6 #define IMTRUNC(x) ((int)((x)*16))
8 #define coarse(x) ((x)/16)
9 #define fine(x) ((x)%16)
28 int updown; /* -1 means down, 0 vertical, 1 up */
42 int *line; /* temporary buffer for scanline */
43 int linelen; /* length of scanline */
44 ss_pair *ss_list; /* list of start stop linepairs */
45 int ssnext; /* index of the next pair to use */
46 int sslen; /* maximum number of start stop pairs */
58 p_compy(const p_point *p1, const p_point *p2) {
59 if (p1->y > p2->y) return 1;
60 if (p1->y < p2->y) return -1;
66 p_compx(const p_slice *p1, const p_slice *p2) {
67 if (p1->x > p2->x) return 1;
68 if (p1->x < p2->x) return -1;
72 /* Change this to int? and round right goddamn it! */
76 p_eval_aty(p_line *l, pcord y) {
79 if (t) return ( (y-l->y1)*l->x2 + (l->y2-y)*l->x1 )/t;
80 return (l->x1+l->x2)/2.0;
85 p_eval_atx(p_line *l, pcord x) {
88 if (t) return ( (x-l->x1)*l->y2 + (l->x2-x)*l->y1 )/t;
89 return (l->y1+l->y2)/2.0;
94 line_set_new(double *x, double *y, int l) {
96 p_line *lset = mymalloc(sizeof(p_line) * l);
100 lset[i].x1 = IMTRUNC(x[i]);
101 lset[i].y1 = IMTRUNC(y[i]);
102 lset[i].x2 = IMTRUNC(x[(i+1)%l]);
103 lset[i].y2 = IMTRUNC(y[(i+1)%l]);
104 lset[i].miny=min(lset[i].y1,lset[i].y2);
105 lset[i].maxy=max(lset[i].y1,lset[i].y2);
106 lset[i].minx=min(lset[i].x1,lset[i].x2);
107 lset[i].maxx=max(lset[i].x1,lset[i].x2);
114 point_set_new(double *x, double *y, int l) {
116 p_point *pset = mymalloc(sizeof(p_point) * l);
120 pset[i].x=IMTRUNC(x[i]);
121 pset[i].y=IMTRUNC(y[i]);
128 p_line_dump(p_line *l) {
129 printf("%d (%d,%d)->(%d,%d) [%d-%d,%d-%d]\n", l->n, l->x1, l->y1, l->x2, l->y2,
130 l->minx, l->maxx, l->miny, l->maxy);
136 ss_scanline_reset(ss_scanline *ss) {
138 memset(ss->line, 0, sizeof(int) * ss->linelen);
143 ss_scanline_init(ss_scanline *ss, int linelen, int linepairs) {
144 ss->line = mymalloc( sizeof(int) * linelen );
145 ss->linelen = linelen;
146 ss->ss_list = mymalloc( sizeof(ss_pair) * linepairs );
147 ss->sslen = linepairs;
148 ss_scanline_reset(ss);
152 /* returns the number of matches */
156 lines_in_interval(p_line *lset, int l, p_slice *tllist, pcord cc) {
160 if (cc >= lset[k].miny && cc <= lset[k].maxy) {
161 if (lset[k].miny == lset[k].maxy) {
162 POLY_DEB( printf(" HORIZONTAL - skipped\n") );
165 tllist[count].x=p_eval_aty(&lset[k],cc);
174 /* marks the up variable for all lines in a slice */
178 mark_updown_slices(p_line *lset, p_slice *tllist, int count) {
181 for(k=0; k<count; k+=2) {
182 l = lset + tllist[k].n;
183 r = lset + tllist[k+1].n;
185 if (l->y1 == l->y2) {
186 mm_log((1, "mark_updown_slices: horizontal line being marked: internal error!\n"));
190 if (r->y1 == r->y2) {
191 mm_log((1, "mark_updown_slices: horizontal line being marked: internal error!\n"));
195 l->updown = (l->x1 == l->x2) ?
199 (l->y1 > l->y2) ? -1 : 1
201 (l->y1 > l->y2) ? 1 : -1;
203 r->updown = (r->x1 == r->x2) ?
