
1094 || x1 >= im->xsize || y1 > im->ysize)
1099 if (x2 >= im->xsize)
1103 if (y2 >= im->ysize)
1106 width = x2 - x1 + 1;
1108 if (im->type == i_palette_type
1109 && i_findcolor(im, val, &index)) {
1110 i_palidx *line = mymalloc(sizeof(i_palidx) * width);
1112 for (x = 0; x < width; ++x)
1115 for (y = y1; y <= y2; ++y)
1116 i_ppal(im, x1, x2+1, y, line);
1121 i_color *line = mymalloc(sizeof(i_color) * width);
1123 for (x = 0; x < width; ++x)
1126 for (y = y1; y <= y2; ++y)
1127 i_plin(im, x1, x2+1, y, line);
1134 =item i_box_filledf(im, x1, y1, x2, y2, color)
1137 =synopsis i_box_filledf(im, 0, 0, im->xsize-1, im->ysize-1, &fcolor);
1139 Fills the box from (x1,y1) to (x2,y2) inclusive with a floating point
1146 i_box_filledf(i_img *im,i_img_dim x1,i_img_dim y1,i_img_dim x2,i_img_dim y2, const i_fcolor *val) {
1147 i_img_dim x, y, width;
1149 mm_log((1,"i_box_filledf(im* %p, p1(" i_DFp "), p2(" i_DFp "),val %p)\n",
1150 im, i_DFcp(x1, y1), i_DFcp(x2, y2), val));
1152 if (x1 > x2 || y1 > y2
1154 || x1 >= im->xsize || y1 > im->ysize)
1159 if (x2 >= im->xsize)
1163 if (y2 >= im->ysize)
1166 width = x2 - x1 + 1;
1168 if (im->bits <= 8) {
1170 c.rgba.r = SampleFTo8(val->rgba.r);
1171 c.rgba.g = SampleFTo8(val->rgba.g);
1172 c.rgba.b = SampleFTo8(val->rgba.b);
1173 c.rgba.a = SampleFTo8(val->rgba.a);
1175 i_box_filled(im, x1, y1, x2, y2, &c);
1178 i_fcolor *line = mymalloc(sizeof(i_fcolor) * width);
1180 for (x = 0; x < width; ++x)
1183 for (y = y1; y <= y2; ++y)
1184 i_plinf(im, x1, x2+1, y, line);
1193 =item i_box_cfill(im, x1, y1, x2, y2, fill)
1196 =synopsis i_box_cfill(im, 0, 0, im->xsize-1, im->ysize-1, fill);
1198 Fills the box from (x1,y1) to (x2,y2) inclusive with fill.
1204 i_box_cfill(i_img *im,i_img_dim x1,i_img_dim y1,i_img_dim x2,i_img_dim y2,i_fill_t *fill) {
1207 mm_log((1,"i_box_cfill(im* %p, p1(" i_DFp "), p2(" i_DFp "), fill %p)\n",
1208 im, i_DFcp(x1, y1), i_DFcp(x2,y2), fill));
1217 if (y2 >= im->ysize)
1219 if (x1 >= x2 || y1 > y2)
1222 i_render_init(&r, im, x2-x1);
1224 i_render_fill(&r, x1, y1, x2-x1, NULL, fill);
1231 =item i_line(C<im>, C<x1>, C<y1>, C<x2>, C<y2>, C<color>, C<endp>)
1235 =for stopwords Bresenham's
1237 Draw a line to image using Bresenham's line drawing algorithm
1239 im - image to draw to
1240 x1 - starting x coordinate
1241 y1 - starting x coordinate
1242 x2 - starting x coordinate
1243 y2 - starting x coordinate
1244 color - color to write to image
1245 endp - endpoint flag (boolean)
1251 i_line(i_img *im, i_img_dim x1, i_img_dim y1, i_img_dim x2, i_img_dim y2, const i_color *val, int endp) {
1260 /* choose variable to iterate on */
1261 if (i_abs(dx) > i_abs(dy)) {
1262 i_img_dim dx2, dy2, cpy;
1267 t = x1; x1 = x2; x2 = t;
1268 t = y1; y1 = y2; y2 = t;
1286 for(x=x1; x<x2-1; x++) {
1293 i_ppix(im, x+1, y, val);
1296 i_img_dim dy2, dx2, cpx;
1301 t = x1; x1 = x2; x2 = t;
1302 t = y1; y1 = y2; y2 = t;
1320 for(y=y1; y<y2-1; y++) {
1327 i_ppix(im, x, y+1, val);
1331 i_ppix(im, x1, y1, val);
1332 i_ppix(im, x2, y2, val);
1334 if (x1 != x2 || y1 != y2)
1335 i_ppix(im, x1, y1, val);
1341 i_line_dda(i_img *im, i_img_dim x1, i_img_dim y1, i_img_dim x2, i_img_dim y2, i_color *val) {
1346 for(x=x1; x<=x2; x++) {
1347 dy = y1+ (x-x1)/(double)(x2-x1)*(y2-y1);
1348 i_ppix(im, x, (i_img_dim)(dy+0.5), val);
1353 =item i_line_aa(C<im>, C<x1>, C<x2>, C<y1>, C<y2>, C<color>, C<endp>)
