4 use vars qw($VERSION @ISA @EXPORT @EXPORT_OK %EXPORT_TAGS %formats $DEBUG %filters %DSOs $ERRSTR $fontstate %OPCODES $I2P $FORMATGUESS);
81 i_writetiff_wiol_faxable
148 $VERSION = '0.39pre1';
149 @ISA = qw(Exporter DynaLoader);
150 bootstrap Imager $VERSION;
154 i_init_fonts(); # Initialize font engines
155 Imager::Font::__init();
156 for(i_list_formats()) { $formats{$_}++; }
158 if ($formats{'t1'}) {
162 if (!$formats{'t1'} and !$formats{'tt'}
163 && !$formats{'ft2'} && !$formats{'w32'}) {
164 $fontstate='no font support';
167 %OPCODES=(Add=>[0],Sub=>[1],Mult=>[2],Div=>[3],Parm=>[4],'sin'=>[5],'cos'=>[6],'x'=>[4,0],'y'=>[4,1]);
171 # the members of the subhashes under %filters are:
172 # callseq - a list of the parameters to the underlying filter in the
173 # order they are passed
174 # callsub - a code ref that takes a named parameter list and calls the
176 # defaults - a hash of default values
177 # names - defines names for value of given parameters so if the names
178 # field is foo=> { bar=>1 }, and the user supplies "bar" as the
179 # foo parameter, the filter will receive 1 for the foo
182 callseq => ['image','intensity'],
183 callsub => sub { my %hsh=@_; i_contrast($hsh{image},$hsh{intensity}); }
187 callseq => ['image', 'amount', 'subtype'],
188 defaults => { amount=>3,subtype=>0 },
189 callsub => sub { my %hsh=@_; i_noise($hsh{image},$hsh{amount},$hsh{subtype}); }
192 $filters{hardinvert} ={
193 callseq => ['image'],
195 callsub => sub { my %hsh=@_; i_hardinvert($hsh{image}); }
198 $filters{autolevels} ={
199 callseq => ['image','lsat','usat','skew'],
200 defaults => { lsat=>0.1,usat=>0.1,skew=>0.0 },
201 callsub => sub { my %hsh=@_; i_autolevels($hsh{image},$hsh{lsat},$hsh{usat},$hsh{skew}); }
204 $filters{turbnoise} ={
205 callseq => ['image'],
206 defaults => { xo=>0.0,yo=>0.0,scale=>10.0 },
207 callsub => sub { my %hsh=@_; i_turbnoise($hsh{image},$hsh{xo},$hsh{yo},$hsh{scale}); }
210 $filters{radnoise} ={
211 callseq => ['image'],
212 defaults => { xo=>100,yo=>100,ascale=>17.0,rscale=>0.02 },
213 callsub => sub { my %hsh=@_; i_radnoise($hsh{image},$hsh{xo},$hsh{yo},$hsh{rscale},$hsh{ascale}); }
217 callseq => ['image', 'coef'],
219 callsub => sub { my %hsh=@_; i_conv($hsh{image},$hsh{coef}); }
223 callseq => ['image', 'xo', 'yo', 'colors', 'dist'],
225 callsub => sub { my %hsh=@_; i_gradgen($hsh{image}, $hsh{xo}, $hsh{yo}, $hsh{colors}, $hsh{dist}); }
228 $filters{nearest_color} ={
229 callseq => ['image', 'xo', 'yo', 'colors', 'dist'],
231 callsub => sub { my %hsh=@_; i_nearest_color($hsh{image}, $hsh{xo}, $hsh{yo}, $hsh{colors}, $hsh{dist}); }
233 $filters{gaussian} = {
234 callseq => [ 'image', 'stddev' ],
236 callsub => sub { my %hsh = @_; i_gaussian($hsh{image}, $hsh{stddev}); },
240 callseq => [ qw(image size) ],
241 defaults => { size => 20 },
242 callsub => sub { my %hsh = @_; i_mosaic($hsh{image}, $hsh{size}) },
246 callseq => [ qw(image bump elevation lightx lighty st) ],
247 defaults => { elevation=>0, st=> 2 },
250 i_bumpmap($hsh{image}, $hsh{bump}{IMG}, $hsh{elevation},
251 $hsh{lightx}, $hsh{lighty}, $hsh{st});
254 $filters{bumpmap_complex} =
256 callseq => [ qw(image bump channel tx ty Lx Ly Lz cd cs n Ia Il Is) ],
267 Ia => Imager::Color->new(rgb=>[0,0,0]),
268 Il => Imager::Color->new(rgb=>[255,255,255]),
269 Is => Imager::Color->new(rgb=>[255,255,255]),
273 i_bumpmap_complex($hsh{image}, $hsh{bump}{IMG}, $hsh{channel},
274 $hsh{tx}, $hsh{ty}, $hsh{Lx}, $hsh{Ly}, $hsh{Lz},
275 $hsh{cd}, $hsh{cs}, $hsh{n}, $hsh{Ia}, $hsh{Il},
279 $filters{postlevels} =
281 callseq => [ qw(image levels) ],
282 defaults => { levels => 10 },
283 callsub => sub { my %hsh = @_; i_postlevels($hsh{image}, $hsh{levels}); },
285 $filters{watermark} =
287 callseq => [ qw(image wmark tx ty pixdiff) ],
288 defaults => { pixdiff=>10, tx=>0, ty=>0 },
292 i_watermark($hsh{image}, $hsh{wmark}{IMG}, $hsh{tx}, $hsh{ty},
298 callseq => [ qw(image xa ya xb yb ftype repeat combine super_sample ssample_param segments) ],
300 ftype => { linear => 0,
306 repeat => { none => 0,
321 multiply => 2, mult => 2,
324 subtract => 5, sub => 5,
334 defaults => { ftype => 0, repeat => 0, combine => 0,
335 super_sample => 0, ssample_param => 4,
338 Imager::Color->new(0,0,0),
339 Imager::Color->new(255, 255, 255),
347 i_fountain($hsh{image}, $hsh{xa}, $hsh{ya}, $hsh{xb}, $hsh{yb},
348 $hsh{ftype}, $hsh{repeat}, $hsh{combine}, $hsh{super_sample},
349 $hsh{ssample_param}, $hsh{segments});
352 $filters{unsharpmask} =
354 callseq => [ qw(image stddev scale) ],
355 defaults => { stddev=>2.0, scale=>1.0 },
359 i_unsharp_mask($hsh{image}, $hsh{stddev}, $hsh{scale});
363 $FORMATGUESS=\&def_guess_type;
371 # NOTE: this might be moved to an import override later on
375 # (look through @_ for special tags, process, and remove them);
377 # print Dumper($pack);
382 my %parms=(loglevel=>1,@_);
384 init_log($parms{'log'},$parms{'loglevel'});
387 # if ($parms{T1LIB_CONFIG}) { $ENV{T1LIB_CONFIG}=$parms{T1LIB_CONFIG}; }
388 # if ( $ENV{T1LIB_CONFIG} and ( $fontstate eq 'missing conf' )) {
396 print "shutdown code\n";
397 # for(keys %instances) { $instances{$_}->DESTROY(); }
398 malloc_state(); # how do decide if this should be used? -- store something from the import
399 print "Imager exiting\n";
403 # Load a filter plugin
408 my ($DSO_handle,$str)=DSO_open($filename);
409 if (!defined($DSO_handle)) { $Imager::ERRSTR="Couldn't load plugin '$filename'\n"; return undef; }
410 my %funcs=DSO_funclist($DSO_handle);
411 if ($DEBUG) { print "loading module $filename\n"; $i=0; for(keys %funcs) { printf(" %2d: %s\n",$i++,$_); } }
413 for(keys %funcs) { if ($filters{$_}) { $ERRSTR="filter '$_' already exists\n"; DSO_close($DSO_handle); return undef; } }
415 $DSOs{$filename}=[$DSO_handle,\%funcs];
418 my $evstr="\$filters{'".$_."'}={".$funcs{$_}.'};';
419 $DEBUG && print "eval string:\n",$evstr,"\n";
431 if (!$DSOs{$filename}) { $ERRSTR="plugin '$filename' not loaded."; return undef; }
432 my ($DSO_handle,$funcref)=@{$DSOs{$filename}};
433 for(keys %{$funcref}) {
435 $DEBUG && print "unloading: $_\n";
437 my $rc=DSO_close($DSO_handle);
438 if (!defined($rc)) { $ERRSTR="unable to unload plugin '$filename'."; return undef; }
442 # take the results of i_error() and make a message out of it
444 return join(": ", map $_->[0], i_errors());
448 # Methods to be called on objects.
451 # Create a new Imager object takes very few parameters.
452 # usually you call this method and then call open from
453 # the resulting object
460 $self->{IMG}=undef; # Just to indicate what exists
461 $self->{ERRSTR}=undef; #
462 $self->{DEBUG}=$DEBUG;
463 $self->{DEBUG} && print "Initialized Imager\n";
464 if ($hsh{xsize} && $hsh{ysize}) { $self->img_set(%hsh); }
468 # Copy an entire image with no changes
469 # - if an image has magic the copy of it will not be magical
473 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
475 my $newcopy=Imager->new();
476 $newcopy->{IMG}=i_img_new();
477 i_copy($newcopy->{IMG},$self->{IMG});
485 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
486 my %input=(left=>0, top=>0, @_);
487 unless($input{img}) {
488 $self->{ERRSTR}="no source image";
491 $input{left}=0 if $input{left} <= 0;
492 $input{top}=0 if $input{top} <= 0;
494 my($r,$b)=i_img_info($src->{IMG});
496 i_copyto($self->{IMG}, $src->{IMG},
497 0,0, $r, $b, $input{left}, $input{top});
498 return $self; # What should go here??