207 (r->y1 > r->y2) ? -1 : 1
209 (r->y1 > r->y2) ? 1 : -1;
211 POLY_DEB( printf("marking left line %d as %s(%d)\n", l->n,
212 l->updown ? l->updown == 1 ? "up" : "down" : "vert", l->updown, l->updown);
213 printf("marking right line %d as %s(%d)\n", r->n,
214 r->updown ? r->updown == 1 ? "up" : "down" : "vert", r->updown, r->updown);
224 if (in>255) { return 255; }
225 else if (in>0) return in;
230 /* This function must be modified later to do proper blending */
233 scanline_flush(i_img *im, ss_scanline *ss, int y, i_color *val) {
236 for(x=0; x<im->xsize; x++) {
237 tv = saturate(ss->line[x]);
238 i_gpix(im, x, y, &t);
239 for(ch=0; ch<im->channels; ch++)
240 t.channel[ch] = tv/255.0 * val->channel[ch] + (1.0-tv/255.0) * t.channel[ch];
241 i_ppix(im, x, y, &t);
249 trap_square(pcord xlen, pcord ylen, double xl, double yl) {
250 POLY_DEB( printf("trap_square: %d %d %.2f %.2f\n", xlen, ylen, xl, yl) );
251 return xlen*ylen-(xl*yl)/2.0;
256 pixel_coverage calculates the 'left side' pixel coverage of a pixel that is
257 within the min/max ranges. The shape always corresponds to a square with some
258 sort of a triangle cut from it (which can also yield a triangle).
264 pixel_coverage(p_line *line, pcord minx, pcord maxx, pcord miny, pcord maxy) {
265 double lycross, rycross;
273 lycross = p_eval_atx(line, minx);
274 rycross = p_eval_atx(line, maxx);
275 l = lycross <= maxy && lycross >= miny; /* true if it enters through left side */
276 r = rycross <= maxy && rycross >= miny; /* true if it enters through left side */
279 printf("%4s(%+d): ", line->updown ? line->updown == 1 ? "up" : "down" : "vert", line->updown);
280 printf("(%2d,%2d) [%3d-%3d, %3d-%3d] lycross=%.2f rycross=%.2f", coarse(minx), coarse(miny), minx, maxx, miny, maxy, lycross, rycross);
281 printf(" l=%d r=%d\n", l, r)
285 return line->updown == 1 ?
286 (double)(maxx-minx) * (2.0*maxy-lycross-rycross)/2.0 /* up case */
288 (double)(maxx-minx) * (lycross+rycross-2*miny)/2.0; /* down case */
290 if (!l && !r) return (maxy-miny)*(maxx*2-p_eval_aty(line, miny)-p_eval_aty(line, maxy))/2.0;
293 return line->updown == 1 ?
294 trap_square(maxx-minx, maxy-miny, p_eval_aty(line, miny)-minx, p_eval_atx(line, minx)-miny) :
295 trap_square(maxx-minx, maxy-miny, p_eval_aty(line, maxy)-minx, maxy-p_eval_atx(line, minx));
299 int r = line->updown == 1 ?
300 (maxx-p_eval_aty(line, maxy))*(maxy-p_eval_atx(line, maxx))/2.0 :
301 (maxx-p_eval_aty(line, miny))*(p_eval_atx(line, maxx)-miny)/2.0;
311 handle the scanline slice in three steps
313 1. Where only the left edge is inside a pixel
314 2a. Where both left and right edge are inside a pixel
315 2b. Where neither left or right edge are inside a pixel
316 3. Where only the right edge is inside a pixel
321 render_slice_scanline(ss_scanline *ss, int y, p_line *l, p_line *r) {
323 pcord miny, maxy; /* y bounds in fine coordinates */
324 pcord lminx, lmaxx; /* left line min/max within y bounds in fine coords */
325 pcord rminx, rmaxx; /* right line min/max within y bounds in fine coords */
326 int cpix; /* x-coordinate of current pixel */
327 int thin; /* boolean for thin/thick segment */
328 int startpix; /* temporary variable for "start of this interval" */
329 int stoppix; /* temporary variable for "end of this interval" */
330 int step2end; /* temporary variable to mark where step2 ends */
332 /* Find the y bounds of scanline_slice */
334 maxy = min( l->maxy, r->maxy );
335 miny = max( l->miny, r->miny );
337 maxy = min( maxy, (y+1)*16 );
338 miny = max( miny, y*16 );
340 lminx = min( p_eval_aty(l, maxy), p_eval_aty(l, miny) );
341 lmaxx = max( p_eval_aty(l, maxy), p_eval_aty(l, miny) );
343 rminx = min( p_eval_aty(r, maxy), p_eval_aty(r, miny) );