1357 Anti-alias draws a line from (x1,y1) to (x2, y2) in color.
1359 The point (x2, y2) is drawn only if C<endp> is set.
1365 i_line_aa(i_img *im, i_img_dim x1, i_img_dim y1, i_img_dim x2, i_img_dim y2, const i_color *val, int endp) {
1373 /* choose variable to iterate on */
1374 if (i_abs(dx) > i_abs(dy)) {
1375 i_img_dim dx2, dy2, cpy;
1380 t = x1; x1 = x2; x2 = t;
1381 t = y1; y1 = y2; y2 = t;
1395 p = dy2 - dx2; /* this has to be like this for AA */
1399 for(x=x1; x<x2-1; x++) {
1402 double t = (dy) ? -(float)(p)/(float)(dx2) : 1;
1409 i_gpix(im,x+1,y,&tval);
1410 for(ch=0;ch<im->channels;ch++)
1411 tval.channel[ch]=(unsigned char)(t1*(float)tval.channel[ch]+t2*(float)val->channel[ch]);
1412 i_ppix(im,x+1,y,&tval);
1414 i_gpix(im,x+1,y+cpy,&tval);
1415 for(ch=0;ch<im->channels;ch++)
1416 tval.channel[ch]=(unsigned char)(t2*(float)tval.channel[ch]+t1*(float)val->channel[ch]);
1417 i_ppix(im,x+1,y+cpy,&tval);
1427 i_img_dim dy2, dx2, cpx;
1432 t = x1; x1 = x2; x2 = t;
1433 t = y1; y1 = y2; y2 = t;
1447 p = dx2 - dy2; /* this has to be like this for AA */
1451 for(y=y1; y<y2-1; y++) {
1454 double t = (dx) ? -(double)(p)/(double)(dy2) : 1;
1461 i_gpix(im,x,y+1,&tval);
1462 for(ch=0;ch<im->channels;ch++)
1463 tval.channel[ch]=(unsigned char)(t1*(double)tval.channel[ch]+t2*(double)val->channel[ch]);
1464 i_ppix(im,x,y+1,&tval);
1466 i_gpix(im,x+cpx,y+1,&tval);
1467 for(ch=0;ch<im->channels;ch++)
1468 tval.channel[ch]=(unsigned char)(t2*(double)tval.channel[ch]+t1*(double)val->channel[ch]);
1469 i_ppix(im,x+cpx,y+1,&tval);
1482 i_ppix(im, x1, y1, val);
1483 i_ppix(im, x2, y2, val);
1485 if (x1 != x2 || y1 != y2)
1486 i_ppix(im, x1, y1, val);
1493 perm(i_img_dim n,i_img_dim k) {
1497 for(i=k+1;i<=n;i++) r*=i;
1498 for(i=1;i<=(n-k);i++) r/=i;
1503 /* Note in calculating t^k*(1-t)^(n-k)
1504 we can start by using t^0=1 so this simplifies to
1505 t^0*(1-t)^n - we want to multiply that with t/(1-t) each iteration
1506 to get a new level - this may lead to errors who knows lets test it */
1509 i_bezier_multi(i_img *im,int l,const double *x,const double *y, const i_color *val) {
1513 i_img_dim lx = 0,ly = 0;
1517 /* this is the same size as the x and y arrays, so shouldn't overflow */
1518 bzcoef=mymalloc(sizeof(double)*l); /* checked 5jul05 tonyc */
1519 for(k=0;k<l;k++) bzcoef[k]=perm(n,k);
1523 /* for(k=0;k<l;k++) printf("bzcoef: %d -> %f\n",k,bzcoef[k]); */
1525 for(t=0;t<=1;t+=0.005) {
1530 /* cx+=bzcoef[k]*x[k]*pow(t,k)*pow(1-t,n-k);
1531 cy+=bzcoef[k]*y[k]*pow(t,k)*pow(1-t,n-k);*/
1533 cx+=bzcoef[k]*x[k]*ccoef;
1534 cy+=bzcoef[k]*y[k]*ccoef;
1537 /* printf("%f -> (%d,%d)\n",t,(int)(0.5+cx),(int)(0.5+cy)); */
1539 i_line_aa(im,lx,ly,(i_img_dim)(0.5+cx),(i_img_dim)(0.5+cy),val, 1);
1541 /* i_ppix(im,(i_img_dim)(0.5+cx),(i_img_dim)(0.5+cy),val); */
1542 lx=(i_img_dim)(0.5+cx);
1543 ly=(i_img_dim)(0.5+cy);
1551 REF: Graphics Gems I. page 282+
1555 /* This should be moved into a seperate file? */
1557 /* This is the truncation used:
1559 a double is multiplied by 16 and then truncated.