501 # Crop an image - i.e. return a new image that is smaller
505 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
506 my %hsh=(left=>0,right=>0,top=>0,bottom=>0,@_);
508 my ($w,$h,$l,$r,$b,$t)=($self->getwidth(),$self->getheight(),
509 @hsh{qw(left right bottom top)});
510 $l=0 if not defined $l;
511 $t=0 if not defined $t;
513 $r||=$l+delete $hsh{'width'} if defined $l and exists $hsh{'width'};
514 $b||=$t+delete $hsh{'height'} if defined $t and exists $hsh{'height'};
515 $l||=$r-delete $hsh{'width'} if defined $r and exists $hsh{'width'};
516 $t||=$b-delete $hsh{'height'} if defined $b and exists $hsh{'height'};
518 $r=$self->getwidth if not defined $r;
519 $b=$self->getheight if not defined $b;
521 ($l,$r)=($r,$l) if $l>$r;
522 ($t,$b)=($b,$t) if $t>$b;
525 $l=int(0.5+($w-$hsh{'width'})/2);
530 if ($hsh{'height'}) {
531 $b=int(0.5+($h-$hsh{'height'})/2);
532 $t=$h+$hsh{'height'};
534 $hsh{'height'}=$b-$t;
537 # print "l=$l, r=$r, h=$hsh{'width'}\n";
538 # print "t=$t, b=$b, w=$hsh{'height'}\n";
540 my $dst=Imager->new(xsize=>$hsh{'width'}, ysize=>$hsh{'height'}, channels=>$self->getchannels());
542 i_copyto($dst->{IMG},$self->{IMG},$l,$t,$r,$b,0,0);
546 # Sets an image to a certain size and channel number
547 # if there was previously data in the image it is discarded
552 my %hsh=(xsize=>100, ysize=>100, channels=>3, bits=>8, type=>'direct', @_);
554 if (defined($self->{IMG})) {
555 # let IIM_DESTROY destroy it, it's possible this image is
556 # referenced from a virtual image (like masked)
557 #i_img_destroy($self->{IMG});
561 if ($hsh{type} eq 'paletted' || $hsh{type} eq 'pseudo') {
562 $self->{IMG} = i_img_pal_new($hsh{xsize}, $hsh{ysize}, $hsh{channels},
563 $hsh{maxcolors} || 256);
565 elsif ($hsh{bits} eq 'double') {
566 $self->{IMG} = i_img_double_new($hsh{xsize}, $hsh{ysize}, $hsh{channels});
568 elsif ($hsh{bits} == 16) {
569 $self->{IMG} = i_img_16_new($hsh{xsize}, $hsh{ysize}, $hsh{channels});
572 $self->{IMG}=Imager::ImgRaw::new($hsh{'xsize'}, $hsh{'ysize'},
577 # created a masked version of the current image
581 $self or return undef;
582 my %opts = (left => 0,
584 right => $self->getwidth,
585 bottom => $self->getheight,
587 my $mask = $opts{mask} ? $opts{mask}{IMG} : undef;
589 my $result = Imager->new;
590 $result->{IMG} = i_img_masked_new($self->{IMG}, $mask, $opts{left},
591 $opts{top}, $opts{right} - $opts{left},
592 $opts{bottom} - $opts{top});
593 # keep references to the mask and base images so they don't
595 $result->{DEPENDS} = [ $self->{IMG}, $mask ];
600 # convert an RGB image into a paletted image
604 if (@_ != 1 && !ref $_[0]) {
611 my $result = Imager->new;
612 $result->{IMG} = i_img_to_pal($self->{IMG}, $opts);
614 #print "Type ", i_img_type($result->{IMG}), "\n";
616 $result->{IMG} or undef $result;
621 # convert a paletted (or any image) to an 8-bit/channel RGB images
627 $result = Imager->new;
628 $result->{IMG} = i_img_to_rgb($self->{IMG})
637 my %opts = (colors=>[], @_);
639 @{$opts{colors}} or return undef;
641 $self->{IMG} and i_addcolors($self->{IMG}, @{$opts{colors}});
646 my %opts = (start=>0, colors=>[], @_);
647 @{$opts{colors}} or return undef;
649 $self->{IMG} and i_setcolors($self->{IMG}, $opts{start}, @{$opts{colors}});
655 if (!exists $opts{start} && !exists $opts{count}) {
658 $opts{count} = $self->colorcount;
660 elsif (!exists $opts{count}) {
663 elsif (!exists $opts{start}) {
668 return i_getcolors($self->{IMG}, $opts{start}, $opts{count});
672 i_colorcount($_[0]{IMG});
676 i_maxcolors($_[0]{IMG});
682 $opts{color} or return undef;
684 $self->{IMG} and i_findcolor($self->{IMG}, $opts{color});
689 my $bits = $self->{IMG} && i_img_bits($self->{IMG});
690 if ($bits && $bits == length(pack("d", 1)) * 8) {
699 return i_img_type($self->{IMG}) ? "paletted" : "direct";
705 $self->{IMG} and i_img_virtual($self->{IMG});
709 my ($self, %opts) = @_;
711 $self->{IMG} or return;
713 if (defined $opts{name}) {
717 while (defined($found = i_tags_find($self->{IMG}, $opts{name}, $start))) {
718 push @result, (i_tags_get($self->{IMG}, $found))[1];
721 return wantarray ? @result : $result[0];
723 elsif (defined $opts{code}) {
727 while (defined($found = i_tags_findn($self->{IMG}, $opts{code}, $start))) {
728 push @result, (i_tags_get($self->{IMG}, $found))[1];
735 return map { [ i_tags_get($self->{IMG}, $_) ] } 0.. i_tags_count($self->{IMG})-1;
738 return i_tags_count($self->{IMG});
747 return -1 unless $self->{IMG};
749 if (defined $opts{value}) {
750 if ($opts{value} =~ /^\d+$/) {
752 return i_tags_addn($self->{IMG}, $opts{name}, 0, $opts{value});
755 return i_tags_add($self->{IMG}, $opts{name}, 0, $opts{value}, 0);
758 elsif (defined $opts{data}) {
759 # force addition as a string
760 return i_tags_add($self->{IMG}, $opts{name}, 0, $opts{data}, 0);
763 $self->{ERRSTR} = "No value supplied";
767 elsif ($opts{code}) {
768 if (defined $opts{value}) {
769 if ($opts{value} =~ /^\d+$/) {
771 return i_tags_addn($self->{IMG}, $opts{code}, 0, $opts{value});
774 return i_tags_add($self->{IMG}, $opts{code}, 0, $opts{value}, 0);
777 elsif (defined $opts{data}) {
778 # force addition as a string
779 return i_tags_add($self->{IMG}, $opts{code}, 0, $opts{data}, 0);
782 $self->{ERRSTR} = "No value supplied";
795 return 0 unless $self->{IMG};
797 if (defined $opts{index}) {
798 return i_tags_delete($self->{IMG}, $opts{index});
800 elsif (defined $opts{name}) {
801 return i_tags_delbyname($self->{IMG}, $opts{name});
803 elsif (defined $opts{code}) {
804 return i_tags_delbycode($self->{IMG}, $opts{code});
807 $self->{ERRSTR} = "Need to supply index, name, or code parameter";
812 # Read an image from file
819 if (defined($self->{IMG})) {
820 # let IIM_DESTROY do the destruction, since the image may be
821 # referenced from elsewhere
822 #i_img_destroy($self->{IMG});
826 if (!$input{fd} and !$input{file} and !$input{data}) {
827 $self->{ERRSTR}='no file, fd or data parameter'; return undef;
830 $fh = new IO::File($input{file},"r");
832 $self->{ERRSTR}='Could not open file'; return undef;
841 # FIXME: Find the format here if not specified
842 # yes the code isn't here yet - next week maybe?
843 # Next week? Are you high or something? That comment
844 # has been there for half a year dude.
845 # Look, i just work here, ok?
847 if (!$input{type} and $input{file}) {
848 $input{type}=$FORMATGUESS->($input{file});
850 if (!$formats{$input{type}}) {
851 $self->{ERRSTR}='format not supported'; return undef;
854 my %iolready=(jpeg=>1, png=>1, tiff=>1, pnm=>1, raw=>1, bmp=>1, tga=>1);
856 if ($iolready{$input{type}}) {
858 $IO = io_new_fd($fd); # sort of simple for now eh?
860 if ( $input{type} eq 'jpeg' ) {
861 ($self->{IMG},$self->{IPTCRAW})=i_readjpeg_wiol( $IO );
862 if ( !defined($self->{IMG}) ) {
863 $self->{ERRSTR}='unable to read jpeg image'; return undef;
865 $self->{DEBUG} && print "loading a jpeg file\n";
869 if ( $input{type} eq 'tiff' ) {
870 $self->{IMG}=i_readtiff_wiol( $IO, -1 ); # Fixme, check if that length parameter is ever needed
871 if ( !defined($self->{IMG}) ) {
872 $self->{ERRSTR}='unable to read tiff image'; return undef;
874 $self->{DEBUG} && print "loading a tiff file\n";
878 if ( $input{type} eq 'pnm' ) {
879 $self->{IMG}=i_readpnm_wiol( $IO, -1 ); # Fixme, check if that length parameter is ever needed
880 if ( !defined($self->{IMG}) ) {
881 $self->{ERRSTR}='unable to read pnm image: '._error_as_msg(); return undef;
883 $self->{DEBUG} && print "loading a pnm file\n";
887 if ( $input{type} eq 'png' ) {
888 $self->{IMG}=i_readpng_wiol( $IO, -1 ); # Fixme, check if that length parameter is ever needed
889 if ( !defined($self->{IMG}) ) {
890 $self->{ERRSTR}='unable to read png image';
893 $self->{DEBUG} && print "loading a png file\n";
896 if ( $input{type} eq 'bmp' ) {
897 $self->{IMG}=i_readbmp_wiol( $IO );
898 if ( !defined($self->{IMG}) ) {
899 $self->{ERRSTR}='unable to read bmp image';
902 $self->{DEBUG} && print "loading a bmp file\n";
905 if ( $input{type} eq 'tga' ) {
906 $self->{IMG}=i_readtga_wiol( $IO, -1 ); # Fixme, check if that length parameter is ever needed
907 if ( !defined($self->{IMG}) ) {
908 $self->{ERRSTR}=$self->_error_as_msg();
909 # $self->{ERRSTR}='unable to read tga image';
912 $self->{DEBUG} && print "loading a tga file\n";
915 if ( $input{type} eq 'raw' ) {
916 my %params=(datachannels=>3,storechannels=>3,interleave=>1,%input);
918 if ( !($params{xsize} && $params{ysize}) ) {
919 $self->{ERRSTR}='missing xsize or ysize parameter for raw';
923 $self->{IMG} = i_readraw_wiol( $IO,
926 $params{datachannels},
927 $params{storechannels},
928 $params{interleave});
929 if ( !defined($self->{IMG}) ) {
930 $self->{ERRSTR}='unable to read raw image';
933 $self->{DEBUG} && print "loading a raw file\n";
938 # Old code for reference while changing the new stuff
940 if (!$input{type} and $input{file}) {
941 $input{type}=$FORMATGUESS->($input{file});
945 $self->{ERRSTR}='type parameter missing and not possible to guess from extension'; return undef;
948 if (!$formats{$input{type}}) {
949 $self->{ERRSTR}='format not supported';
954 $fh = new IO::File($input{file},"r");
956 $self->{ERRSTR}='Could not open file';
967 if ( $input{type} eq 'gif' ) {
969 if ($input{colors} && !ref($input{colors})) {
970 # must be a reference to a scalar that accepts the colour map
971 $self->{ERRSTR} = "option 'colors' must be a scalar reference";
974 if (exists $input{data}) {
975 if ($input{colors}) {
976 ($self->{IMG}, $colors) = i_readgif_scalar($input{data});
978 $self->{IMG}=i_readgif_scalar($input{data});
981 if ($input{colors}) {
982 ($self->{IMG}, $colors) = i_readgif( $fd );
984 $self->{IMG} = i_readgif( $fd )
988 # we may or may not change i_readgif to return blessed objects...
989 ${ $input{colors} } = [ map { NC(@$_) } @$colors ];
991 if ( !defined($self->{IMG}) ) {
992 $self->{ERRSTR}= 'reading GIF:'._error_as_msg();
995 $self->{DEBUG} && print "loading a gif file\n";
1001 # Write an image to file
1004 my %input=(jpegquality=>75, gifquant=>'mc', lmdither=>6.0, lmfixed=>[],
1006 my ($fh, $rc, $fd, $IO);
1008 my %iolready=( tiff=>1, raw=>1, png=>1, pnm=>1, bmp=>1, jpeg=>1, tga=>1 ); # this will be SO MUCH BETTER once they are all in there
1010 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1012 if (!$input{file} and !$input{'fd'} and !$input{'data'}) { $self->{ERRSTR}='file/fd/data parameter missing'; return undef; }
1013 if (!$input{type} and $input{file}) { $input{type}=$FORMATGUESS->($input{file}); }
1014 if (!$input{type}) { $self->{ERRSTR}='type parameter missing and not possible to guess from extension'; return undef; }
1016 if (!$formats{$input{type}}) { $self->{ERRSTR}='format not supported'; return undef; }
1018 if (exists $input{'fd'}) {
1020 } elsif (exists $input{'data'}) {
1021 $IO = Imager::io_new_bufchain();
1023 $fh = new IO::File($input{file},"w+");
1024 if (!defined $fh) { $self->{ERRSTR}='Could not open file'; return undef; }
1025 binmode($fh) or die;
1026 $fd = $fh->fileno();
1029 if ($iolready{$input{type}}) {
1031 $IO = io_new_fd($fd);
1034 if ($input{type} eq 'tiff') {
1035 if (defined $input{class} && $input{class} eq 'fax') {
1036 if (!i_writetiff_wiol_faxable($self->{IMG}, $IO, $input{fax_fine})) {
1037 $self->{ERRSTR}='Could not write to buffer';
1041 if (!i_writetiff_wiol($self->{IMG}, $IO)) {
1042 $self->{ERRSTR}='Could not write to buffer';
1046 } elsif ( $input{type} eq 'pnm' ) {
1047 if ( ! i_writeppm_wiol($self->{IMG},$IO) ) {
1048 $self->{ERRSTR}='unable to write pnm image';
1051 $self->{DEBUG} && print "writing a pnm file\n";
1052 } elsif ( $input{type} eq 'raw' ) {
1053 if ( !i_writeraw_wiol($self->{IMG},$IO) ) {
1054 $self->{ERRSTR}='unable to write raw image';
1057 $self->{DEBUG} && print "writing a raw file\n";
1058 } elsif ( $input{type} eq 'png' ) {
1059 if ( !i_writepng_wiol($self->{IMG}, $IO) ) {
1060 $self->{ERRSTR}='unable to write png image';
1063 $self->{DEBUG} && print "writing a png file\n";
1064 } elsif ( $input{type} eq 'jpeg' ) {
1065 if ( !i_writejpeg_wiol($self->{IMG}, $IO, $input{jpegquality})) {
1066 $self->{ERRSTR} = $self->_error_as_msg();
1069 $self->{DEBUG} && print "writing a jpeg file\n";
1070 } elsif ( $input{type} eq 'bmp' ) {
1071 if ( !i_writebmp_wiol($self->{IMG}, $IO) ) {
1072 $self->{ERRSTR}='unable to write bmp image';
1075 $self->{DEBUG} && print "writing a bmp file\n";
1076 } elsif ( $input{type} eq 'tga' ) {
1077 if ( !i_writetga_wiol($self->{IMG}, $IO) ) {
1078 $self->{ERRSTR}=$self->_error_as_msg();
1079 # $self->{ERRSTR}='unable to write tga image';
1082 $self->{DEBUG} && print "writing a tga file\n";
1085 if (exists $input{'data'}) {
1086 my $data = io_slurp($IO);
1088 $self->{ERRSTR}='Could not slurp from buffer';
1091 ${$input{data}} = $data;
1095 if ( $input{type} eq 'gif' ) {
