- work around Module::Depends::Intrusive bug #21229
http://rt.cpan.org/Ticket/Display.html?id=30520
+ - the hardinvert filter no-longer inverts the alpha channel.
+ http://rt.cpan.org/Ticket/Display.html?id=30002
+
+ - the hardinvert filter now supports large samples
+
Imager 0.61_02 - 28 November 2007
==============
feat.h
fills.c Generic fills
filterlist.perl
-filters.c
+filters.im
font.c
fontfiles/ExistenceTest.afm please edit ExistenceTest.sfd in CVS
fontfiles/ExistenceTest.pfb to change these files, edited and
img16.c
imgdouble.c Implements double/sample images
imio.h
+immacros.h
imperl.h
imrender.h Buffer rending engine function declarations
imtoc.perl Sample size adapter pre-processor
sub make_func_list {
- my @funcs = qw(i_img i_color i_fcolor i_fill_t mm_log);
+ my @funcs = qw(i_img i_color i_fcolor i_fill_t mm_log i_img_color_channels i_img_has_alpha);
open FUNCS, "< imexttypes.h"
or die "Cannot open imexttypes.h: $!\n";
my $in_struct;
+++ /dev/null
-#include "imager.h"
-#include "imageri.h"
-#include <stdlib.h>
-#include <math.h>
-
-
-/*
-=head1 NAME
-
-filters.c - implements filters that operate on images
-
-=head1 SYNOPSIS
-
-
- i_contrast(im, 0.8);
- i_hardinvert(im);
- i_unsharp_mask(im, 2.0, 1.0);
- // and more
-
-=head1 DESCRIPTION
-
-filters.c implements basic filters for Imager. These filters
-should be accessible from the filter interface as defined in
-the pod for Imager.
-
-=head1 FUNCTION REFERENCE
-
-Some of these functions are internal.
-
-=over
-
-=cut
-*/
-
-
-
-
-/*
-=item saturate(in)
-
-Clamps the input value between 0 and 255. (internal)
-
- in - input integer
-
-=cut
-*/
-
-static
-unsigned char
-saturate(int in) {
- if (in>255) { return 255; }
- else if (in>0) return in;
- return 0;
-}
-
-
-
-/*
-=item i_contrast(im, intensity)
-
-Scales the pixel values by the amount specified.
-
- im - image object
- intensity - scalefactor
-
-=cut
-*/
-
-void
-i_contrast(i_img *im, float intensity) {
- int x, y;
- unsigned char ch;
- unsigned int new_color;
- i_color rcolor;
-
- mm_log((1,"i_contrast(im %p, intensity %f)\n", im, intensity));
-
- if(intensity < 0) return;
-
- for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) {
- i_gpix(im, x, y, &rcolor);
-
- for(ch = 0; ch < im->channels; ch++) {
- new_color = (unsigned int) rcolor.channel[ch];
- new_color *= intensity;
-
- if(new_color > 255) {
- new_color = 255;
- }
- rcolor.channel[ch] = (unsigned char) new_color;
- }
- i_ppix(im, x, y, &rcolor);
- }
-}
-
-
-/*
-=item i_hardinvert(im)
-
-Inverts the pixel values of the input image.
-
- im - image object
-
-=cut
-*/
-
-void
-i_hardinvert(i_img *im) {
- int x, y;
- unsigned char ch;
-
- i_color *row, *entry;
-
- mm_log((1,"i_hardinvert(im %p)\n", im));
-
- /* always rooms to allocate a single line of i_color */
- row = mymalloc(sizeof(i_color) * im->xsize); /* checked 17feb2005 tonyc */
-
- for(y = 0; y < im->ysize; y++) {
- i_glin(im, 0, im->xsize, y, row);
- entry = row;
- for(x = 0; x < im->xsize; x++) {
- for(ch = 0; ch < im->channels; ch++) {
- entry->channel[ch] = 255 - entry->channel[ch];
- }
- ++entry;
- }
- i_plin(im, 0, im->xsize, y, row);
- }
- myfree(row);
-}
-
-
-
-/*
-=item i_noise(im, amount, type)
-
-Inverts the pixel values by the amount specified.
-
- im - image object
- amount - deviation in pixel values
- type - noise individual for each channel if true
-
-=cut
-*/
-
-#ifdef WIN32
-/* random() is non-ASCII, even if it is better than rand() */
-#define random() rand()
-#endif
-
-void
-i_noise(i_img *im, float amount, unsigned char type) {
- int x, y;
- unsigned char ch;
- int new_color;
- float damount = amount * 2;
- i_color rcolor;
- int color_inc = 0;
-
- mm_log((1,"i_noise(im %p, intensity %.2f\n", im, amount));
-
- if(amount < 0) return;
-
- for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) {
- i_gpix(im, x, y, &rcolor);
-
- if(type == 0) {
- color_inc = (amount - (damount * ((float)random() / RAND_MAX)));
- }
-
- for(ch = 0; ch < im->channels; ch++) {
- new_color = (int) rcolor.channel[ch];
-
- if(type != 0) {
- new_color += (amount - (damount * ((float)random() / RAND_MAX)));
- } else {
- new_color += color_inc;
- }
-
- if(new_color < 0) {
- new_color = 0;
- }
- if(new_color > 255) {
- new_color = 255;
- }
-
- rcolor.channel[ch] = (unsigned char) new_color;
- }
-
- i_ppix(im, x, y, &rcolor);
- }
-}
-
-
-/*
-=item i_noise(im, amount, type)
-
-Inverts the pixel values by the amount specified.