344 rmaxx = max( p_eval_aty(r, maxy), p_eval_aty(r, miny) );
346 thin = coarse(lmaxx) >= coarse(rminx);
348 startpix = max( coarse(lminx), 0 );
349 stoppix = min( coarse(rmaxx-1), ss->linelen-1 );
351 for(cpix=startpix; cpix<=stoppix; cpix++) {
352 int lt = coarse(lmaxx-1) >= cpix;
353 int rt = coarse(rminx) <= cpix;
357 POLY_DEB( printf("(%d,%d) lt=%d rt=%d\n", cpix, y, lt, rt) );
359 A = lt ? pixel_coverage(l, cpix*16, cpix*16+16, miny, maxy) : 0;
360 B = lt ? 0 : 16*(maxy-miny);
361 C = rt ? pixel_coverage(r, cpix*16, cpix*16+16, miny, maxy) : 0;
363 POLY_DEB( printf("A=%d B=%d C=%d\n", A, B, C) );
365 ss->line[cpix] += A+B-C;
375 render_slice_scanline_old(ss_scanline *ss, int y, p_line *l, p_line *r) {
377 pcord miny, maxy; /* y bounds in fine coordinates */
378 pcord lminx, lmaxx; /* left line min/max within y bounds in fine coords */
379 pcord rminx, rmaxx; /* right line min/max within y bounds in fine coords */
380 int cpix; /* x-coordinate of current pixel */
381 int thin; /* boolean for thin/thick segment */
382 int startpix; /* temporary variable for "start of this interval" */
383 int stoppix; /* temporary variable for "end of this interval" */
384 int step2end; /* temporary variable to mark where step2 ends */
386 /* Find the y bounds of scanline_slice */
388 maxy = min( l->maxy, r->maxy );
389 miny = max( l->miny, r->miny );
391 maxy = min( maxy, (y+1)*16 );
392 miny = max( miny, y*16 );
394 lminx = min( p_eval_aty(l, maxy), p_eval_aty(l, miny) );
395 lmaxx = max( p_eval_aty(l, maxy), p_eval_aty(l, miny) );
397 rminx = min( p_eval_aty(r, maxy), p_eval_aty(r, miny) );
398 rmaxx = max( p_eval_aty(r, maxy), p_eval_aty(r, miny) );
400 thin = coarse(lmaxx) >= coarse(rminx);
404 startpix = coarse(lminx); /* includes tricky starting pixel */
405 stoppix = min(coarse(lmaxx), coarse(rminx) ); /* last pixel is tricky */
407 /* handle start pixel */
410 if (cpix < stoppix) {
411 ss->line[cpix] += pixel_coverage(l, cpix*16, cpix*16+16, miny, maxy);
412 printf("%2d: step1 - start pixel\n", cpix);
415 for(cpix=startpix+1; cpix<stoppix; cpix++) {
416 printf("%2d: step1 pixel\n", cpix);
417 ss->line[cpix] += l->updown == 1 ?
418 8.0 * (2*maxy-p_eval_atx(l, 16*cpix)-p_eval_atx(l, 16*cpix+16)) /* up case */
420 8.0 * (p_eval_atx(l, 16*cpix)+p_eval_atx(l, 16*cpix+16)-2*miny); /* down case */
424 /* handle stop pixel */
426 if (thin) { /* step 2a */
427 startpix = coarse(rminx);
428 stoppix = coarse(lmaxx+15); /* one more than needed */
430 for(cpix=startpix; cpix<stoppix; cpix++) {
431 printf("%2d: step2a pixel\n", cpix);
433 pixel_coverage(l, cpix*16, cpix*16+16, miny, maxy)
434 +(cpix*16+16-min(cpix*16+16, l->maxx))*(maxy-miny)
435 -pixel_coverage(r, cpix*16, cpix*16+16, miny, maxy);
437 } else { /* step 2b */
438 stoppix = coarse(rminx);
439 for(/* cpix already correct */; cpix<stoppix; cpix++) {
440 printf("%2d: step2b pixel\n", cpix);
441 ss->line[cpix] += 16.0*(maxy-miny);
447 cpix = max(coarse(rminx), coarse(lmaxx+15));
448 stoppix = coarse(rmaxx-15);
450 printf("step3 from %d to %d\n", cpix, stoppix);
452 for(; cpix<stoppix; cpix++) {
453 printf("%2d: step3 pixel\n", cpix);
456 8.0 * (2*maxy-p_eval_atx(r, 16*cpix)-p_eval_atx(r, 16*cpix+16)) /* up case */
458 8.0 * (p_eval_atx(r, 16*cpix)+p_eval_atx(r, 16*cpix+16)-2*miny)); /* down case */
461 ss->line[cpix] += (16.0)*(maxy-miny) - pixel_coverage(r, cpix*16, cpix*16+16, miny, maxy);
469 /* Antialiasing polygon algorithm
471 1. only nice polygons - no crossovers
472 2. 1/16 pixel resolution
473 3. full antialiasing ( complete spectrum of blends )
474 4. uses hardly any memory
475 5. no subsampling phase
479 1. Split into vertical intervals.