1096 if (not $input{gifplanes}) {
1098 my $count=i_count_colors($self->{IMG}, 256);
1099 $gp=8 if $count == -1;
1100 $gp=1 if not $gp and $count <= 2;
1101 $gp=2 if not $gp and $count <= 4;
1102 $gp=3 if not $gp and $count <= 8;
1103 $gp=4 if not $gp and $count <= 16;
1104 $gp=5 if not $gp and $count <= 32;
1105 $gp=6 if not $gp and $count <= 64;
1106 $gp=7 if not $gp and $count <= 128;
1107 $input{gifplanes} = $gp || 8;
1110 if ($input{gifplanes}>8) {
1111 $input{gifplanes}=8;
1113 if ($input{gifquant} eq 'gen' || $input{callback}) {
1116 if ($input{gifquant} eq 'lm') {
1118 $input{make_colors} = 'addi';
1119 $input{translate} = 'perturb';
1120 $input{perturb} = $input{lmdither};
1121 } elsif ($input{gifquant} eq 'gen') {
1122 # just pass options through
1124 $input{make_colors} = 'webmap'; # ignored
1125 $input{translate} = 'giflib';
1128 if ($input{callback}) {
1129 defined $input{maxbuffer} or $input{maxbuffer} = -1;
1130 $rc = i_writegif_callback($input{callback}, $input{maxbuffer},
1131 \%input, $self->{IMG});
1133 $rc = i_writegif_gen($fd, \%input, $self->{IMG});
1136 } elsif ($input{gifquant} eq 'lm') {
1137 $rc=i_writegif($self->{IMG},$fd,$input{gifplanes},$input{lmdither},$input{lmfixed});
1139 $rc=i_writegifmc($self->{IMG},$fd,$input{gifplanes});
1141 if ( !defined($rc) ) {
1142 $self->{ERRSTR} = "Writing GIF file: "._error_as_msg(); return undef;
1144 $self->{DEBUG} && print "writing a gif file\n";
1152 my ($class, $opts, @images) = @_;
1154 if ($opts->{type} eq 'gif') {
1155 my $gif_delays = $opts->{gif_delays};
1156 local $opts->{gif_delays} = $gif_delays;
1157 unless (ref $opts->{gif_delays}) {
1158 # assume the caller wants the same delay for each frame
1159 $opts->{gif_delays} = [ ($gif_delays) x @images ];
1161 # translate to ImgRaw
1162 if (grep !UNIVERSAL::isa($_, 'Imager') || !$_->{IMG}, @images) {
1163 $ERRSTR = "Usage: Imager->write_multi({ options }, @images)";
1166 my @work = map $_->{IMG}, @images;
1167 if ($opts->{callback}) {
1168 # Note: you may need to fix giflib for this one to work
1169 my $maxbuffer = $opts->{maxbuffer};
1170 defined $maxbuffer or $maxbuffer = -1; # max by default
1171 return i_writegif_callback($opts->{callback}, $maxbuffer,
1175 return i_writegif_gen($opts->{fd}, $opts, @work);
1178 my $fh = IO::File->new($opts->{file}, "w+");
1180 $ERRSTR = "Error creating $opts->{file}: $!";
1184 return i_writegif_gen(fileno($fh), $opts, @work);
1188 $ERRSTR = "Sorry, write_multi doesn't support $opts->{type} yet";
1193 # read multiple images from a file
1195 my ($class, %opts) = @_;
1197 if ($opts{file} && !exists $opts{type}) {
1199 my $type = $FORMATGUESS->($opts{file});
1200 $opts{type} = $type;
1202 unless ($opts{type}) {
1203 $ERRSTR = "No type parameter supplied and it couldn't be guessed";
1209 $file = IO::File->new($opts{file}, "r");
1211 $ERRSTR = "Could not open file $opts{file}: $!";
1215 $fd = fileno($file);
1218 $fd = fileno($opts{fh});
1220 $ERRSTR = "File handle specified with fh option not open";
1227 elsif ($opts{callback} || $opts{data}) {
1231 $ERRSTR = "You need to specify one of file, fd, fh, callback or data";
1235 if ($opts{type} eq 'gif') {
1238 @imgs = i_readgif_multi($fd);
1241 if (Imager::i_giflib_version() < 4.0) {
1242 $ERRSTR = "giflib3.x does not support callbacks";
1245 if ($opts{callback}) {
1246 @imgs = i_readgif_multi_callback($opts{callback})
1249 @imgs = i_readgif_multi_scalar($opts{data});
1254 bless { IMG=>$_, DEBUG=>$DEBUG, ERRSTR=>undef }, 'Imager'
1258 $ERRSTR = _error_as_msg();
1263 $ERRSTR = "Cannot read multiple images from $opts{type} files";
1267 # Destroy an Imager object
1271 # delete $instances{$self};
1272 if (defined($self->{IMG})) {
1273 # the following is now handled by the XS DESTROY method for
1274 # Imager::ImgRaw object
1275 # Re-enabling this will break virtual images
1276 # tested for in t/t020masked.t
1277 # i_img_destroy($self->{IMG});
1278 undef($self->{IMG});
1280 # print "Destroy Called on an empty image!\n"; # why did I put this here??
1284 # Perform an inplace filter of an image
1285 # that is the image will be overwritten with the data
1291 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1293 if (!$input{type}) { $self->{ERRSTR}='type parameter missing'; return undef; }
1295 if ( (grep { $_ eq $input{type} } keys %filters) != 1) {
1296 $self->{ERRSTR}='type parameter not matching any filter'; return undef;
1299 if ($filters{$input{type}}{names}) {
1300 my $names = $filters{$input{type}}{names};
1301 for my $name (keys %$names) {
1302 if (defined $input{$name} && exists $names->{$name}{$input{$name}}) {
1303 $input{$name} = $names->{$name}{$input{$name}};
1307 if (defined($filters{$input{type}}{defaults})) {
1308 %hsh=('image',$self->{IMG},%{$filters{$input{type}}{defaults}},%input);
1310 %hsh=('image',$self->{IMG},%input);
1313 my @cs=@{$filters{$input{type}}{callseq}};
1316 if (!defined($hsh{$_})) {
1317 $self->{ERRSTR}="missing parameter '$_' for filter ".$input{type}; return undef;
1321 &{$filters{$input{type}}{callsub}}(%hsh);
1325 $self->{DEBUG} && print "callseq is: @cs\n";
1326 $self->{DEBUG} && print "matching callseq is: @b\n";
1331 # Scale an image to requested size and return the scaled version
1335 my %opts=(scalefactor=>0.5,type=>'max',qtype=>'normal',@_);
1336 my $img = Imager->new();
1337 my $tmp = Imager->new();
1339 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1341 if ($opts{xpixels} and $opts{ypixels} and $opts{type}) {
1342 my ($xpix,$ypix)=( $opts{xpixels}/$self->getwidth() , $opts{ypixels}/$self->getheight() );
1343 if ($opts{type} eq 'min') { $opts{scalefactor}=min($xpix,$ypix); }
1344 if ($opts{type} eq 'max') { $opts{scalefactor}=max($xpix,$ypix); }
1345 } elsif ($opts{xpixels}) { $opts{scalefactor}=$opts{xpixels}/$self->getwidth(); }
1346 elsif ($opts{ypixels}) { $opts{scalefactor}=$opts{ypixels}/$self->getheight(); }
1348 if ($opts{qtype} eq 'normal') {
1349 $tmp->{IMG}=i_scaleaxis($self->{IMG},$opts{scalefactor},0);
1350 if ( !defined($tmp->{IMG}) ) { $self->{ERRSTR}='unable to scale image'; return undef; }
1351 $img->{IMG}=i_scaleaxis($tmp->{IMG},$opts{scalefactor},1);
1352 if ( !defined($img->{IMG}) ) { $self->{ERRSTR}='unable to scale image'; return undef; }
1355 if ($opts{'qtype'} eq 'preview') {
1356 $img->{IMG}=i_scale_nn($self->{IMG},$opts{'scalefactor'},$opts{'scalefactor'});
1357 if ( !defined($img->{IMG}) ) { $self->{ERRSTR}='unable to scale image'; return undef; }
1360 $self->{ERRSTR}='scale: invalid value for qtype'; return undef;
1363 # Scales only along the X axis
1367 my %opts=(scalefactor=>0.5,@_);
1369 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1371 my $img = Imager->new();
1373 if ($opts{pixels}) { $opts{scalefactor}=$opts{pixels}/$self->getwidth(); }
1375 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1376 $img->{IMG}=i_scaleaxis($self->{IMG},$opts{scalefactor},0);
1378 if ( !defined($img->{IMG}) ) { $self->{ERRSTR}='unable to scale image'; return undef; }
1382 # Scales only along the Y axis
1386 my %opts=(scalefactor=>0.5,@_);
1388 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1390 my $img = Imager->new();
1392 if ($opts{pixels}) { $opts{scalefactor}=$opts{pixels}/$self->getheight(); }
1394 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1395 $img->{IMG}=i_scaleaxis($self->{IMG},$opts{scalefactor},1);
1397 if ( !defined($img->{IMG}) ) { $self->{ERRSTR}='unable to scale image'; return undef; }
1402 # Transform returns a spatial transformation of the input image
1403 # this moves pixels to a new location in the returned image.
1404 # NOTE - should make a utility function to check transforms for
1409 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1411 my (@op,@ropx,@ropy,$iop,$or,@parm,$expr,@xt,@yt,@pt,$numre);
1413 # print Dumper(\%opts);
1416 if ( $opts{'xexpr'} and $opts{'yexpr'} ) {
1418 eval ("use Affix::Infix2Postfix;");
1421 $self->{ERRSTR}='transform: expr given and Affix::Infix2Postfix is not avaliable.';
1424 $I2P=Affix::Infix2Postfix->new('ops'=>[{op=>'+',trans=>'Add'},
1425 {op=>'-',trans=>'Sub'},
1426 {op=>'*',trans=>'Mult'},
1427 {op=>'/',trans=>'Div'},
1428 {op=>'-',type=>'unary',trans=>'u-'},
1430 {op=>'func',type=>'unary'}],
1431 'grouping'=>[qw( \( \) )],
1432 'func'=>[qw( sin cos )],
1437 @xt=$I2P->translate($opts{'xexpr'});
1438 @yt=$I2P->translate($opts{'yexpr'});
1440 $numre=$I2P->{'numre'};
1443 for(@xt) { if (/$numre/) { push(@pt,$_); push(@{$opts{'xopcodes'}},'Parm',$#pt); } else { push(@{$opts{'xopcodes'}},$_); } }
1444 for(@yt) { if (/$numre/) { push(@pt,$_); push(@{$opts{'yopcodes'}},'Parm',$#pt); } else { push(@{$opts{'yopcodes'}},$_); } }
1445 @{$opts{'parm'}}=@pt;
1448 # print Dumper(\%opts);
1450 if ( !exists $opts{'xopcodes'} or @{$opts{'xopcodes'}}==0) {
1451 $self->{ERRSTR}='transform: no xopcodes given.';
1455 @op=@{$opts{'xopcodes'}};
1457 if (!defined ($OPCODES{$iop}) and ($iop !~ /^\d+$/) ) {
1458 $self->{ERRSTR}="transform: illegal opcode '$_'.";
1461 push(@ropx,(exists $OPCODES{$iop}) ? @{$OPCODES{$iop}} : $iop );
1467 if ( !exists $opts{'yopcodes'} or @{$opts{'yopcodes'}}==0) {
1468 $self->{ERRSTR}='transform: no yopcodes given.';
1472 @op=@{$opts{'yopcodes'}};
1474 if (!defined ($OPCODES{$iop}) and ($iop !~ /^\d+$/) ) {
1475 $self->{ERRSTR}="transform: illegal opcode '$_'.";
1478 push(@ropy,(exists $OPCODES{$iop}) ? @{$OPCODES{$iop}} : $iop );
1483 if ( !exists $opts{'parm'}) {
1484 $self->{ERRSTR}='transform: no parameter arg given.';
1488 # print Dumper(\@ropx);
1489 # print Dumper(\@ropy);
1490 # print Dumper(\@ropy);
1492 my $img = Imager->new();
1493 $img->{IMG}=i_transform($self->{IMG},\@ropx,\@ropy,$opts{'parm'});
1494 if ( !defined($img->{IMG}) ) { $self->{ERRSTR}='transform: failed'; return undef; }
1502 my ($opts, @imgs) = @_;
1505 # this is fairly big, delay loading it
1506 eval "use Imager::Expr";
1511 $opts->{variables} = [ qw(x y) ];
1512 my ($width, $height) = @{$opts}{qw(width height)};
1514 $width ||= $imgs[0]->getwidth();
1515 $height ||= $imgs[0]->getheight();
1517 for my $img (@imgs) {
1518 $opts->{constants}{"w$img_num"} = $img->getwidth();
1519 $opts->{constants}{"h$img_num"} = $img->getheight();
1520 $opts->{constants}{"cx$img_num"} = $img->getwidth()/2;
1521 $opts->{constants}{"cy$img_num"} = $img->getheight()/2;
1526 $opts->{constants}{w} = $width;
1527 $opts->{constants}{cx} = $width/2;
1530 $Imager::ERRSTR = "No width supplied";
1534 $opts->{constants}{h} = $height;
1535 $opts->{constants}{cy} = $height/2;
1538 $Imager::ERRSTR = "No height supplied";
1541 my $code = Imager::Expr->new($opts);
1543 $Imager::ERRSTR = Imager::Expr::error();
1547 my $img = Imager->new();
1548 $img->{IMG} = i_transform2($opts->{width}, $opts->{height}, $code->code(),
1549 $code->nregs(), $code->cregs(),
1550 [ map { $_->{IMG} } @imgs ]);
1551 if (!defined $img->{IMG}) {
1552 $Imager::ERRSTR = "transform2 failed";
1562 my %opts=(tx=>0,ty=>0,@_);
1564 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1565 unless ($opts{src} && $opts{src}->{IMG}) { $self->{ERRSTR}='empty input image for source'; return undef; }
1567 unless (i_rubthru($self->{IMG}, $opts{src}->{IMG}, $opts{tx},$opts{ty})) {
1568 $self->{ERRSTR} = $self->_error_as_msg();
1578 my %xlate = (h=>0, v=>1, hv=>2, vh=>2);
1580 return () unless defined $opts{'dir'} and defined $xlate{$opts{'dir'}};
1581 $dir = $xlate{$opts{'dir'}};
1582 return $self if i_flipxy($self->{IMG}, $dir);
1589 if (defined $opts{right}) {
1590 my $degrees = $opts{right};
1592 $degrees += 360 * int(((-$degrees)+360)/360);
1594 $degrees = $degrees % 360;
1595 if ($degrees == 0) {
1596 return $self->copy();
1598 elsif ($degrees == 90 || $degrees == 180 || $degrees == 270) {
1599 my $result = Imager->new();
1600 if ($result->{IMG} = i_rotate90($self->{IMG}, $degrees)) {
1604 $self->{ERRSTR} = $self->_error_as_msg();
1609 $self->{ERRSTR} = "Parameter 'right' must be a multiple of 90 degrees";
1613 elsif (defined $opts{radians} || defined $opts{degrees}) {
1614 my $amount = $opts{radians} || $opts{degrees} * 3.1415926535 / 180;
1616 my $result = Imager->new;
1617 if ($result->{IMG} = i_rotate_exact($self->{IMG}, $amount)) {
1621 $self->{ERRSTR} = $self->_error_as_msg();
1626 $self->{ERRSTR} = "Only the 'right' parameter is available";
1631 sub matrix_transform {
1635 if ($opts{matrix}) {
1636 my $xsize = $opts{xsize} || $self->getwidth;
1637 my $ysize = $opts{ysize} || $self->getheight;
1639 my $result = Imager->new;
1640 $result->{IMG} = i_matrix_transform($self->{IMG}, $xsize, $ysize,
1647 $self->{ERRSTR} = "matrix parameter required";
1653 *yatf = \&matrix_transform;
1655 # These two are supported for legacy code only
1658 return Imager::Color->new(@_);
1662 return Imager::Color::set(@_);
1665 # Draws a box between the specified corner points.