-
- im - image object
- amount - deviation in pixel values
- type - noise individual for each channel if true
-
-=cut
-*/
-
-
-/*
-=item i_applyimage(im, add_im, mode)
-
-Apply's an image to another image
-
- im - target image
- add_im - image that is applied to target
- mode - what method is used in applying:
-
- 0 Normal
- 1 Multiply
- 2 Screen
- 3 Overlay
- 4 Soft Light
- 5 Hard Light
- 6 Color dodge
- 7 Color Burn
- 8 Darker
- 9 Lighter
- 10 Add
- 11 Subtract
- 12 Difference
- 13 Exclusion
-
-=cut
-*/
-
-void i_applyimage(i_img *im, i_img *add_im, unsigned char mode) {
- int x, y;
- int mx, my;
-
- mm_log((1, "i_applyimage(im %p, add_im %p, mode %d", im, add_im, mode));
-
- mx = (add_im->xsize <= im->xsize) ? add_im->xsize : add_im->xsize;
- my = (add_im->ysize <= im->ysize) ? add_im->ysize : add_im->ysize;
-
- for(x = 0; x < mx; x++) {
- for(y = 0; y < my; y++) {
- }
- }
-}
-
-
-/*
-=item i_bumpmap(im, bump, channel, light_x, light_y, st)
-
-Makes a bumpmap on image im using the bump image as the elevation map.
-
- im - target image
- bump - image that contains the elevation info
- channel - to take the elevation information from
- light_x - x coordinate of light source
- light_y - y coordinate of light source
- st - length of shadow
-
-=cut
-*/
-
-void
-i_bumpmap(i_img *im, i_img *bump, int channel, int light_x, int light_y, int st) {
- int x, y, ch;
- int mx, my;
- i_color x1_color, y1_color, x2_color, y2_color, dst_color;
- double nX, nY;
- double tX, tY, tZ;
- double aX, aY, aL;
- double fZ;
- unsigned char px1, px2, py1, py2;
-
- i_img new_im;
-
- mm_log((1, "i_bumpmap(im %p, add_im %p, channel %d, light_x %d, light_y %d, st %d)\n",
- im, bump, channel, light_x, light_y, st));
-
-
- if(channel >= bump->channels) {
- mm_log((1, "i_bumpmap: channel = %d while bump image only has %d channels\n", channel, bump->channels));
- return;
- }
-
- mx = (bump->xsize <= im->xsize) ? bump->xsize : im->xsize;
- my = (bump->ysize <= im->ysize) ? bump->ysize : im->ysize;
-
- i_img_empty_ch(&new_im, im->xsize, im->ysize, im->channels);
-
- aX = (light_x > (mx >> 1)) ? light_x : mx - light_x;
- aY = (light_y > (my >> 1)) ? light_y : my - light_y;
-
- aL = sqrt((aX * aX) + (aY * aY));
-
- for(y = 1; y < my - 1; y++) {
- for(x = 1; x < mx - 1; x++) {
- i_gpix(bump, x + st, y, &x1_color);
- i_gpix(bump, x, y + st, &y1_color);
- i_gpix(bump, x - st, y, &x2_color);
- i_gpix(bump, x, y - st, &y2_color);
-
- i_gpix(im, x, y, &dst_color);
-
- px1 = x1_color.channel[channel];
- py1 = y1_color.channel[channel];
- px2 = x2_color.channel[channel];
- py2 = y2_color.channel[channel];
-
- nX = px1 - px2;
- nY = py1 - py2;
-
- nX += 128;
- nY += 128;
-
- fZ = (sqrt((nX * nX) + (nY * nY)) / aL);
-
- tX = abs(x - light_x) / aL;
- tY = abs(y - light_y) / aL;
-
- tZ = 1 - (sqrt((tX * tX) + (tY * tY)) * fZ);
-
- if(tZ < 0) tZ = 0;
- if(tZ > 2) tZ = 2;
-
- for(ch = 0; ch < im->channels; ch++)
- dst_color.channel[ch] = (unsigned char) (float)(dst_color.channel[ch] * tZ);
-
- i_ppix(&new_im, x, y, &dst_color);
- }
- }
-
- i_copyto(im, &new_im, 0, 0, (int)im->xsize, (int)im->ysize, 0, 0);
-
- i_img_exorcise(&new_im);
-}
-
-
-
-
-typedef struct {
- float x,y,z;
-} fvec;
-
-
-static
-float
-dotp(fvec *a, fvec *b) {
- return a->x*b->x+a->y*b->y+a->z*b->z;
-}
-
-static
-void
-normalize(fvec *a) {
- double d = sqrt(dotp(a,a));
- a->x /= d;
- a->y /= d;
- a->z /= d;
-}
-
-
-/*
- positive directions:
-
- x - right,
- y - down
- z - out of the plane
-
- I = Ia + Ip*( cd*Scol(N.L) + cs*(R.V)^n )
-
- Here, the variables are:
-
- * Ia - ambient colour
- * Ip - intensity of the point light source
- * cd - diffuse coefficient
- * Scol - surface colour
- * cs - specular coefficient
- * n - objects shinyness
- * N - normal vector
- * L - lighting vector
- * R - reflection vector
- * V - vision vector
-
- static void fvec_dump(fvec *x) {
- printf("(%.2f %.2f %.2f)", x->x, x->y, x->z);
- }
-*/
-
-/* XXX: Should these return a code for success? */
-
-
-
-
-/*
-=item i_bumpmap_complex(im, bump, channel, tx, ty, Lx, Ly, Lz, Ip, cd, cs, n, Ia, Il, Is)
-
-Makes a bumpmap on image im using the bump image as the elevation map.