1560 This means that 0 -> 0
1561 So a triangle of (0,0) (10,10) (10,0) Will look like it's
1562 not filling the (10,10) point nor the (10,0)-(10,10) line segment
1567 /* Flood fill algorithm - based on the Ken Fishkins (pixar) gem in
1572 i_img_dim mylx,myrx;
1573 i_img_dim dadlx,dadrx;
1582 struct stack_element {
1583 i_img_dim myLx,myRx;
1584 i_img_dim dadLx,dadRx;
1590 /* create the link data to put push onto the stack */
1593 struct stack_element*
1594 crdata(i_img_dim left,i_img_dim right,i_img_dim dadl,i_img_dim dadr,i_img_dim y, int dir) {
1595 struct stack_element *ste;
1596 ste = mymalloc(sizeof(struct stack_element)); /* checked 5jul05 tonyc */
1602 ste->myDirection = dir;
1606 /* i_ccomp compares two colors and gives true if they are the same */
1608 typedef int (*ff_cmpfunc)(i_color const *c1, i_color const *c2, int channels);
1611 i_ccomp_normal(i_color const *val1, i_color const *val2, int ch) {
1613 for(i = 0; i < ch; i++)
1614 if (val1->channel[i] !=val2->channel[i])
1620 i_ccomp_border(i_color const *val1, i_color const *val2, int ch) {
1622 for(i = 0; i < ch; i++)
1623 if (val1->channel[i] !=val2->channel[i])
1629 i_lspan(i_img *im, i_img_dim seedx, i_img_dim seedy, i_color const *val, ff_cmpfunc cmpfunc) {
1632 if (seedx-1 < 0) break;
1633 i_gpix(im,seedx-1,seedy,&cval);
1634 if (!cmpfunc(val,&cval,im->channels))
1642 i_rspan(i_img *im, i_img_dim seedx, i_img_dim seedy, i_color const *val, ff_cmpfunc cmpfunc) {
1645 if (seedx+1 > im->xsize-1) break;
1646 i_gpix(im,seedx+1,seedy,&cval);
1647 if (!cmpfunc(val,&cval,im->channels)) break;
1653 /* Macro to create a link and push on to the list */
1655 #define ST_PUSH(left,right,dadl,dadr,y,dir) do { \
1656 struct stack_element *s = crdata(left,right,dadl,dadr,y,dir); \
1657 llist_push(st,&s); \
1660 /* pops the shadow on TOS into local variables lx,rx,y,direction,dadLx and dadRx */
1661 /* No overflow check! */
1663 #define ST_POP() do { \
1664 struct stack_element *s; \
1671 direction = s->myDirection; \
1675 #define ST_STACK(dir,dadLx,dadRx,lx,rx,y) do { \
1676 i_img_dim pushrx = rx+1; \
1677 i_img_dim pushlx = lx-1; \
1678 ST_PUSH(lx,rx,pushlx,pushrx,y+dir,dir); \
1680 ST_PUSH(dadRx+1,rx,pushlx,pushrx,y-dir,-dir); \
1681 if (lx < dadLx) ST_PUSH(lx,dadLx-1,pushlx,pushrx,y-dir,-dir); \
1684 #define SET(x,y) btm_set(btm,x,y)
1686 /* INSIDE returns true if pixel is correct color and we haven't set it before. */
1687 #define INSIDE(x,y, seed) ((!btm_test(btm,x,y) && ( i_gpix(im,x,y,&cval),cmpfunc(seed,&cval,channels) ) ))
1691 /* The function that does all the real work */
1693 static struct i_bitmap *
1694 i_flood_fill_low(i_img *im,i_img_dim seedx,i_img_dim seedy,
1695 i_img_dim *bxminp, i_img_dim *bxmaxp, i_img_dim *byminp, i_img_dim *bymaxp,