1668 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1669 my $dflcl=i_color_new(255,255,255,255);
1670 my %opts=(color=>$dflcl,xmin=>0,ymin=>0,xmax=>$self->getwidth()-1,ymax=>$self->getheight()-1,@_);
1672 if (exists $opts{'box'}) {
1673 $opts{'xmin'} = min($opts{'box'}->[0],$opts{'box'}->[2]);
1674 $opts{'xmax'} = max($opts{'box'}->[0],$opts{'box'}->[2]);
1675 $opts{'ymin'} = min($opts{'box'}->[1],$opts{'box'}->[3]);
1676 $opts{'ymax'} = max($opts{'box'}->[1],$opts{'box'}->[3]);
1679 if ($opts{filled}) {
1680 i_box_filled($self->{IMG},$opts{xmin},$opts{ymin},$opts{xmax},
1681 $opts{ymax},$opts{color});
1683 elsif ($opts{fill}) {
1684 unless (UNIVERSAL::isa($opts{fill}, 'Imager::Fill')) {
1685 # assume it's a hash ref
1686 require 'Imager/Fill.pm';
1687 unless ($opts{fill} = Imager::Fill->new(%{$opts{fill}})) {
1688 $self->{ERRSTR} = $Imager::ERRSTR;
1692 i_box_cfill($self->{IMG},$opts{xmin},$opts{ymin},$opts{xmax},
1693 $opts{ymax},$opts{fill}{fill});
1696 i_box($self->{IMG},$opts{xmin},$opts{ymin},$opts{xmax},$opts{ymax},$opts{color});
1701 # Draws an arc - this routine SUCKS and is buggy - it sometimes doesn't work when the arc is a convex polygon
1705 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1706 my $dflcl=i_color_new(255,255,255,255);
1707 my %opts=(color=>$dflcl,
1708 'r'=>min($self->getwidth(),$self->getheight())/3,
1709 'x'=>$self->getwidth()/2,
1710 'y'=>$self->getheight()/2,
1711 'd1'=>0, 'd2'=>361, @_);
1713 unless (UNIVERSAL::isa($opts{fill}, 'Imager::Fill')) {
1714 # assume it's a hash ref
1715 require 'Imager/Fill.pm';
1716 $opts{fill} = Imager::Fill->new(%{$opts{fill}});
1718 i_arc_cfill($self->{IMG},$opts{'x'},$opts{'y'},$opts{'r'},$opts{'d1'},
1719 $opts{'d2'}, $opts{fill}{fill});
1722 if ($opts{d1} == 0 && $opts{d2} == 361 && $opts{aa}) {
1723 i_circle_aa($self->{IMG}, $opts{'x'}, $opts{'y'}, $opts{'r'},
1727 i_arc($self->{IMG},$opts{'x'},$opts{'y'},$opts{'r'},$opts{'d1'},
1728 $opts{'d2'},$opts{'color'});
1735 # Draws a line from one point to (but not including) the destination point
1739 my $dflcl=i_color_new(0,0,0,0);
1740 my %opts=(color=>$dflcl,@_);
1741 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1743 unless (exists $opts{x1} and exists $opts{y1}) { $self->{ERRSTR}='missing begining coord'; return undef; }
1744 unless (exists $opts{x2} and exists $opts{y2}) { $self->{ERRSTR}='missing ending coord'; return undef; }
1746 if ($opts{antialias}) {
1747 i_line_aa($self->{IMG},$opts{x1}, $opts{y1}, $opts{x2}, $opts{y2}, $opts{color});
1749 i_draw($self->{IMG},$opts{x1}, $opts{y1}, $opts{x2}, $opts{y2}, $opts{color});
1754 # Draws a line between an ordered set of points - It more or less just transforms this
1755 # into a list of lines.
1759 my ($pt,$ls,@points);
1760 my $dflcl=i_color_new(0,0,0,0);
1761 my %opts=(color=>$dflcl,@_);
1763 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1765 if (exists($opts{points})) { @points=@{$opts{points}}; }
1766 if (!exists($opts{points}) and exists($opts{'x'}) and exists($opts{'y'}) ) {
1767 @points=map { [ $opts{'x'}->[$_],$opts{'y'}->[$_] ] } (0..(scalar @{$opts{'x'}}-1));
1770 # print Dumper(\@points);
1772 if ($opts{antialias}) {
1774 if (defined($ls)) { i_line_aa($self->{IMG},$ls->[0],$ls->[1],$pt->[0],$pt->[1],$opts{color}); }
1779 if (defined($ls)) { i_draw($self->{IMG},$ls->[0],$ls->[1],$pt->[0],$pt->[1],$opts{color}); }
1786 # this the multipoint bezier curve
1787 # this is here more for testing that actual usage since
1788 # this is not a good algorithm. Usually the curve would be
1789 # broken into smaller segments and each done individually.
1793 my ($pt,$ls,@points);
1794 my $dflcl=i_color_new(0,0,0,0);
1795 my %opts=(color=>$dflcl,@_);
1797 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
1799 if (exists $opts{points}) {
1800 $opts{'x'}=map { $_->[0]; } @{$opts{'points'}};
1801 $opts{'y'}=map { $_->[1]; } @{$opts{'points'}};
1804 unless ( @{$opts{'x'}} and @{$opts{'x'}} == @{$opts{'y'}} ) {
1805 $self->{ERRSTR}='Missing or invalid points.';
1809 i_bezier_multi($self->{IMG},$opts{'x'},$opts{'y'},$opts{'color'});
1815 my %opts = ( color=>Imager::Color->new(255, 255, 255), @_ );
1817 unless (exists $opts{x} && exists $opts{'y'}) {
1818 $self->{ERRSTR} = "missing seed x and y parameters";
1823 unless (UNIVERSAL::isa($opts{fill}, 'Imager::Fill')) {
1824 # assume it's a hash ref
1825 require 'Imager/Fill.pm';
1826 $opts{fill} = Imager::Fill->new(%{$opts{fill}});
1828 i_flood_cfill($self->{IMG}, $opts{x}, $opts{'y'}, $opts{fill}{fill});
1831 i_flood_fill($self->{IMG}, $opts{x}, $opts{'y'}, $opts{color});
1837 # make an identity matrix of the given size
1841 my $matrix = [ map { [ (0) x $size ] } 1..$size ];
1842 for my $c (0 .. ($size-1)) {
1843 $matrix->[$c][$c] = 1;
1848 # general function to convert an image
1850 my ($self, %opts) = @_;
1853 # the user can either specify a matrix or preset
1854 # the matrix overrides the preset
1855 if (!exists($opts{matrix})) {
1856 unless (exists($opts{preset})) {
1857 $self->{ERRSTR} = "convert() needs a matrix or preset";
1861 if ($opts{preset} eq 'gray' || $opts{preset} eq 'grey') {
1862 # convert to greyscale, keeping the alpha channel if any
1863 if ($self->getchannels == 3) {
1864 $matrix = [ [ 0.222, 0.707, 0.071 ] ];
1866 elsif ($self->getchannels == 4) {
1867 # preserve the alpha channel
1868 $matrix = [ [ 0.222, 0.707, 0.071, 0 ],
1873 $matrix = _identity($self->getchannels);
1876 elsif ($opts{preset} eq 'noalpha') {
1877 # strip the alpha channel
1878 if ($self->getchannels == 2 or $self->getchannels == 4) {
1879 $matrix = _identity($self->getchannels);
1880 pop(@$matrix); # lose the alpha entry
1883 $matrix = _identity($self->getchannels);
1886 elsif ($opts{preset} eq 'red' || $opts{preset} eq 'channel0') {
1888 $matrix = [ [ 1 ] ];
1890 elsif ($opts{preset} eq 'green' || $opts{preset} eq 'channel1') {
1891 $matrix = [ [ 0, 1 ] ];
1893 elsif ($opts{preset} eq 'blue' || $opts{preset} eq 'channel2') {
1894 $matrix = [ [ 0, 0, 1 ] ];
1896 elsif ($opts{preset} eq 'alpha') {
1897 if ($self->getchannels == 2 or $self->getchannels == 4) {
1898 $matrix = [ [ (0) x ($self->getchannels-1), 1 ] ];
1901 # the alpha is just 1 <shrug>
1902 $matrix = [ [ (0) x $self->getchannels, 1 ] ];
1905 elsif ($opts{preset} eq 'rgb') {
1906 if ($self->getchannels == 1) {
1907 $matrix = [ [ 1 ], [ 1 ], [ 1 ] ];
1909 elsif ($self->getchannels == 2) {
1910 # preserve the alpha channel
1911 $matrix = [ [ 1, 0 ], [ 1, 0 ], [ 1, 0 ], [ 0, 1 ] ];
1914 $matrix = _identity($self->getchannels);
1917 elsif ($opts{preset} eq 'addalpha') {
1918 if ($self->getchannels == 1) {
1919 $matrix = _identity(2);
1921 elsif ($self->getchannels == 3) {
1922 $matrix = _identity(4);
1925 $matrix = _identity($self->getchannels);
1929 $self->{ERRSTR} = "Unknown convert preset $opts{preset}";
1935 $matrix = $opts{matrix};
1938 my $new = Imager->new();
1939 $new->{IMG} = i_img_new();
1940 unless (i_convert($new->{IMG}, $self->{IMG}, $matrix)) {
1941 # most likely a bad matrix
1942 $self->{ERRSTR} = _error_as_msg();
1949 # general function to map an image through lookup tables
1952 my ($self, %opts) = @_;
1953 my @chlist = qw( red green blue alpha );
1955 if (!exists($opts{'maps'})) {
1956 # make maps from channel maps
1958 for $chnum (0..$#chlist) {
1959 if (exists $opts{$chlist[$chnum]}) {
1960 $opts{'maps'}[$chnum] = $opts{$chlist[$chnum]};
1961 } elsif (exists $opts{'all'}) {
1962 $opts{'maps'}[$chnum] = $opts{'all'};
1966 if ($opts{'maps'} and $self->{IMG}) {
1967 i_map($self->{IMG}, $opts{'maps'} );
1972 # destructive border - image is shrunk by one pixel all around
1975 my ($self,%opts)=@_;
1976 my($tx,$ty)=($self->getwidth()-1,$self->getheight()-1);
1977 $self->polyline('x'=>[0,$tx,$tx,0,0],'y'=>[0,0,$ty,$ty,0],%opts);
1981 # Get the width of an image
1985 if (!defined($self->{IMG})) { $self->{ERRSTR} = 'image is empty'; return undef; }
1986 return (i_img_info($self->{IMG}))[0];
1989 # Get the height of an image
1993 if (!defined($self->{IMG})) { $self->{ERRSTR} = 'image is empty'; return undef; }
1994 return (i_img_info($self->{IMG}))[1];
1997 # Get number of channels in an image
2001 if (!defined($self->{IMG})) { $self->{ERRSTR} = 'image is empty'; return undef; }
2002 return i_img_getchannels($self->{IMG});
2009 if (!defined($self->{IMG})) { $self->{ERRSTR} = 'image is empty'; return undef; }
2010 return i_img_getmask($self->{IMG});
2018 if (!defined($self->{IMG})) { $self->{ERRSTR} = 'image is empty'; return undef; }
2019 i_img_setmask( $self->{IMG} , $opts{mask} );
2022 # Get number of colors in an image
2026 my %opts=(maxcolors=>2**30,@_);
2027 if (!defined($self->{IMG})) { $self->{ERRSTR}='image is empty'; return undef; }
2028 my $rc=i_count_colors($self->{IMG},$opts{'maxcolors'});
2029 return ($rc==-1? undef : $rc);
2032 # draw string to an image
2036 unless ($self->{IMG}) { $self->{ERRSTR}='empty input image'; return undef; }
2038 my %input=('x'=>0, 'y'=>0, @_);
2039 $input{string}||=$input{text};
2041 unless(exists $input{string}) {
2042 $self->{ERRSTR}="missing required parameter 'string'";
2046 unless($input{font}) {
2047 $self->{ERRSTR}="missing required parameter 'font'";
2051 unless ($input{font}->draw(image=>$self, %input)) {
2052 $self->{ERRSTR} = $self->_error_as_msg();
2059 # Shortcuts that can be exported
2061 sub newcolor { Imager::Color->new(@_); }
2062 sub newfont { Imager::Font->new(@_); }
2064 *NC=*newcolour=*newcolor;
2071 #### Utility routines
2074 ref $_[0] ? $_[0]->{ERRSTR} : $ERRSTR
2077 # Default guess for the type of an image from extension
2079 sub def_guess_type {
2082 $ext=($name =~ m/\.([^\.]+)$/)[0];
2083 return 'tiff' if ($ext =~ m/^tiff?$/);
2084 return 'jpeg' if ($ext =~ m/^jpe?g$/);
2085 return 'pnm' if ($ext =~ m/^p[pgb]m$/);
2086 return 'png' if ($ext eq "png");
2087 return 'bmp' if ($ext eq "bmp" || $ext eq "dib");
2088 return 'tga' if ($ext eq "tga");
2089 return 'gif' if ($ext eq "gif");
2093 # get the minimum of a list
2097 for(@_) { if ($_<$mx) { $mx=$_; }}
2101 # get the maximum of a list
2105 for(@_) { if ($_>$mx) { $mx=$_; }}
2109 # string stuff for iptc headers
2113 $str = substr($str,3);
2114 $str =~ s/[\n\r]//g;
2121 # A little hack to parse iptc headers.