-
- im - target image
- bump - image that contains the elevation info
- channel - to take the elevation information from
- tx - shift in x direction of where to start applying bumpmap
- ty - shift in y direction of where to start applying bumpmap
- Lx - x position/direction of light
- Ly - y position/direction of light
- Lz - z position/direction of light
- Ip - light intensity
- cd - diffuse coefficient
- cs - specular coefficient
- n - surface shinyness
- Ia - ambient colour
- Il - light colour
- Is - specular colour
-
-if z<0 then the L is taken to be the direction the light is shining in. Otherwise
-the L is taken to be the position of the Light, Relative to the image.
-
-=cut
-*/
-
-
-void
-i_bumpmap_complex(i_img *im,
- i_img *bump,
- int channel,
- int tx,
- int ty,
- float Lx,
- float Ly,
- float Lz,
- float cd,
- float cs,
- float n,
- i_color *Ia,
- i_color *Il,
- i_color *Is) {
- i_img new_im;
-
- int inflight;
- int x, y, ch;
- int mx, Mx, my, My;
-
- float cdc[MAXCHANNELS];
- float csc[MAXCHANNELS];
-
- i_color x1_color, y1_color, x2_color, y2_color;
-
- i_color Scol; /* Surface colour */
-
- fvec L; /* Light vector */
- fvec N; /* surface normal */
- fvec R; /* Reflection vector */
- fvec V; /* Vision vector */
-
- mm_log((1, "i_bumpmap_complex(im %p, bump %p, channel %d, tx %d, ty %d, Lx %.2f, Ly %.2f, Lz %.2f, cd %.2f, cs %.2f, n %.2f, Ia %p, Il %p, Is %p)\n",
- im, bump, channel, tx, ty, Lx, Ly, Lz, cd, cs, n, Ia, Il, Is));
-
- if (channel >= bump->channels) {
- mm_log((1, "i_bumpmap_complex: channel = %d while bump image only has %d channels\n", channel, bump->channels));
- return;
- }
-
- for(ch=0; ch<im->channels; ch++) {
- cdc[ch] = (float)Il->channel[ch]*cd/255.f;
- csc[ch] = (float)Is->channel[ch]*cs/255.f;
- }
-
- mx = 1;
- my = 1;
- Mx = bump->xsize-1;
- My = bump->ysize-1;
-
- V.x = 0;
- V.y = 0;
- V.z = 1;
-
- if (Lz < 0) { /* Light specifies a direction vector, reverse it to get the vector from surface to light */
- L.x = -Lx;
- L.y = -Ly;
- L.z = -Lz;
- normalize(&L);
- } else { /* Light is the position of the light source */
- inflight = 0;
- L.x = -0.2;
- L.y = -0.4;
- L.z = 1;
- normalize(&L);
- }
-
- i_img_empty_ch(&new_im, im->xsize, im->ysize, im->channels);
-
- for(y = 0; y < im->ysize; y++) {
- for(x = 0; x < im->xsize; x++) {
- double dp1, dp2;
- double dx = 0, dy = 0;
-
- /* Calculate surface normal */
- if (mx<x && x<Mx && my<y && y<My) {
- i_gpix(bump, x + 1, y, &x1_color);
- i_gpix(bump, x - 1, y, &x2_color);
- i_gpix(bump, x, y + 1, &y1_color);
- i_gpix(bump, x, y - 1, &y2_color);
- dx = x2_color.channel[channel] - x1_color.channel[channel];
- dy = y2_color.channel[channel] - y1_color.channel[channel];
- } else {
- dx = 0;
- dy = 0;
- }
- N.x = -dx * 0.015;
- N.y = -dy * 0.015;
- N.z = 1;
- normalize(&N);
-
- /* Calculate Light vector if needed */
- if (Lz>=0) {
- L.x = Lx - x;
- L.y = Ly - y;
- L.z = Lz;
- normalize(&L);
- }
-
- dp1 = dotp(&L,&N);
- R.x = -L.x + 2*dp1*N.x;
- R.y = -L.y + 2*dp1*N.y;
- R.z = -L.z + 2*dp1*N.z;
-
- dp2 = dotp(&R,&V);
-
- dp1 = dp1<0 ?0 : dp1;
- dp2 = pow(dp2<0 ?0 : dp2,n);
-
- i_gpix(im, x, y, &Scol);
-
- for(ch = 0; ch < im->channels; ch++)
- Scol.channel[ch] =
- saturate( Ia->channel[ch] + cdc[ch]*Scol.channel[ch]*dp1 + csc[ch]*dp2 );
-
- i_ppix(&new_im, x, y, &Scol);
- }
- }
-
- i_copyto(im, &new_im, 0, 0, (int)im->xsize, (int)im->ysize, 0, 0);
- i_img_exorcise(&new_im);
-}
-
-
-/*
-=item i_postlevels(im, levels)
-
-Quantizes Images to fewer levels.