1696 i_color const *seed, ff_cmpfunc cmpfunc) {
1700 i_img_dim bxmin = seedx;
1701 i_img_dim bxmax = seedx;
1702 i_img_dim bymin = seedy;
1703 i_img_dim bymax = seedy;
1706 struct i_bitmap *btm;
1709 i_img_dim xsize,ysize;
1712 channels = im->channels;
1716 btm = btm_new(xsize, ysize);
1717 st = llist_new(100, sizeof(struct stack_element*));
1719 /* Find the starting span and fill it */
1720 ltx = i_lspan(im, seedx, seedy, seed, cmpfunc);
1721 rtx = i_rspan(im, seedx, seedy, seed, cmpfunc);
1722 for(tx=ltx; tx<=rtx; tx++) SET(tx, seedy);
1726 ST_PUSH(ltx, rtx, ltx, rtx, seedy+1, 1);
1727 ST_PUSH(ltx, rtx, ltx, rtx, seedy-1, -1);
1730 /* Stack variables */
1732 i_img_dim dadLx,dadRx;
1739 ST_POP(); /* sets lx, rx, dadLx, dadRx, y, direction */
1742 if (y<0 || y>ysize-1) continue;
1743 if (bymin > y) bymin=y; /* in the worst case an extra line */
1744 if (bymax < y) bymax=y;
1748 if ( lx >= 0 && (wasIn = INSIDE(lx, y, seed)) ) {
1751 while(lx >= 0 && INSIDE(lx, y, seed)) {
1757 if (bxmin > lx) bxmin = lx;
1758 while(x <= xsize-1) {
1759 /* printf("x=%d\n",x); */
1762 if (INSIDE(x, y, seed)) {
1763 /* case 1: was inside, am still inside */
1766 /* case 2: was inside, am no longer inside: just found the
1767 right edge of a span */
1768 ST_STACK(direction, dadLx, dadRx, lx, (x-1), y);
1770 if (bxmax < x) bxmax = x;
1774 if (x > rx) goto EXT;
1775 if (INSIDE(x, y, seed)) {
1777 /* case 3: Wasn't inside, am now: just found the start of a new run */
1781 /* case 4: Wasn't inside, still isn't */
1786 EXT: /* out of loop */
1788 /* hit an edge of the frame buffer while inside a run */
1789 ST_STACK(direction, dadLx, dadRx, lx, (x-1), y);
1790 if (bxmax < x) bxmax = x;
1805 =item i_flood_fill(C<im>, C<seedx>, C<seedy>, C<color>)
1808 =synopsis i_flood_fill(im, 50, 50, &color);
1810 Flood fills the 4-connected region starting from the point (C<seedx>,
1811 C<seedy>) with I<color>.
1813 Returns false if (C<seedx>, C<seedy>) are outside the image.
1819 i_flood_fill(i_img *im, i_img_dim seedx, i_img_dim seedy, const i_color *dcol) {
1820 i_img_dim bxmin, bxmax, bymin, bymax;
1821 struct i_bitmap *btm;
1826 im_clear_error(aIMCTX);
1827 if (seedx < 0 || seedx >= im->xsize ||
1828 seedy < 0 || seedy >= im->ysize) {
1829 im_push_error(aIMCTX, 0, "i_flood_cfill: Seed pixel outside of image");
1833 /* Get the reference color */
1834 i_gpix(im, seedx, seedy, &val);
1836 btm = i_flood_fill_low(im, seedx, seedy, &bxmin, &bxmax, &bymin, &bymax,
1837 &val, i_ccomp_normal);
1839 for(y=bymin;y<=bymax;y++)
1840 for(x=bxmin;x<=bxmax;x++)
1841 if (btm_test(btm,x,y))
1842 i_ppix(im,x,y,dcol);
1848 =item i_flood_cfill(C<im>, C<seedx>, C<seedy>, C<fill>)
1851 =synopsis i_flood_cfill(im, 50, 50, fill);