2126 my($caption,$photogr,$headln,$credit);
2128 my $str=$self->{IPTCRAW};
2132 @ar=split(/8BIM/,$str);
2137 @sar=split(/\034\002/);
2138 foreach $item (@sar) {
2139 if ($item =~ m/^x/) {
2140 $caption=&clean($item);
2143 if ($item =~ m/^P/) {
2144 $photogr=&clean($item);
2147 if ($item =~ m/^i/) {
2148 $headln=&clean($item);
2151 if ($item =~ m/^n/) {
2152 $credit=&clean($item);
2158 return (caption=>$caption,photogr=>$photogr,headln=>$headln,credit=>$credit);
2161 # Autoload methods go after =cut, and are processed by the autosplit program.
2165 # Below is the stub of documentation for your module. You better edit it!
2169 Imager - Perl extension for Generating 24 bit Images
2173 use Imager qw(init);
2176 $img = Imager->new();
2177 $img->open(file=>'image.ppm',type=>'pnm')
2178 || print "failed: ",$img->{ERRSTR},"\n";
2179 $scaled=$img->scale(xpixels=>400,ypixels=>400);
2180 $scaled->write(file=>'sc_image.ppm',type=>'pnm')
2181 || print "failed: ",$scaled->{ERRSTR},"\n";
2185 Imager is a module for creating and altering images - It is not meant
2186 as a replacement or a competitor to ImageMagick or GD. Both are
2187 excellent packages and well supported.
2191 Almost all functions take the parameters in the hash fashion.
2194 $img->open(file=>'lena.png',type=>'png');
2198 $img->open(file=>'lena.png');
2200 =head2 Basic concept
2202 An Image object is created with C<$img = Imager-E<gt>new()> Should
2203 this fail for some reason an explanation can be found in
2204 C<$Imager::ERRSTR> usually error messages are stored in
2205 C<$img-E<gt>{ERRSTR}>, but since no object is created this is the only
2206 way to give back errors. C<$Imager::ERRSTR> is also used to report
2207 all errors not directly associated with an image object. Examples:
2209 $img=Imager->new(); # This is an empty image (size is 0 by 0)
2210 $img->open(file=>'lena.png',type=>'png'); # initializes from file
2212 or if you want to create an empty image:
2214 $img=Imager->new(xsize=>400,ysize=>300,channels=>4);
2216 This example creates a completely black image of width 400 and
2217 height 300 and 4 channels.
2219 If you have an existing image, use img_set() to change it's dimensions
2220 - this will destroy any existing image data:
2222 $img->img_set(xsize=>500, ysize=>500, channels=>4);
2224 To create paletted images, set the 'type' parameter to 'paletted':
2226 $img = Imager->new(xsize=>200, ysize=>200, channels=>3, type=>'paletted');
2228 which creates an image with a maxiumum of 256 colors, which you can
2229 change by supplying the C<maxcolors> parameter.
2231 You can create a new paletted image from an existing image using the
2232 to_paletted() method:
2234 $palimg = $img->to_paletted(\%opts)
2236 where %opts contains the options specified under L<Quantization options>.
2238 You can convert a paletted image (or any image) to an 8-bit/channel
2241 $rgbimg = $img->to_rgb8;
2243 Warning: if you draw on a paletted image with colors that aren't in
2244 the palette, the image will be internally converted to a normal image.
2246 For improved color precision you can use the bits parameter to specify
2249 $img = Imager->new(xsize=>200, ysize=>200, channels=>3, bits=>16);
2251 or for even more precision:
2253 $img = Imager->new(xsize=>200, ysize=>200, channels=>3, bits=>'double');
2255 to get an image that uses a double for each channel.
2257 Note that as of this writing all functions should work on images with
2258 more than 8-bits/channel, but many will only work at only
2259 8-bit/channel precision.
2261 Currently only 8-bit, 16-bit, and double per channel image types are
2262 available, this may change later.
2264 Color objects are created by calling the Imager::Color->new()
2267 $color = Imager::Color->new($red, $green, $blue);
2268 $color = Imager::Color->new($red, $green, $blue, $alpha);
2269 $color = Imager::Color->new("#C0C0FF"); # html color specification
2271 This object can then be passed to functions that require a color parameter.
2273 Coordinates in Imager have the origin in the upper left corner. The
2274 horizontal coordinate increases to the right and the vertical
2277 =head2 Reading and writing images
2279 C<$img-E<gt>read()> generally takes two parameters, 'file' and 'type'.
2280 If the type of the file can be determined from the suffix of the file
2281 it can be omitted. Format dependant parameters are: For images of
2282 type 'raw' two extra parameters are needed 'xsize' and 'ysize', if the
2283 'channel' parameter is omitted for type 'raw' it is assumed to be 3.
2284 gif and png images might have a palette are converted to truecolor bit
2285 when read. Alpha channel is preserved for png images irregardless of
2286 them being in RGB or gray colorspace. Similarly grayscale jpegs are
2287 one channel images after reading them. For jpeg images the iptc
2288 header information (stored in the APP13 header) is avaliable to some
2289 degree. You can get the raw header with C<$img-E<gt>{IPTCRAW}>, but
2290 you can also retrieve the most basic information with
2291 C<%hsh=$img-E<gt>parseiptc()> as always patches are welcome. pnm has no
2292 extra options. Examples:
2294 $img = Imager->new();
2295 $img->read(file=>"cover.jpg") or die $img->errstr; # gets type from name
2297 $img = Imager->new();
2298 { local(*FH,$/); open(FH,"file.gif") or die $!; $a=<FH>; }
2299 $img->read(data=>$a,type=>'gif') or die $img->errstr;
2301 The second example shows how to read an image from a scalar, this is
2302 usefull if your data originates from somewhere else than a filesystem
2303 such as a database over a DBI connection.
2305 When writing to a tiff image file you can also specify the 'class'
2306 parameter, which can currently take a single value, "fax". If class
2307 is set to fax then a tiff image which should be suitable for faxing
2308 will be written. For the best results start with a grayscale image.
2309 By default the image is written at fine resolution you can override
2310 this by setting the "fax_fine" parameter to 0.
2312 If you are reading from a gif image file, you can supply a 'colors'
2313 parameter which must be a reference to a scalar. The referenced
2314 scalar will receive an array reference which contains the colors, each
2315 represented as an Imager::Color object.
2317 If you already have an open file handle, for example a socket or a
2318 pipe, you can specify the 'fd' parameter instead of supplying a
2319 filename. Please be aware that you need to use fileno() to retrieve
2320 the file descriptor for the file:
2322 $img->read(fd=>fileno(FILE), type=>'gif') or die $img->errstr;
2324 For writing using the 'fd' option you will probably want to set $| for
2325 that descriptor, since the writes to the file descriptor bypass Perl's
2326 (or the C libraries) buffering. Setting $| should avoid out of order
2327 output. For example a common idiom when writing a CGI script is:
2329 # the $| _must_ come before you send the content-type
2331 print "Content-Type: image/jpeg\n\n";
2332 $img->write(fd=>fileno(STDOUT), type=>'jpeg') or die $img->errstr;
2334 *Note that load() is now an alias for read but will be removed later*
2336 C<$img-E<gt>write> has the same interface as C<read()>. The earlier
2337 comments on C<read()> for autodetecting filetypes apply. For jpegs
2338 quality can be adjusted via the 'jpegquality' parameter (0-100). The
2339 number of colorplanes in gifs are set with 'gifplanes' and should be
2340 between 1 (2 color) and 8 (256 colors). It is also possible to choose
2341 between two quantizing methods with the parameter 'gifquant'. If set
2342 to mc it uses the mediancut algorithm from either giflibrary. If set
2343 to lm it uses a local means algorithm. It is then possible to give
2344 some extra settings. lmdither is the dither deviation amount in pixels
2345 (manhattan distance). lmfixed can be an array ref who holds an array
2346 of Imager::Color objects. Note that the local means algorithm needs
2347 much more cpu time but also gives considerable better results than the
2348 median cut algorithm.
2350 Currently just for gif files, you can specify various options for the
2351 conversion from Imager's internal RGB format to the target's indexed
2352 file format. If you set the gifquant option to 'gen', you can use the
2353 options specified under L<Quantization options>.
2355 To see what Imager is compiled to support the following code snippet
2359 print "@{[keys %Imager::formats]}";
2361 When reading raw images you need to supply the width and height of the
2362 image in the xsize and ysize options:
2364 $img->read(file=>'foo.raw', xsize=>100, ysize=>100)
2365 or die "Cannot read raw image\n";
2367 If your input file has more channels than you want, or (as is common),
2368 junk in the fourth channel, you can use the datachannels and
2369 storechannels options to control the number of channels in your input
2370 file and the resulting channels in your image. For example, if your
2371 input image uses 32-bits per pixel with red, green, blue and junk
2372 values for each pixel you could do:
2374 $img->read(file=>'foo.raw', xsize=>100, ysize=>100, datachannels=>4,
2376 or die "Cannot read raw image\n";
2378 Normally the raw image is expected to have the value for channel 1
2379 immediately following channel 0 and channel 2 immediately following
2380 channel 1 for each pixel. If your input image has all the channel 0
2381 values for the first line of the image, followed by all the channel 1
2382 values for the first line and so on, you can use the interleave option:
2384 $img->read(file=>'foo.raw', xsize=100, ysize=>100, interleave=>1)
2385 or die "Cannot read raw image\n";
2387 =head2 Multi-image files
2389 Currently just for gif files, you can create files that contain more
2394 Imager->write_multi(\%opts, @images)
2396 Where %opts describes 4 possible types of outputs:
2402 This is C<gif> for gif animations.
2406 A code reference which is called with a single parameter, the data to
2407 be written. You can also specify $opts{maxbuffer} which is the
2408 maximum amount of data buffered. Note that there can be larger writes
2409 than this if the file library writes larger blocks. A smaller value
2410 maybe useful for writing to a socket for incremental display.
2414 The file descriptor to save the images to.
2418 The name of the file to write to.
2420 %opts may also include the keys from L<Gif options> and L<Quantization
2425 You must also specify the file format using the 'type' option.
2427 The current aim is to support other multiple image formats in the
2428 future, such as TIFF, and to support reading multiple images from a
2434 # ... code to put images in @images
2435 Imager->write_multi({type=>'gif',
2437 gif_delays=>[ (10) x @images ] },
2441 You can read multi-image files (currently only GIF files) using the
2442 read_multi() method:
2444 my @imgs = Imager->read_multi(file=>'foo.gif')
2445 or die "Cannot read images: ",Imager->errstr;
2447 The possible parameters for read_multi() are:
2453 The name of the file to read in.
2457 A filehandle to read in. This can be the name of a filehandle, but it
2458 will need the package name, no attempt is currently made to adjust
2459 this to the caller's package.
2463 The numeric file descriptor of an open file (or socket).
2467 A function to be called to read in data, eg. reading a blob from a
2468 database incrementally.
2472 The data of the input file in memory.
2476 The type of file. If the file is parameter is given and provides
2477 enough information to guess the type, then this parameter is optional.
2481 Note: you cannot use the callback or data parameter with giflib
2482 versions before 4.0.