-
- im - target image
- levels - number of levels
-
-=cut
-*/
-
-void
-i_postlevels(i_img *im, int levels) {
- int x, y, ch;
- float pv;
- int rv;
- float av;
-
- i_color rcolor;
-
- rv = (int) ((float)(256 / levels));
- av = (float)levels;
-
- for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) {
- i_gpix(im, x, y, &rcolor);
-
- for(ch = 0; ch < im->channels; ch++) {
- pv = (((float)rcolor.channel[ch] / 255)) * av;
- pv = (int) ((int)pv * rv);
-
- if(pv < 0) pv = 0;
- else if(pv > 255) pv = 255;
-
- rcolor.channel[ch] = (unsigned char) pv;
- }
- i_ppix(im, x, y, &rcolor);
- }
-}
-
-
-/*
-=item i_mosaic(im, size)
-
-Makes an image looks like a mosaic with tilesize of size
-
- im - target image
- size - size of tiles
-
-=cut
-*/
-
-void
-i_mosaic(i_img *im, int size) {
- int x, y, ch;
- int lx, ly, z;
- long sqrsize;
-
- i_color rcolor;
- long col[256];
-
- sqrsize = size * size;
-
- for(y = 0; y < im->ysize; y += size) for(x = 0; x < im->xsize; x += size) {
- for(z = 0; z < 256; z++) col[z] = 0;
-
- for(lx = 0; lx < size; lx++) {
- for(ly = 0; ly < size; ly++) {
- i_gpix(im, (x + lx), (y + ly), &rcolor);
-
- for(ch = 0; ch < im->channels; ch++) {
- col[ch] += rcolor.channel[ch];
- }
- }
- }
-
- for(ch = 0; ch < im->channels; ch++)
- rcolor.channel[ch] = (int) ((float)col[ch] / sqrsize);
-
-
- for(lx = 0; lx < size; lx++)
- for(ly = 0; ly < size; ly++)
- i_ppix(im, (x + lx), (y + ly), &rcolor);
-
- }
-}
-
-
-/*
-=item i_watermark(im, wmark, tx, ty, pixdiff)
-
-Applies a watermark to the target image
-
- im - target image
- wmark - watermark image
- tx - x coordinate of where watermark should be applied
- ty - y coordinate of where watermark should be applied
- pixdiff - the magnitude of the watermark, controls how visible it is
-
-=cut
-*/
-
-void
-i_watermark(i_img *im, i_img *wmark, int tx, int ty, int pixdiff) {
- int vx, vy, ch;
- i_color val, wval;
-
- int mx = wmark->xsize;
- int my = wmark->ysize;
-
- for(vx=0;vx<mx;vx++) for(vy=0;vy<my;vy++) {
-
- i_gpix(im, tx+vx, ty+vy,&val );
- i_gpix(wmark, vx, vy, &wval);
-
- for(ch=0;ch<im->channels;ch++)
- val.channel[ch] = saturate( val.channel[ch] + (pixdiff* (wval.channel[0]-128) )/128 );
-
- i_ppix(im,tx+vx,ty+vy,&val);
- }
-}
-
-
-/*
-=item i_autolevels(im, lsat, usat, skew)
-
-Scales and translates each color such that it fills the range completely.
-Skew is not implemented yet - purpose is to control the color skew that can
-occur when changing the contrast.
-
- im - target image
- lsat - fraction of pixels that will be truncated at the lower end of the spectrum
- usat - fraction of pixels that will be truncated at the higher end of the spectrum
- skew - not used yet
-
-=cut
-*/
-
-void
-i_autolevels(i_img *im, float lsat, float usat, float skew) {
- i_color val;
- int i, x, y, rhist[256], ghist[256], bhist[256];
- int rsum, rmin, rmax;
- int gsum, gmin, gmax;
- int bsum, bmin, bmax;
- int rcl, rcu, gcl, gcu, bcl, bcu;
-
- mm_log((1,"i_autolevels(im %p, lsat %f,usat %f,skew %f)\n", im, lsat,usat,skew));
-
- rsum=gsum=bsum=0;
- for(i=0;i<256;i++) rhist[i]=ghist[i]=bhist[i] = 0;
- /* create histogram for each channel */
- for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) {
- i_gpix(im, x, y, &val);
- rhist[val.channel[0]]++;
- ghist[val.channel[1]]++;
- bhist[val.channel[2]]++;
- }
-
- for(i=0;i<256;i++) {
- rsum+=rhist[i];
- gsum+=ghist[i];
- bsum+=bhist[i];
- }
-
- rmin = gmin = bmin = 0;
- rmax = gmax = bmax = 255;
-
- rcu = rcl = gcu = gcl = bcu = bcl = 0;
-
- for(i=0; i<256; i++) {
- rcl += rhist[i]; if ( (rcl<rsum*lsat) ) rmin=i;
- rcu += rhist[255-i]; if ( (rcu<rsum*usat) ) rmax=255-i;
-
- gcl += ghist[i]; if ( (gcl<gsum*lsat) ) gmin=i;
- gcu += ghist[255-i]; if ( (gcu<gsum*usat) ) gmax=255-i;
-
- bcl += bhist[i]; if ( (bcl<bsum*lsat) ) bmin=i;
- bcu += bhist[255-i]; if ( (bcu<bsum*usat) ) bmax=255-i;
- }
-
- for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) {
- i_gpix(im, x, y, &val);