480 2. handle each interval
482 For each interval we must:
483 1. find which lines are in it
484 2. order the lines from in increasing x order.
485 since we are assuming no crossovers it is sufficent
486 to check a single point on each line.
492 1. Interval: A vertical segment in which no lines cross nor end.
493 2. Scanline: A physical line, contains 16 subpixels in the horizontal direction
494 3. Slice: A start stop line pair.
500 i_poly_aa(i_img *im, int l, double *x, double *y, i_color *val) {
501 int i ,k; /* Index variables */
502 int clc; /* Lines inside current interval */
503 pcord miny ,maxy; /* Min and max values of the current slice in the subcord system */
505 int cscl; /* Current scanline */
507 ss_scanline templine; /* scanline accumulator */
508 p_point *pset; /* List of points in polygon */
509 p_line *lset; /* List of lines in polygon */
510 p_slice *tllist; /* List of slices */
513 setbuf(stdout, NULL);
516 tllist = mymalloc(sizeof(p_slice)*l);
518 ss_scanline_init(&templine, im->xsize, l);
520 pset = point_set_new(x, y, l);
521 lset = line_set_new(x, y, l);
524 qsort(pset, l, sizeof(p_point), (int(*)(const void *,const void *))p_compy);
528 printf("%d [ %d ] (%d , %d) -> (%d , %d) yspan ( %d , %d )\n",
529 i, lset[i].n, lset[i].x1, lset[i].y1, lset[i].x2, lset[i].y2, lset[i].miny, lset[i].maxy);
531 printf("MAIN LOOP\n\n");
535 /* loop on intervals */
536 for(i=0; i<l-1; i++) {
537 int startscan = max( coarse(pset[i].y), 0);
538 int stopscan = min( coarse(pset[i+1].y+15), im->ysize-1);
539 pcord cc = (pset[i].y + pset[i+1].y)/2;
542 printf("current slice is %d: %d to %d ( cpoint %d ) scanlines %d to %d\n",
543 i, pset[i].y, pset[i+1].y, cc, startscan, stopscan)
546 if (pset[i].y == pset[i+1].y) {
547 POLY_DEB( printf("current slice thickness = 0 => skipping\n") );
551 clc = lines_in_interval(lset, l, tllist, cc);
552 qsort(tllist, clc, sizeof(p_slice), (int(*)(const void *,const void *))p_compx);
554 mark_updown_slices(lset, tllist, clc);
556 POLY_DEB( printf("Interval contains %d lines\n", clc) );
558 for(k=0; k<clc; k++) {
559 int lno = tllist[k].n;
560 p_line *ln = lset+lno;
562 printf("%d: line #%2d: (%2d, %2d)->(%2d, %2d) (%2d/%2d, %2d/%2d) -> (%2d/%2d, %2d/%2d) alignment=%s\n",
563 k, lno, ln->x1, ln->y1, ln->x2, ln->y2,
564 coarse(ln->x1), fine(ln->x1),
565 coarse(ln->y1), fine(ln->y1),
566 coarse(ln->x2), fine(ln->x2),
567 coarse(ln->y2), fine(ln->y2),
568 ln->updown == 0 ? "vert" : ln->updown == 1 ? "up" : "down")
571 for(cscl=startscan; cscl<stopscan; cscl++) {
572 tempy = min(cscl*16+16, pset[i+1].y);
573 POLY_DEB( printf("evaluating scan line %d \n", cscl) );
574 for(k=0; k<clc-1; k+=2) {
575 render_slice_scanline(&templine, cscl, lset+tllist[k].n, lset+tllist[k+1].n);
577 if (16*coarse(tempy) == tempy) {
578 POLY_DEB( printf("flushing scan line %d\n", cscl) );
579 scanline_flush(im, &templine, cscl, val);
580 ss_scanline_reset(&templine);
584 scanline_flush(im, &templine, cscl, val);
585 ss_scanline_reset(&templine);
591 if (16*coarse(tempy) != tempy)
592 scanline_flush(im, &templine, cscl-1, val);