2484 When reading from a GIF file with read_multi() the images are returned
2489 These options can be specified when calling write_multi() for gif
2490 files, when writing a single image with the gifquant option set to
2491 'gen', or for direct calls to i_writegif_gen and i_writegif_callback.
2493 Note that some viewers will ignore some of these options
2494 (gif_user_input in particular).
2498 =item gif_each_palette
2500 Each image in the gif file has it's own palette if this is non-zero.
2501 All but the first image has a local colour table (the first uses the
2502 global colour table.
2506 The images are written interlaced if this is non-zero.
2510 A reference to an array containing the delays between images, in 1/100
2513 If you want the same delay for every frame you can simply set this to
2514 the delay in 1/100 seconds.
2516 =item gif_user_input
2518 A reference to an array contains user input flags. If the given flag
2519 is non-zero the image viewer should wait for input before displaying
2524 A reference to an array of image disposal methods. These define what
2525 should be done to the image before displaying the next one. These are
2526 integers, where 0 means unspecified, 1 means the image should be left
2527 in place, 2 means restore to background colour and 3 means restore to
2530 =item gif_tran_color
2532 A reference to an Imager::Color object, which is the colour to use for
2533 the palette entry used to represent transparency in the palette. You
2534 need to set the transp option (see L<Quantization options>) for this
2539 A reference to an array of references to arrays which represent screen
2540 positions for each image.
2542 =item gif_loop_count
2544 If this is non-zero the Netscape loop extension block is generated,
2545 which makes the animation of the images repeat.
2547 This is currently unimplemented due to some limitations in giflib.
2549 =item gif_eliminate_unused
2551 If this is true, when you write a paletted image any unused colors
2552 will be eliminated from its palette. This is set by default.
2556 =head2 Quantization options
2558 These options can be specified when calling write_multi() for gif
2559 files, when writing a single image with the gifquant option set to
2560 'gen', or for direct calls to i_writegif_gen and i_writegif_callback.
2566 A arrayref of colors that are fixed. Note that some color generators
2571 The type of transparency processing to perform for images with an
2572 alpha channel where the output format does not have a proper alpha
2573 channel (eg. gif). This can be any of:
2579 No transparency processing is done. (default)
2583 Pixels more transparent that tr_threshold are rendered as transparent.
2587 An error diffusion dither is done on the alpha channel. Note that
2588 this is independent of the translation performed on the colour
2589 channels, so some combinations may cause undesired artifacts.
2593 The ordered dither specified by tr_orddith is performed on the alpha
2598 This will only be used if the image has an alpha channel, and if there
2599 is space in the palette for a transparency colour.
2603 The highest alpha value at which a pixel will be made transparent when
2604 transp is 'threshold'. (0-255, default 127)
2608 The type of error diffusion to perform on the alpha channel when
2609 transp is 'errdiff'. This can be any defined error diffusion type
2610 except for custom (see errdiff below).
2614 The type of ordered dither to perform on the alpha channel when transp
2615 is 'ordered'. Possible values are:
2621 A semi-random map is used. The map is the same each time.
2633 horizontal line dither.
2637 vertical line dither.
2643 diagonal line dither
2649 diagonal line dither
2653 dot matrix dither (currently the default). This is probably the best
2654 for displays (like web pages).
2658 A custom dither matrix is used - see tr_map
2664 When tr_orddith is custom this defines an 8 x 8 matrix of integers
2665 representing the transparency threshold for pixels corresponding to
2666 each position. This should be a 64 element array where the first 8
2667 entries correspond to the first row of the matrix. Values should be
2672 Defines how the quantization engine will build the palette(s).
2673 Currently this is ignored if 'translate' is 'giflib', but that may
2674 change. Possible values are:
2680 Only colors supplied in 'colors' are used.
2684 The web color map is used (need url here.)
2688 The original code for generating the color map (Addi's code) is used.
2692 Other methods may be added in the future.
2696 A arrayref containing Imager::Color objects, which represents the
2697 starting set of colors to use in translating the images. webmap will
2698 ignore this. The final colors used are copied back into this array
2699 (which is expanded if necessary.)
2703 The maximum number of colors to use in the image.
2707 The method used to translate the RGB values in the source image into
2708 the colors selected by make_colors. Note that make_colors is ignored
2709 whene translate is 'giflib'.
2711 Possible values are:
2717 The giflib native quantization function is used.
2721 The closest color available is used.
2725 The pixel color is modified by perturb, and the closest color is chosen.
2729 An error diffusion dither is performed.
2733 It's possible other transate values will be added.
2737 The type of error diffusion dither to perform. These values (except
2738 for custom) can also be used in tr_errdif.
2744 Floyd-Steinberg dither
2748 Jarvis, Judice and Ninke dither
2756 Custom. If you use this you must also set errdiff_width,
2757 errdiff_height and errdiff_map.
2763 =item errdiff_height
2769 When translate is 'errdiff' and errdiff is 'custom' these define a
2770 custom error diffusion map. errdiff_width and errdiff_height define
2771 the size of the map in the arrayref in errdiff_map. errdiff_orig is
2772 an integer which indicates the current pixel position in the top row
2777 When translate is 'perturb' this is the magnitude of the random bias
2778 applied to each channel of the pixel before it is looked up in the
2783 =head2 Obtaining/setting attributes of images
2785 To get the size of an image in pixels the C<$img-E<gt>getwidth()> and
2786 C<$img-E<gt>getheight()> are used.
2788 To get the number of channels in
2789 an image C<$img-E<gt>getchannels()> is used. $img-E<gt>getmask() and
2790 $img-E<gt>setmask() are used to get/set the channel mask of the image.
2792 $mask=$img->getmask();
2793 $img->setmask(mask=>1+2); # modify red and green only
2794 $img->setmask(mask=>8); # modify alpha only
2795 $img->setmask(mask=>$mask); # restore previous mask
2797 The mask of an image describes which channels are updated when some
2798 operation is performed on an image. Naturally it is not possible to
2799 apply masks to operations like scaling that alter the dimensions of
2802 It is possible to have Imager find the number of colors in an image
2803 by using C<$img-E<gt>getcolorcount()>. It requires memory proportionally
2804 to the number of colors in the image so it is possible to have it
2805 stop sooner if you only need to know if there are more than a certain number
2806 of colors in the image. If there are more colors than asked for
2807 the function return undef. Examples:
2809 if (!defined($img->getcolorcount(maxcolors=>512)) {
2810 print "Less than 512 colors in image\n";
2813 The bits() method retrieves the number of bits used to represent each
2814 channel in a pixel, 8 for a normal image, 16 for 16-bit image and
2815 'double' for a double/channel image. The type() method returns either
2816 'direct' for truecolor images or 'paletted' for paletted images. The
2817 virtual() method returns non-zero if the image contains no actual
2818 pixels, for example masked images.
2820 =head2 Paletted Images
2822 In general you can work with paletted images in the same way as RGB
2823 images, except that if you attempt to draw to a paletted image with a
2824 color that is not in the image's palette, the image will be converted
2825 to an RGB image. This means that drawing on a paletted image with
2826 anti-aliasing enabled will almost certainly convert the image to RGB.
2828 You can add colors to a paletted image with the addcolors() method:
2830 my @colors = ( Imager::Color->new(255, 0, 0),
2831 Imager::Color->new(0, 255, 0) );
2832 my $index = $img->addcolors(colors=>\@colors);
2834 The return value is the index of the first color added, or undef if
2835 adding the colors would overflow the palette.
2837 Once you have colors in the palette you can overwrite them with the
2840 $img->setcolors(start=>$start, colors=>\@colors);
2842 Returns true on success.
2844 To retrieve existing colors from the palette use the getcolors() method:
2846 # get the whole palette
2847 my @colors = $img->getcolors();
2848 # get a single color
2849 my $color = $img->getcolors(start=>$index);
2850 # get a range of colors
2851 my @colors = $img->getcolors(start=>$index, count=>$count);
2853 To quickly find a color in the palette use findcolor():
2855 my $index = $img->findcolor(color=>$color);
2857 which returns undef on failure, or the index of the color.
2859 You can get the current palette size with $img->colorcount, and the
2860 maximum size of the palette with $img->maxcolors.
2862 =head2 Drawing Methods
2864 IMPLEMENTATION MORE OR LESS DONE CHECK THE TESTS
2865 DOCUMENTATION OF THIS SECTION OUT OF SYNC
2867 It is possible to draw with graphics primitives onto images. Such
2868 primitives include boxes, arcs, circles and lines. A reference
2869 oriented list follows.
2872 $img->box(color=>$blue,xmin=>10,ymin=>30,xmax=>200,ymax=>300,filled=>1);
2874 The above example calls the C<box> method for the image and the box
2875 covers the pixels with in the rectangle specified. If C<filled> is
2876 ommited it is drawn as an outline. If any of the edges of the box are
2877 ommited it will snap to the outer edge of the image in that direction.
2878 Also if a color is omitted a color with (255,255,255,255) is used
2882 $img->arc(color=>$red, r=20, x=>200, y=>100, d1=>10, d2=>20 );
2884 This creates a filled red arc with a 'center' at (200, 100) and spans
2885 10 degrees and the slice has a radius of 20. SEE section on BUGS.
2887 Both the arc() and box() methods can take a C<fill> parameter which
2888 can either be an Imager::Fill object, or a reference to a hash
2889 containing the parameters used to create the fill:
2891 $img->box(xmin=>10, ymin=>30, xmax=>150, ymax=>60,
2892 fill => { hatch=>'cross2' });
2894 my $fill = Imager::Fill->new(hatch=>'stipple');
2895 $img->box(fill=>$fill);
2897 See L<Imager::Fill> for the type of fills you can use.
2900 $img->circle(color=>$green, r=50, x=>200, y=>100);
2902 This creates a green circle with its center at (200, 100) and has a
2906 $img->line(color=>$green, x1=10, x2=>100,
2907 y1=>20, y2=>50, antialias=>1 );
2909 That draws an antialiased line from (10,100) to (20,50).
2912 $img->polyline(points=>[[$x0,$y0],[$x1,$y1],[$x2,$y2]],color=>$red);
2913 $img->polyline(x=>[$x0,$x1,$x2], y=>[$y0,$y1,$y2], antialias=>1);
2915 Polyline is used to draw multilple lines between a series of points.
2916 The point set can either be specified as an arrayref to an array of
2917 array references (where each such array represents a point). The
2918 other way is to specify two array references.
2920 You can fill a region that all has the same color using the
2921 flood_fill() method, for example:
2923 $img->flood_fill(x=>50, y=>50, color=>$color);
2925 will fill all regions the same color connected to the point (50, 50).
2927 You can also use a general fill, so you could fill the same region
2928 with a check pattern using:
2930 $img->flood_fill(x=>50, y=>50, fill=>{ hatch=>'check2x2' });
2932 See L<Imager::Fill> for more information on general fills.
2934 =head2 Text rendering
2936 Text rendering is described in the Imager::Font manpage.
2938 =head2 Image resizing
2940 To scale an image so porportions are maintained use the
2941 C<$img-E<gt>scale()> method. if you give either a xpixels or ypixels
2942 parameter they will determine the width or height respectively. If
2943 both are given the one resulting in a larger image is used. example:
2944 C<$img> is 700 pixels wide and 500 pixels tall.
2946 $img->scale(xpixels=>400); # 400x285
2947 $img->scale(ypixels=>400); # 560x400
2949 $img->scale(xpixels=>400,ypixels=>400); # 560x400
2950 $img->scale(xpixels=>400,ypixels=>400,type=>min); # 400x285
2952 $img->scale(scalefactor=>0.25); 175x125 $img->scale(); # 350x250
2954 if you want to create low quality previews of images you can pass
2955 C<qtype=E<gt>'preview'> to scale and it will use nearest neighbor
2956 sampling instead of filtering. It is much faster but also generates
2957 worse looking images - especially if the original has a lot of sharp
2958 variations and the scaled image is by more than 3-5 times smaller than
2961 If you need to scale images per axis it is best to do it simply by
2962 calling scaleX and scaleY. You can pass either 'scalefactor' or
2963 'pixels' to both functions.
2965 Another way to resize an image size is to crop it. The parameters
2966 to crop are the edges of the area that you want in the returned image.
2967 If a parameter is omited a default is used instead.
2969 $newimg = $img->crop(left=>50, right=>100, top=>10, bottom=>100);
2970 $newimg = $img->crop(left=>50, top=>10, width=>50, height=>90);
2971 $newimg = $img->crop(left=>50, right=>100); # top
2973 You can also specify width and height parameters which will produce a
2974 new image cropped from the center of the input image, with the given
2977 $newimg = $img->crop(width=>50, height=>50);
2979 The width and height parameters take precedence over the left/right
2980 and top/bottom parameters respectively.
2982 =head2 Copying images
2984 To create a copy of an image use the C<copy()> method. This is usefull
2985 if you want to keep an original after doing something that changes the image
2986 inplace like writing text.
2990 To copy an image to onto another image use the C<paste()> method.
2992 $dest->paste(left=>40,top=>20,img=>$logo);
2994 That copies the entire C<$logo> image onto the C<$dest> image so that the
2995 upper left corner of the C<$logo> image is at (40,20).