- val.channel[0]=saturate((val.channel[0]-rmin)*255/(rmax-rmin));
- val.channel[1]=saturate((val.channel[1]-gmin)*255/(gmax-gmin));
- val.channel[2]=saturate((val.channel[2]-bmin)*255/(bmax-bmin));
- i_ppix(im, x, y, &val);
- }
-}
-
-/*
-=item Noise(x,y)
-
-Pseudo noise utility function used to generate perlin noise. (internal)
-
- x - x coordinate
- y - y coordinate
-
-=cut
-*/
-
-static
-float
-Noise(int x, int y) {
- int n = x + y * 57;
- n = (n<<13) ^ n;
- return ( 1.0 - ( (n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824.0);
-}
-
-/*
-=item SmoothedNoise1(x,y)
-
-Pseudo noise utility function used to generate perlin noise. (internal)
-
- x - x coordinate
- y - y coordinate
-
-=cut
-*/
-
-static
-float
-SmoothedNoise1(float x, float y) {
- float corners = ( Noise(x-1, y-1)+Noise(x+1, y-1)+Noise(x-1, y+1)+Noise(x+1, y+1) ) / 16;
- float sides = ( Noise(x-1, y) +Noise(x+1, y) +Noise(x, y-1) +Noise(x, y+1) ) / 8;
- float center = Noise(x, y) / 4;
- return corners + sides + center;
-}
-
-
-/*
-=item G_Interpolate(a, b, x)
-
-Utility function used to generate perlin noise. (internal)
-
-=cut
-*/
-
-static
-float C_Interpolate(float a, float b, float x) {
- /* float ft = x * 3.1415927; */
- float ft = x * PI;
- float f = (1 - cos(ft)) * .5;
- return a*(1-f) + b*f;
-}
-
-
-/*
-=item InterpolatedNoise(x, y)
-
-Utility function used to generate perlin noise. (internal)
-
-=cut
-*/
-
-static
-float
-InterpolatedNoise(float x, float y) {
-
- int integer_X = x;
- float fractional_X = x - integer_X;
- int integer_Y = y;
- float fractional_Y = y - integer_Y;
-
- float v1 = SmoothedNoise1(integer_X, integer_Y);
- float v2 = SmoothedNoise1(integer_X + 1, integer_Y);
- float v3 = SmoothedNoise1(integer_X, integer_Y + 1);
- float v4 = SmoothedNoise1(integer_X + 1, integer_Y + 1);
-
- float i1 = C_Interpolate(v1 , v2 , fractional_X);
- float i2 = C_Interpolate(v3 , v4 , fractional_X);
-
- return C_Interpolate(i1 , i2 , fractional_Y);
-}
-
-
-
-/*
-=item PerlinNoise_2D(x, y)
-
-Utility function used to generate perlin noise. (internal)
-
-=cut
-*/
-
-static
-float
-PerlinNoise_2D(float x, float y) {
- int i,frequency;
- float amplitude;
- float total = 0;
- int Number_Of_Octaves=6;
- int n = Number_Of_Octaves - 1;
-
- for(i=0;i<n;i++) {
- frequency = 2*i;
- amplitude = PI;
- total = total + InterpolatedNoise(x * frequency, y * frequency) * amplitude;
- }
-
- return total;
-}
-
-
-/*
-=item i_radnoise(im, xo, yo, rscale, ascale)
-
-Perlin-like radial noise.
-
- im - target image
- xo - x coordinate of center
- yo - y coordinate of center
- rscale - radial scale
- ascale - angular scale
-
-=cut
-*/
-
-void
-i_radnoise(i_img *im, int xo, int yo, float rscale, float ascale) {
- int x, y, ch;
- i_color val;
- unsigned char v;
- float xc, yc, r;
- double a;
-
- for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) {
- xc = (float)x-xo+0.5;
- yc = (float)y-yo+0.5;
- r = rscale*sqrt(xc*xc+yc*yc)+1.2;
- a = (PI+atan2(yc,xc))*ascale;
- v = saturate(128+100*(PerlinNoise_2D(a,r)));
- /* v=saturate(120+12*PerlinNoise_2D(xo+(float)x/scale,yo+(float)y/scale)); Good soft marble */
- for(ch=0; ch<im->channels; ch++) val.channel[ch]=v;
- i_ppix(im, x, y, &val);
- }
-}
-
-
-/*
-=item i_turbnoise(im, xo, yo, scale)
-
-Perlin-like 2d noise noise.
-
- im - target image
- xo - x coordinate translation
- yo - y coordinate translation
- scale - scale of noise
-
-=cut
-*/
-
-void
-i_turbnoise(i_img *im, float xo, float yo, float scale) {
- int x,y,ch;
- unsigned char v;
- i_color val;
-
- for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) {
- /* v=saturate(125*(1.0+PerlinNoise_2D(xo+(float)x/scale,yo+(float)y/scale))); */
- v = saturate(120*(1.0+sin(xo+(float)x/scale+PerlinNoise_2D(xo+(float)x/scale,yo+(float)y/scale))));
- for(ch=0; ch<im->channels; ch++) val.channel[ch] = v;
- i_ppix(im, x, y, &val);
- }
-}
-
-
-
-/*
-=item i_gradgen(im, num, xo, yo, ival, dmeasure)
-
-Gradient generating function.