1853 Flood fills the 4-connected region starting from the point (C<seedx>,
1854 C<seedy>) with C<fill>.
1856 Returns false if (C<seedx>, C<seedy>) are outside the image.
1862 i_flood_cfill(i_img *im, i_img_dim seedx, i_img_dim seedy, i_fill_t *fill) {
1863 i_img_dim bxmin, bxmax, bymin, bymax;
1864 struct i_bitmap *btm;
1868 im_clear_error(aIMCTX);
1870 if (seedx < 0 || seedx >= im->xsize ||
1871 seedy < 0 || seedy >= im->ysize) {
1872 im_push_error(aIMCTX, 0, "i_flood_cfill: Seed pixel outside of image");
1876 /* Get the reference color */
1877 i_gpix(im, seedx, seedy, &val);
1879 btm = i_flood_fill_low(im, seedx, seedy, &bxmin, &bxmax, &bymin, &bymax,
1880 &val, i_ccomp_normal);
1882 cfill_from_btm(im, fill, btm, bxmin, bxmax, bymin, bymax);
1889 =item i_flood_fill_border(C<im>, C<seedx>, C<seedy>, C<color>, C<border>)
1892 =synopsis i_flood_fill_border(im, 50, 50, &color, &border);
1894 Flood fills the 4-connected region starting from the point (C<seedx>,
1895 C<seedy>) with C<color>, fill stops when the fill reaches a pixels
1896 with color C<border>.
1898 Returns false if (C<seedx>, C<seedy>) are outside the image.
1904 i_flood_fill_border(i_img *im, i_img_dim seedx, i_img_dim seedy, const i_color *dcol,
1905 const i_color *border) {
1906 i_img_dim bxmin, bxmax, bymin, bymax;
1907 struct i_bitmap *btm;
1911 im_clear_error(aIMCTX);
1912 if (seedx < 0 || seedx >= im->xsize ||
1913 seedy < 0 || seedy >= im->ysize) {
1914 im_push_error(aIMCTX, 0, "i_flood_cfill: Seed pixel outside of image");
1918 btm = i_flood_fill_low(im, seedx, seedy, &bxmin, &bxmax, &bymin, &bymax,
1919 border, i_ccomp_border);
1921 for(y=bymin;y<=bymax;y++)
1922 for(x=bxmin;x<=bxmax;x++)
1923 if (btm_test(btm,x,y))
1924 i_ppix(im,x,y,dcol);
1930 =item i_flood_cfill_border(C<im>, C<seedx>, C<seedy>, C<fill>, C<border>)
1933 =synopsis i_flood_cfill_border(im, 50, 50, fill, border);
1935 Flood fills the 4-connected region starting from the point (C<seedx>,
1936 C<seedy>) with C<fill>, the fill stops when it reaches pixels of color
1939 Returns false if (C<seedx>, C<seedy>) are outside the image.
1945 i_flood_cfill_border(i_img *im, i_img_dim seedx, i_img_dim seedy, i_fill_t *fill,
1946 const i_color *border) {
1947 i_img_dim bxmin, bxmax, bymin, bymax;
1948 struct i_bitmap *btm;
1951 im_clear_error(aIMCTX);
1953 if (seedx < 0 || seedx >= im->xsize ||
1954 seedy < 0 || seedy >= im->ysize) {
1955 im_push_error(aIMCTX, 0, "i_flood_cfill_border: Seed pixel outside of image");
1959 btm = i_flood_fill_low(im, seedx, seedy, &bxmin, &bxmax, &bymin, &bymax,
1960 border, i_ccomp_border);
1962 cfill_from_btm(im, fill, btm, bxmin, bxmax, bymin, bymax);
1970 cfill_from_btm(i_img *im, i_fill_t *fill, struct i_bitmap *btm,
1971 i_img_dim bxmin, i_img_dim bxmax, i_img_dim bymin, i_img_dim bymax) {
1977 i_render_init(&r, im, bxmax - bxmin + 1);
1979 for(y=bymin; y<=bymax; y++) {
1981 while (x <= bxmax) {
1982 while (x <= bxmax && !btm_test(btm, x, y)) {
1985 if (btm_test(btm, x, y)) {
1987 while (x <= bxmax && btm_test(btm, x, y)) {
1990 i_render_fill(&r, start, y, x-start, NULL, fill);