2998 =head2 Flipping images
3000 An inplace horizontal or vertical flip is possible by calling the
3001 C<flip()> method. If the original is to be preserved it's possible to
3002 make a copy first. The only parameter it takes is the C<dir>
3003 parameter which can take the values C<h>, C<v>, C<vh> and C<hv>.
3005 $img->flip(dir=>"h"); # horizontal flip
3006 $img->flip(dir=>"vh"); # vertical and horizontal flip
3007 $nimg = $img->copy->flip(dir=>"v"); # make a copy and flip it vertically
3009 =head2 Rotating images
3011 Use the rotate() method to rotate an image. This method will return a
3014 To rotate by an exact amount in degrees or radians, use the 'degrees'
3015 or 'radians' parameter:
3017 my $rot20 = $img->rotate(degrees=>20);
3018 my $rotpi4 = $img->rotate(radians=>3.14159265/4);
3020 Exact image rotation uses the same underlying transformation engine as
3021 the matrix_transform() method.
3023 To rotate in steps of 90 degrees, use the 'right' parameter:
3025 my $rotated = $img->rotate(right=>270);
3027 Rotations are clockwise for positive values.
3029 =head2 Blending Images
3031 To put an image or a part of an image directly
3032 into another it is best to call the C<paste()> method on the image you
3035 $img->paste(img=>$srcimage,left=>30,top=>50);
3037 That will take paste C<$srcimage> into C<$img> with the upper
3038 left corner at (30,50). If no values are given for C<left>
3039 or C<top> they will default to 0.
3041 A more complicated way of blending images is where one image is
3042 put 'over' the other with a certain amount of opaqueness. The
3043 method that does this is rubthrough.
3045 $img->rubthrough(src=>$srcimage,tx=>30,ty=>50);
3047 That will take the image C<$srcimage> and overlay it with the upper
3048 left corner at (30,50). You can rub 2 or 4 channel images onto a 3
3049 channel image, or a 2 channel image onto a 1 channel image. The last
3050 channel is used as an alpha channel.
3055 A special image method is the filter method. An example is:
3057 $img->filter(type=>'autolevels');
3059 This will call the autolevels filter. Here is a list of the filters
3060 that are always avaliable in Imager. This list can be obtained by
3061 running the C<filterlist.perl> script that comes with the module
3065 autolevels lsat(0.1) usat(0.1) skew(0)
3066 bumpmap bump elevation(0) lightx lighty st(2)
3067 bumpmap_complex bump channel(0) tx(0) ty(0) Lx(0.2) Ly(0.4)
3068 Lz(-1) cd(1.0) cs(40.0) n(1.3) Ia(0 0 0) Il(255 255 255)
3072 fountain xa ya xb yb ftype(linear) repeat(none) combine(none)
3073 super_sample(none) ssample_param(4) segments(see below)
3075 gradgen xo yo colors dist
3078 noise amount(3) subtype(0)
3079 postlevels levels(10)
3080 radnoise xo(100) yo(100) ascale(17.0) rscale(0.02)
3081 turbnoise xo(0.0) yo(0.0) scale(10.0)
3082 unsharpmask stddev(2.0) scale(1.0)
3083 watermark wmark pixdiff(10) tx(0) ty(0)
3085 The default values are in parenthesis. All parameters must have some
3086 value but if a parameter has a default value it may be omitted when
3087 calling the filter function.
3095 scales the value of each channel so that the values in the image will
3096 cover the whole possible range for the channel. I<lsat> and I<usat>
3097 truncate the range by the specified fraction at the top and bottom of
3098 the range respectivly..
3102 uses the channel I<elevation> image I<bump> as a bumpmap on your
3103 image, with the light at (I<lightx>, I<lightty>), with a shadow length
3106 =item bumpmap_complex
3108 uses the channel I<channel> image I<bump> as a bumpmap on your image.
3109 If Lz<0 the three L parameters are considered to be the direction of
3110 the light. If Lz>0 the L parameters are considered to be the light
3111 position. I<Ia> is the ambient colour, I<Il> is the light colour,
3112 I<Is> is the color of specular highlights. I<cd> is the diffuse
3113 coefficient and I<cs> is the specular coefficient. I<n> is the
3114 shininess of the surface.
3118 scales each channel by I<intensity>. Values of I<intensity> < 1.0
3119 will reduce the contrast.
3123 performs 2 1-dimensional convolutions on the image using the values
3124 from I<coef>. I<coef> should be have an odd length.
3128 renders a fountain fill, similar to the gradient tool in most paint
3129 software. The default fill is a linear fill from opaque black to
3130 opaque white. The points A(xa, ya) and B(xb, yb) control the way the
3131 fill is performed, depending on the ftype parameter:
3137 the fill ramps from A through to B.
3141 the fill ramps in both directions from A, where AB defines the length
3146 A is the center of a circle, and B is a point on it's circumference.
3147 The fill ramps from the center out to the circumference.
3151 A is the center of a square and B is the center of one of it's sides.
3152 This can be used to rotate the square. The fill ramps out to the
3153 edges of the square.
3157 A is the centre of a circle and B is a point on it's circumference. B
3158 marks the 0 and 360 point on the circle, with the fill ramping
3163 A is the center of a circle and B is a point on it's circumference. B
3164 marks the 0 and point on the circle, with the fill ramping in both
3165 directions to meet opposite.
3169 The I<repeat> option controls how the fill is repeated for some
3170 I<ftype>s after it leaves the AB range:
3176 no repeats, points outside of each range are treated as if they were
3177 on the extreme end of that range.
3181 the fill simply repeats in the positive direction
3185 the fill repeats in reverse and then forward and so on, in the
3190 the fill repeats in both the positive and negative directions (only
3191 meaningful for a linear fill).
3195 as for triangle, but in the negative direction too (only meaningful
3200 By default the fill simply overwrites the whole image (unless you have
3201 parts of the range 0 through 1 that aren't covered by a segment), if
3202 any segments of your fill have any transparency, you can set the
3203 I<combine> option to 'normal' to have the fill combined with the
3204 existing pixels. See the description of I<combine> in L<Imager/Fill>.
3206 If your fill has sharp edges, for example between steps if you use
3207 repeat set to 'triangle', you may see some aliased or ragged edges.
3208 You can enable super-sampling which will take extra samples within the
3209 pixel in an attempt anti-alias the fill.
3211 The possible values for the super_sample option are:
3217 no super-sampling is done
3221 a square grid of points are sampled. The number of points sampled is
3222 the square of ceil(0.5 + sqrt(ssample_param)).
3226 a random set of points within the pixel are sampled. This looks
3227 pretty bad for low ssample_param values.
3231 the points on the radius of a circle within the pixel are sampled.
3232 This seems to produce the best results, but is fairly slow (for now).
3236 You can control the level of sampling by setting the ssample_param
3237 option. This is roughly the number of points sampled, but depends on
3238 the type of sampling.
3240 The segments option is an arrayref of segments. You really should use
3241 the Imager::Fountain class to build your fountain fill. Each segment
3242 is an array ref containing:
3248 a floating point number between 0 and 1, the start of the range of fill parameters covered by this segment.
3252 a floating point number between start and end which can be used to
3253 push the color range towards one end of the segment.
3257 a floating point number between 0 and 1, the end of the range of fill
3258 parameters covered by this segment. This should be greater than
3265 The colors at each end of the segment. These can be either
3266 Imager::Color or Imager::Color::Float objects.
3270 The type of segment, this controls the way the fill parameter varies
3271 over the segment. 0 for linear, 1 for curved (unimplemented), 2 for
3272 sine, 3 for sphere increasing, 4 for sphere decreasing.
3276 The way the color varies within the segment, 0 for simple RGB, 1 for
3277 hue increasing and 2 for hue decreasing.
3281 Don't forgot to use Imager::Fountain instead of building your own.
3282 Really. It even loads GIMP gradient files.
3286 performs a gaussian blur of the image, using I<stddev> as the standard
3287 deviation of the curve used to combine pixels, larger values give
3288 bigger blurs. For a definition of Gaussian Blur, see:
3290 http://www.maths.abdn.ac.uk/~igc/tch/mx4002/notes/node99.html
3294 renders a gradient, with the given I<colors> at the corresponding
3295 points (x,y) in I<xo> and I<yo>. You can specify the way distance is
3296 measured for color blendeing by setting I<dist> to 0 for Euclidean, 1
3297 for Euclidean squared, and 2 for Manhattan distance.
3301 inverts the image, black to white, white to black. All channels are
3302 inverted, including the alpha channel if any.
3306 produces averaged tiles of the given I<size>.
3310 adds noise of the given I<amount> to the image. If I<subtype> is
3311 zero, the noise is even to each channel, otherwise noise is added to
3312 each channel independently.
3316 renders radiant Perlin turbulent noise. The centre of the noise is at
3317 (I<xo>, I<yo>), I<ascale> controls the angular scale of the noise ,
3318 and I<rscale> the radial scale, higher numbers give more detail.
3322 alters the image to have only I<levels> distinct level in each
3327 renders Perlin turbulent noise. (I<xo>, I<yo>) controls the origin of
3328 the noise, and I<scale> the scale of the noise, with lower numbers
3333 performs an unsharp mask on the image. This is the result of
3334 subtracting a gaussian blurred version of the image from the original.
3335 I<stddev> controls the stddev parameter of the gaussian blur. Each
3336 output pixel is: in + I<scale> * (in - blurred).
3340 applies I<wmark> as a watermark on the image with strength I<pixdiff>,
3341 with an origin at (I<tx>, I<ty>)
3345 A demonstration of most of the filters can be found at:
3347 http://www.develop-help.com/imager/filters.html
3349 (This is a slow link.)
3351 =head2 Color transformations
3353 You can use the convert method to transform the color space of an
3354 image using a matrix. For ease of use some presets are provided.
3356 The convert method can be used to:
3362 convert an RGB or RGBA image to grayscale.
3366 convert a grayscale image to RGB.
3370 extract a single channel from an image.
3374 set a given channel to a particular value (or from another channel)
3378 The currently defined presets are:
3386 converts an RGBA image into a grayscale image with alpha channel, or
3387 an RGB image into a grayscale image without an alpha channel.
3389 This weights the RGB channels at 22.2%, 70.7% and 7.1% respectively.
3393 removes the alpha channel from a 2 or 4 channel image. An identity
3400 extracts the first channel of the image into a single channel image
3406 extracts the second channel of the image into a single channel image
3412 extracts the third channel of the image into a single channel image
3416 extracts the alpha channel of the image into a single channel image.
3418 If the image has 1 or 3 channels (assumed to be grayscale of RGB) then
3419 the resulting image will be all white.
3423 converts a grayscale image to RGB, preserving the alpha channel if any
3427 adds an alpha channel to a grayscale or RGB image. Preserves an
3428 existing alpha channel for a 2 or 4 channel image.
3432 For example, to convert an RGB image into a greyscale image:
3434 $new = $img->convert(preset=>'grey'); # or gray
3436 or to convert a grayscale image to an RGB image:
3438 $new = $img->convert(preset=>'rgb');
3440 The presets aren't necessary simple constants in the code, some are
3441 generated based on the number of channels in the input image.
3443 If you want to perform some other colour transformation, you can use
3444 the 'matrix' parameter.
3446 For each output pixel the following matrix multiplication is done:
3448 channel[0] [ [ $c00, $c01, ... ] inchannel[0]
3449 [ ... ] = ... x [ ... ]
3450 channel[n-1] [ $cn0, ..., $cnn ] ] inchannel[max]
3453 So if you want to swap the red and green channels on a 3 channel image:
3455 $new = $img->convert(matrix=>[ [ 0, 1, 0 ],
3459 or to convert a 3 channel image to greyscale using equal weightings:
3461 $new = $img->convert(matrix=>[ [ 0.333, 0.333, 0.334 ] ])
3463 =head2 Color Mappings
3465 You can use the map method to map the values of each channel of an
3466 image independently using a list of lookup tables. It's important to
3467 realize that the modification is made inplace. The function simply
3468 returns the input image again or undef on failure.
3470 Each channel is mapped independently through a lookup table with 256
3471 entries. The elements in the table should not be less than 0 and not
3472 greater than 255. If they are out of the 0..255 range they are
3473 clamped to the range. If a table does not contain 256 entries it is
3476 Single channels can mapped by specifying their name and the mapping
3477 table. The channel names are C<red>, C<green>, C<blue>, C<alpha>.
3479 @map = map { int( $_/2 } 0..255;
3480 $img->map( red=>\@map );
3482 It is also possible to specify a single map that is applied to all
3483 channels, alpha channel included. For example this applies a gamma
3484 correction with a gamma of 1.4 to the input image.
3487 @map = map { int( 0.5 + 255*($_/255)**$gamma ) } 0..255;
3488 $img->map(all=> \@map);
3490 The C<all> map is used as a default channel, if no other map is
3491 specified for a channel then the C<all> map is used instead. If we
3492 had not wanted to apply gamma to the alpha channel we would have used:
3494 $img->map(all=> \@map, alpha=>[]);
3496 Since C<[]> contains fewer than 256 element the gamma channel is
3499 It is also possible to simply specify an array of maps that are
3500 applied to the images in the rgba order. For example to apply
3501 maps to the C<red> and C<blue> channels one would use:
3503 $img->map(maps=>[\@redmap, [], \@bluemap]);
3507 =head2 Transformations
3509 Another special image method is transform. It can be used to generate
3510 warps and rotations and such features. It can be given the operations
3511 in postfix notation or the module Affix::Infix2Postfix can be used.