-
- im - target image
- num - number of points given
- xo - array of x coordinates
- yo - array of y coordinates
- ival - array of i_color objects
- dmeasure - distance measure to be used.
- 0 = Euclidean
- 1 = Euclidean squared
- 2 = Manhattan distance
-
-=cut
-*/
-
-
-void
-i_gradgen(i_img *im, int num, int *xo, int *yo, i_color *ival, int dmeasure) {
-
- i_color val;
- int p, x, y, ch;
- int channels = im->channels;
- int xsize = im->xsize;
- int ysize = im->ysize;
- int bytes;
-
- float *fdist;
-
- mm_log((1,"i_gradgen(im %p, num %d, xo %p, yo %p, ival %p, dmeasure %d)\n", im, num, xo, yo, ival, dmeasure));
-
- for(p = 0; p<num; p++) {
- mm_log((1,"i_gradgen: (%d, %d)\n", xo[p], yo[p]));
- ICL_info(&ival[p]);
- }
-
- /* on the systems I have sizeof(float) == sizeof(int) and thus
- this would be same size as the arrays xo and yo point at, but this
- may not be true for other systems
-
- since the arrays here are caller controlled, I assume that on
- overflow is a programming error rather than an end-user error, so
- calling exit() is justified.
- */
- bytes = sizeof(float) * num;
- if (bytes / num != sizeof(float)) {
- fprintf(stderr, "integer overflow calculating memory allocation");
- exit(1);
- }
- fdist = mymalloc( bytes ); /* checked 14jul05 tonyc */
-
- for(y = 0; y<ysize; y++) for(x = 0; x<xsize; x++) {
- float cs = 0;
- float csd = 0;
- for(p = 0; p<num; p++) {
- int xd = x-xo[p];
- int yd = y-yo[p];
- switch (dmeasure) {
- case 0: /* euclidean */
- fdist[p] = sqrt(xd*xd + yd*yd); /* euclidean distance */
- break;
- case 1: /* euclidean squared */
- fdist[p] = xd*xd + yd*yd; /* euclidean distance */
- break;
- case 2: /* euclidean squared */
- fdist[p] = i_max(xd*xd, yd*yd); /* manhattan distance */
- break;
- default:
- i_fatal(3,"i_gradgen: Unknown distance measure\n");
- }
- cs += fdist[p];
- }
-
- csd = 1/((num-1)*cs);
-
- for(p = 0; p<num; p++) fdist[p] = (cs-fdist[p])*csd;
-
- for(ch = 0; ch<channels; ch++) {
- int tres = 0;
- for(p = 0; p<num; p++) tres += ival[p].channel[ch] * fdist[p];
- val.channel[ch] = saturate(tres);
- }
- i_ppix(im, x, y, &val);
- }
- myfree(fdist);
-
-}
-
-void
-i_nearest_color_foo(i_img *im, int num, int *xo, int *yo, i_color *ival, int dmeasure) {
-
- int p, x, y;
- int xsize = im->xsize;
- int ysize = im->ysize;
-
- mm_log((1,"i_gradgen(im %p, num %d, xo %p, yo %p, ival %p, dmeasure %d)\n", im, num, xo, yo, ival, dmeasure));
-
- for(p = 0; p<num; p++) {
- mm_log((1,"i_gradgen: (%d, %d)\n", xo[p], yo[p]));
- ICL_info(&ival[p]);
- }
-
- for(y = 0; y<ysize; y++) for(x = 0; x<xsize; x++) {
- int midx = 0;
- float mindist = 0;
- float curdist = 0;
-
- int xd = x-xo[0];
- int yd = y-yo[0];
-
- switch (dmeasure) {
- case 0: /* euclidean */
- mindist = sqrt(xd*xd + yd*yd); /* euclidean distance */
- break;
- case 1: /* euclidean squared */
- mindist = xd*xd + yd*yd; /* euclidean distance */
- break;
- case 2: /* euclidean squared */
- mindist = i_max(xd*xd, yd*yd); /* manhattan distance */
- break;
- default:
- i_fatal(3,"i_nearest_color: Unknown distance measure\n");
- }
-
- for(p = 1; p<num; p++) {
- xd = x-xo[p];
- yd = y-yo[p];
- switch (dmeasure) {
- case 0: /* euclidean */
- curdist = sqrt(xd*xd + yd*yd); /* euclidean distance */
- break;
- case 1: /* euclidean squared */
- curdist = xd*xd + yd*yd; /* euclidean distance */
- break;
- case 2: /* euclidean squared */
- curdist = i_max(xd*xd, yd*yd); /* manhattan distance */
- break;
- default:
- i_fatal(3,"i_nearest_color: Unknown distance measure\n");
- }
- if (curdist < mindist) {
- mindist = curdist;
- midx = p;
- }
- }
- i_ppix(im, x, y, &ival[midx]);
- }
-}
-
-/*
-=item i_nearest_color(im, num, xo, yo, oval, dmeasure)
-
-This wasn't document - quoth Addi:
-
- An arty type of filter
-
-FIXME: check IRC logs for actual text.
-
-Inputs:
-
-=over
-
-=item *
-
-i_img *im - image to render on.