3512 Look in the test case t/t55trans.t for an example.
3514 transform() needs expressions (or opcodes) that determine the source
3515 pixel for each target pixel. Source expressions are infix expressions
3516 using any of the +, -, *, / or ** binary operators, the - unary
3517 operator, ( and ) for grouping and the sin() and cos() functions. The
3518 target pixel is input as the variables x and y.
3520 You specify the x and y expressions as xexpr and yexpr respectively.
3521 You can also specify opcodes directly, but that's magic deep enough
3522 that you can look at the source code.
3524 You can still use the transform() function, but the transform2()
3525 function is just as fast and is more likely to be enhanced and
3528 Later versions of Imager also support a transform2() class method
3529 which allows you perform a more general set of operations, rather than
3530 just specifying a spatial transformation as with the transform()
3531 method, you can also perform colour transformations, image synthesis
3532 and image combinations.
3534 transform2() takes an reference to an options hash, and a list of
3535 images to operate one (this list may be empty):
3540 my $img = Imager::transform2(\%opts, @imgs)
3541 or die "transform2 failed: $Imager::ERRSTR";
3543 The options hash may define a transformation function, and optionally:
3549 width - the width of the image in pixels. If this isn't supplied the
3550 width of the first input image is used. If there are no input images
3555 height - the height of the image in pixels. If this isn't supplied
3556 the height of the first input image is used. If there are no input
3557 images an error occurs.
3561 constants - a reference to hash of constants to define for the
3562 expression engine. Some extra constants are defined by Imager
3566 The tranformation function is specified using either the expr or
3567 rpnexpr member of the options.
3571 =item Infix expressions
3573 You can supply infix expressions to transform 2 with the expr keyword.
3575 $opts{expr} = 'return getp1(w-x, h-y)'
3577 The 'expression' supplied follows this general grammar:
3579 ( identifier '=' expr ';' )* 'return' expr
3581 This allows you to simplify your expressions using variables.
3583 A more complex example might be:
3585 $opts{expr} = 'pix = getp1(x,y); return if(value(pix)>0.8,pix*0.8,pix)'
3587 Currently to use infix expressions you must have the Parse::RecDescent
3588 module installed (available from CPAN). There is also what might be a
3589 significant delay the first time you run the infix expression parser
3590 due to the compilation of the expression grammar.
3592 =item Postfix expressions
3594 You can supply postfix or reverse-polish notation expressions to
3595 transform2() through the rpnexpr keyword.
3597 The parser for rpnexpr emulates a stack machine, so operators will
3598 expect to see their parameters on top of the stack. A stack machine
3599 isn't actually used during the image transformation itself.
3601 You can store the value at the top of the stack in a variable called
3602 foo using !foo and retrieve that value again using @foo. The !foo
3603 notation will pop the value from the stack.
3605 An example equivalent to the infix expression above:
3607 $opts{rpnexpr} = 'x y getp1 !pix @pix value 0.8 gt @pix 0.8 * @pix ifp'
3611 transform2() has a fairly rich range of operators.
3615 =item +, *, -, /, %, **
3617 multiplication, addition, subtraction, division, remainder and
3618 exponentiation. Multiplication, addition and subtraction can be used
3619 on colour values too - though you need to be careful - adding 2 white
3620 values together and multiplying by 0.5 will give you grey, not white.
3622 Division by zero (or a small number) just results in a large number.
3623 Modulo zero (or a small number) results in zero.
3625 =item sin(N), cos(N), atan2(y,x)
3627 Some basic trig functions. They work in radians, so you can't just
3630 =item distance(x1, y1, x2, y2)
3632 Find the distance between two points. This is handy (along with
3633 atan2()) for producing circular effects.
3637 Find the square root. I haven't had much use for this since adding
3638 the distance() function.
3642 Find the absolute value.
3644 =item getp1(x,y), getp2(x,y), getp3(x, y)
3646 Get the pixel at position (x,y) from the first, second or third image
3647 respectively. I may add a getpn() function at some point, but this
3648 prevents static checking of the instructions against the number of
3649 images actually passed in.
3651 =item value(c), hue(c), sat(c), hsv(h,s,v)
3653 Separates a colour value into it's value (brightness), hue (colour)
3654 and saturation elements. Use hsv() to put them back together (after
3655 suitable manipulation).
3657 =item red(c), green(c), blue(c), rgb(r,g,b)
3659 Separates a colour value into it's red, green and blue colours. Use
3660 rgb(r,g,b) to put it back together.
3664 Convert a value to an integer. Uses a C int cast, so it may break on
3667 =item if(cond,ntrue,nfalse), if(cond,ctrue,cfalse)
3669 A simple (and inefficient) if function.
3671 =item <=,<,==,>=,>,!=
3673 Relational operators (typically used with if()). Since we're working
3674 with floating point values the equalities are 'near equalities' - an
3675 epsilon value is used.
3677 =item &&, ||, not(n)
3679 Basic logical operators.
3687 =item rpnexpr=>'x 25 % 15 * y 35 % 10 * getp1 !pat x y getp1 !pix @pix sat 0.7 gt @pat @pix ifp'
3689 tiles a smaller version of the input image over itself where the
3690 colour has a saturation over 0.7.
3692 =item rpnexpr=>'x 25 % 15 * y 35 % 10 * getp1 !pat y 360 / !rat x y getp1 1 @rat - pmult @pat @rat pmult padd'
3694 tiles the input image over itself so that at the top of the image the
3695 full-size image is at full strength and at the bottom the tiling is
3698 =item rpnexpr=>'x y getp1 !pix @pix value 0.96 gt @pix sat 0.1 lt and 128 128 255 rgb @pix ifp'
3700 replace pixels that are white or almost white with a palish blue
3702 =item rpnexpr=>'x 35 % 10 * y 45 % 8 * getp1 !pat x y getp1 !pix @pix sat 0.2 lt @pix value 0.9 gt and @pix @pat @pix value 2 / 0.5 + pmult ifp'
3704 Tiles the input image overitself where the image isn't white or almost
3707 =item rpnexpr=>'x y 160 180 distance !d y 180 - x 160 - atan2 !a @d 10 / @a + 3.1416 2 * % !a2 @a2 180 * 3.1416 / 1 @a2 sin 1 + 2 / hsv'
3711 =item rpnexpr=>'x y 160 180 distance !d y 180 - x 160 - atan2 !a @d 10 / @a + 3.1416 2 * % !a2 @a 180 * 3.1416 / 1 @a2 sin 1 + 2 / hsv'
3713 A spiral built on top of a colour wheel.
3717 For details on expression parsing see L<Imager::Expr>. For details on
3718 the virtual machine used to transform the images, see
3719 L<Imager::regmach.pod>.
3721 =head2 Matrix Transformations
3723 Rather than having to write code in a little language, you can use a
3724 matrix to perform transformations, using the matrix_transform()
3727 my $im2 = $im->matrix_transform(matrix=>[ -1, 0, $im->getwidth-1,
3731 By default the output image will be the same size as the input image,
3732 but you can supply the xsize and ysize parameters to change the size.
3734 Rather than building matrices by hand you can use the Imager::Matrix2d
3735 module to build the matrices. This class has methods to allow you to
3736 scale, shear, rotate, translate and reflect, and you can combine these
3737 with an overloaded multiplication operator.
3739 WARNING: the matrix you provide in the matrix operator transforms the
3740 co-ordinates within the B<destination> image to the co-ordinates
3741 within the I<source> image. This can be confusing.
3743 Since Imager has 3 different fairly general ways of transforming an
3744 image spatially, this method also has a yatf() alias. Yet Another
3745 Transformation Function.
3747 =head2 Masked Images
3749 Masked images let you control which pixels are modified in an
3750 underlying image. Where the first channel is completely black in the
3751 mask image, writes to the underlying image are ignored.
3753 For example, given a base image called $img:
3755 my $mask = Imager->new(xsize=>$img->getwidth, ysize=>getheight,
3757 # ... draw something on the mask
3758 my $maskedimg = $img->masked(mask=>$mask);
3760 You can specifiy the region of the underlying image that is masked
3761 using the left, top, right and bottom options.
3763 If you just want a subset of the image, without masking, just specify
3764 the region without specifying a mask.
3768 It is possible to add filters to the module without recompiling the
3769 module itself. This is done by using DSOs (Dynamic shared object)
3770 avaliable on most systems. This way you can maintain our own filters
3771 and not have to get me to add it, or worse patch every new version of
3772 the Module. Modules can be loaded AND UNLOADED at runtime. This
3773 means that you can have a server/daemon thingy that can do something
3776 load_plugin("dynfilt/dyntest.so") || die "unable to load plugin\n";
3777 %hsh=(a=>35,b=>200,type=>lin_stretch);
3779 unload_plugin("dynfilt/dyntest.so") || die "unable to load plugin\n";
3780 $img->write(type=>'pnm',file=>'testout/t60.jpg')
3781 || die "error in write()\n";
3783 Someone decides that the filter is not working as it should -
3784 dyntest.c modified and recompiled.
3786 load_plugin("dynfilt/dyntest.so") || die "unable to load plugin\n";
3789 An example plugin comes with the module - Please send feedback to
3790 addi@umich.edu if you test this.
3792 Note: This seems to test ok on the following systems:
3793 Linux, Solaris, HPUX, OpenBSD, FreeBSD, TRU64/OSF1, AIX.
3794 If you test this on other systems please let me know.
3798 Image tags contain meta-data about the image, ie. information not
3799 stored as pixels of the image.
3801 At the perl level each tag has a name or code and a value, which is an
3802 integer or an arbitrary string. An image can contain more than one
3803 tag with the same name or code.
3805 You can retrieve tags from an image using the tags() method, you can
3806 get all of the tags in an image, as a list of array references, with
3807 the code or name of the tag followed by the value of the tag:
3809 my @alltags = $img->tags;
3811 or you can get all tags that have a given name:
3813 my @namedtags = $img->tags(name=>$name);
3817 my @tags = $img->tags(code=>$code);
3819 You can add tags using the addtag() method, either by name:
3821 my $index = $img->addtag(name=>$name, value=>$value);
3825 my $index = $img->addtag(code=>$code, value=>$value);
3827 You can remove tags with the deltag() method, either by index:
3829 $img->deltag(index=>$index);
3833 $img->deltag(name=>$name);
3837 $img->deltag(code=>$code);
3839 In each case deltag() returns the number of tags deleted.
3841 When you read a GIF image using read_multi(), each image can include
3848 the offset of the image from the left of the "screen" ("Image Left
3853 the offset of the image from the top of the "screen" ("Image Top Position")
3857 non-zero if the image was interlaced ("Interlace Flag")
3859 =item gif_screen_width
3861 =item gif_screen_height
3863 the size of the logical screen ("Logical Screen Width",
3864 "Logical Screen Height")
3868 Non-zero if this image had a local color map.
3870 =item gif_background
3872 The index in the global colormap of the logical screen's background
3873 color. This is only set if the current image uses the global
3876 =item gif_trans_index
3878 The index of the color in the colormap used for transparency. If the
3879 image has a transparency then it is returned as a 4 channel image with
3880 the alpha set to zero in this palette entry. ("Transparent Color Index")
3884 The delay until the next frame is displayed, in 1/100 of a second.
3887 =item gif_user_input
3889 whether or not a user input is expected before continuing (view dependent)
3890 ("User Input Flag").
3894 how the next frame is displayed ("Disposal Method")
3898 the number of loops from the Netscape Loop extension. This may be zero.
3902 the first block of the first gif comment before each image.
3906 Where applicable, the ("name") is the name of that field from the GIF89
3909 The following tags are set in a TIFF image when read, and can be set
3914 =item tiff_resolutionunit
3916 The value of the ResolutionUnit tag. This is ignored on writing if
3917 the i_aspect_only tag is non-zero.
3921 The following tags are set when a Windows BMP file is read:
3925 =item bmp_compression
3927 The type of compression, if any.
3929 =item bmp_important_colors
3931 The number of important colors as defined by the writer of the image.
3935 Some standard tags will be implemented as time goes by:
3943 The spatial resolution of the image in pixels per inch. If the image
3944 format uses a different scale, eg. pixels per meter, then this value
3945 is converted. A floating point number stored as a string.
3949 If this is non-zero then the values in i_xres and i_yres are treated
3950 as a ratio only. If the image format does not support aspect ratios
3951 then this is scaled so the smaller value is 72dpi.
3957 box, arc, circle do not support antialiasing yet. arc, is only filled
3958 as of yet. Some routines do not return $self where they should. This
3959 affects code like this, C<$img-E<gt>box()-E<gt>arc()> where an object
3962 When saving Gif images the program does NOT try to shave of extra
3963 colors if it is possible. If you specify 128 colors and there are
3964 only 2 colors used - it will have a 128 colortable anyway.
3968 Arnar M. Hrafnkelsson, addi@umich.edu, and recently lots of assistance
3969 from Tony Cook. See the README for a complete list.
3973 perl(1), Imager::Color(3), Imager::Font(3), Imager::Matrix2d(3),
3974 Affix::Infix2Postfix(3), Parse::RecDescent(3)
3975 http://www.eecs.umich.edu/~addi/perl/Imager/