-
-=item *
-
-int num - number of points/colors in xo, yo, oval
-
-=item *
-
-int *xo - array of I<num> x positions
-
-=item *
-
-int *yo - array of I<num> y positions
-
-=item *
-
-i_color *oval - array of I<num> colors
-
-xo, yo, oval correspond to each other, the point xo[i], yo[i] has a
-color something like oval[i], at least closer to that color than other
-points.
-
-=item *
-
-int dmeasure - how we measure the distance from some point P(x,y) to
-any (xo[i], yo[i]).
-
-Valid values are:
-
-=over
-
-=item 0
-
-euclidean distance: sqrt((x2-x1)**2 + (y2-y1)**2)
-
-=item 1
-
-square of euclidean distance: ((x2-x1)**2 + (y2-y1)**2)
-
-=item 2
-
-manhattan distance: max((y2-y1)**2, (x2-x1)**2)
-
-=back
-
-An invalid value causes an error exit (the program is aborted).
-
-=back
-
-=cut
- */
-
-int
-i_nearest_color(i_img *im, int num, int *xo, int *yo, i_color *oval, int dmeasure) {
- i_color *ival;
- float *tval;
- float c1, c2;
- i_color val;
- int p, x, y, ch;
- int xsize = im->xsize;
- int ysize = im->ysize;
- int *cmatch;
- int ival_bytes, tval_bytes;
-
- mm_log((1,"i_nearest_color(im %p, num %d, xo %p, yo %p, oval %p, dmeasure %d)\n", im, num, xo, yo, oval, dmeasure));
-
- i_clear_error();
-
- if (num <= 0) {
- i_push_error(0, "no points supplied to nearest_color filter");
- return 0;
- }
-
- if (dmeasure < 0 || dmeasure > i_dmeasure_limit) {
- i_push_error(0, "distance measure invalid");
- return 0;
- }
-
- tval_bytes = sizeof(float)*num*im->channels;
- if (tval_bytes / num != sizeof(float) * im->channels) {
- i_push_error(0, "integer overflow calculating memory allocation");
- return 0;
- }
- ival_bytes = sizeof(i_color) * num;
- if (ival_bytes / sizeof(i_color) != num) {
- i_push_error(0, "integer overflow calculating memory allocation");
- return 0;
- }
- tval = mymalloc( tval_bytes ); /* checked 17feb2005 tonyc */
- ival = mymalloc( ival_bytes ); /* checked 17feb2005 tonyc */
- cmatch = mymalloc( sizeof(int)*num ); /* checked 17feb2005 tonyc */
-
- for(p = 0; p<num; p++) {
- for(ch = 0; ch<im->channels; ch++) tval[ p * im->channels + ch] = 0;
- cmatch[p] = 0;
- }
-
-
- for(y = 0; y<ysize; y++) for(x = 0; x<xsize; x++) {
- int midx = 0;
- float mindist = 0;
- float curdist = 0;
-
- int xd = x-xo[0];
- int yd = y-yo[0];
-
- switch (dmeasure) {
- case 0: /* euclidean */
- mindist = sqrt(xd*xd + yd*yd); /* euclidean distance */
- break;
- case 1: /* euclidean squared */
- mindist = xd*xd + yd*yd; /* euclidean distance */
- break;
- case 2: /* manhatten distance */
- mindist = i_max(xd*xd, yd*yd); /* manhattan distance */
- break;
- default:
- i_fatal(3,"i_nearest_color: Unknown distance measure\n");
- }
-
- for(p = 1; p<num; p++) {
- xd = x-xo[p];
- yd = y-yo[p];
- switch (dmeasure) {
- case 0: /* euclidean */
- curdist = sqrt(xd*xd + yd*yd); /* euclidean distance */
- break;
- case 1: /* euclidean squared */
- curdist = xd*xd + yd*yd; /* euclidean distance */
- break;
- case 2: /* euclidean squared */
- curdist = i_max(xd*xd, yd*yd); /* manhattan distance */
- break;
- default:
- i_fatal(3,"i_nearest_color: Unknown distance measure\n");
- }
- if (curdist < mindist) {
- mindist = curdist;
- midx = p;
- }
- }
-
- cmatch[midx]++;
- i_gpix(im, x, y, &val);
- c2 = 1.0/(float)(cmatch[midx]);
- c1 = 1.0-c2;
-
- for(ch = 0; ch<im->channels; ch++)
- tval[midx*im->channels + ch] =
- c1*tval[midx*im->channels + ch] + c2 * (float) val.channel[ch];
-
- }
-
- for(p = 0; p<num; p++) for(ch = 0; ch<im->channels; ch++)
- ival[p].channel[ch] = tval[p*im->channels + ch];
-
- i_nearest_color_foo(im, num, xo, yo, ival, dmeasure);
-
- return 1;
-}
-
-/*
-=item i_unsharp_mask(im, stddev, scale)
-
-Perform an usharp mask, which is defined as subtracting the blurred
-image from double the original.
-
-=cut
-*/
-
-void
-i_unsharp_mask(i_img *im, double stddev, double scale) {
- i_img *copy;
- int x, y, ch;
-
- if (scale < 0)
- return;
- /* it really shouldn't ever be more than 1.0, but maybe ... */
- if (scale > 100)
- scale = 100;
-
- copy = i_copy(im);
- i_gaussian(copy, stddev);
- if (im->bits == i_8_bits) {
- i_color *blur = mymalloc(im->xsize * sizeof(i_color)); /* checked 17feb2005 tonyc */
- i_color *out = mymalloc(im->xsize * sizeof(i_color)); /* checked 17feb2005 tonyc */
-
- for (y = 0; y < im->ysize; ++y) {
- i_glin(copy, 0, copy->xsize, y, blur);
- i_glin(im, 0, im->xsize, y, out);
- for (x = 0; x < im->xsize; ++x) {
- for (ch = 0; ch < im->channels; ++ch) {
- /*int temp = out[x].channel[ch] +
- scale * (out[x].channel[ch] - blur[x].channel[ch]);*/
- int temp = out[x].channel[ch] * 2 - blur[x].channel[ch];
- if (temp < 0)
- temp = 0;
- else if (temp > 255)
- temp = 255;
- out[x].channel[ch] = temp;
- }
- }
- i_plin(im, 0, im->xsize, y, out);
- }
-
- myfree(blur);
- myfree(out);
- }
- else {
- i_fcolor *blur = mymalloc(im->xsize * sizeof(i_fcolor)); /* checked 17feb2005 tonyc */
- i_fcolor *out = mymalloc(im->xsize * sizeof(i_fcolor)); /* checked 17feb2005 tonyc */
-
- for (y = 0; y < im->ysize; ++y) {
- i_glinf(copy, 0, copy->xsize, y, blur);
- i_glinf(im, 0, im->xsize, y, out);
- for (x = 0; x < im->xsize; ++x) {
- for (ch = 0; ch < im->channels; ++ch) {
- double temp = out[x].channel[ch] +
- scale * (out[x].channel[ch] - blur[x].channel[ch]);
- if (temp < 0)
- temp = 0;
- else if (temp > 1.0)
- temp = 1.0;
- out[x].channel[ch] = temp;
- }
- }
- i_plinf(im, 0, im->xsize, y, out);
- }
-
- myfree(blur);
- myfree(out);
- }
- i_img_destroy(copy);
-}
-
-/*
-=item i_diff_image(im1, im2, mindist)
-
-Creates a new image that is transparent, except where the pixel in im2
-is different from im1, where it is the pixel from im2.
-
-The samples must differ by at least mindiff to be considered different.
-
-=cut
-*/
-
-i_img *
-i_diff_image(i_img *im1, i_img *im2, double mindist) {
- i_img *out;
- int outchans, diffchans;
- int xsize, ysize;
-
- i_clear_error();
- if (im1->channels != im2->channels) {
- i_push_error(0, "different number of channels");
- return NULL;
- }
-
- outchans = diffchans = im1->channels;
- if (outchans == 1 || outchans == 3)
- ++outchans;
-
- xsize = i_min(im1->xsize, im2->xsize);
- ysize = i_min(im1->ysize, im2->ysize);
-
- out = i_sametype_chans(im1, xsize, ysize, outchans);
-
- if (im1->bits == i_8_bits && im2->bits == i_8_bits) {
- i_color *line1 = mymalloc(xsize * sizeof(*line1)); /* checked 17feb2005 tonyc */
- i_color *line2 = mymalloc(xsize * sizeof(*line1)); /* checked 17feb2005 tonyc */
- i_color empty;
- int x, y, ch;
- int imindist = (int)mindist;
-
- for (ch = 0; ch < MAXCHANNELS; ++ch)
- empty.channel[ch] = 0;
-
- for (y = 0; y < ysize; ++y) {
- i_glin(im1, 0, xsize, y, line1);
- i_glin(im2, 0, xsize, y, line2);
- if (outchans != diffchans) {
- /* give the output an alpha channel since it doesn't have one */
- for (x = 0; x < xsize; ++x)
- line2[x].channel[diffchans] = 255;
- }
- for (x = 0; x < xsize; ++x) {
- int diff = 0;
- for (ch = 0; ch < diffchans; ++ch) {
- if (line1[x].channel[ch] != line2[x].channel[ch]
- && abs(line1[x].channel[ch] - line2[x].channel[ch]) > imindist) {
- diff = 1;
- break;
- }
- }
- if (!diff)
- line2[x] = empty;
- }
- i_plin(out, 0, xsize, y, line2);
- }
- myfree(line1);
- myfree(line2);
- }
- else {
- i_fcolor *line1 = mymalloc(xsize * sizeof(*line1)); /* checked 17feb2005 tonyc */
- i_fcolor *line2 = mymalloc(xsize * sizeof(*line2)); /* checked 17feb2005 tonyc */
- i_fcolor empty;
- int x, y, ch;
- double dist = mindist / 255.0;
-
- for (ch = 0; ch < MAXCHANNELS; ++ch)
- empty.channel[ch] = 0;
-
- for (y = 0; y < ysize; ++y) {
- i_glinf(im1, 0, xsize, y, line1);
- i_glinf(im2, 0, xsize, y, line2);
- if (outchans != diffchans) {
- /* give the output an alpha channel since it doesn't have one */
- for (x = 0; x < xsize; ++x)
- line2[x].channel[diffchans] = 1.0;
- }
- for (x = 0; x < xsize; ++x) {
- int diff = 0;
- for (ch = 0; ch < diffchans; ++ch) {
- if (line1[x].channel[ch] != line2[x].channel[ch]
- && fabs(line1[x].channel[ch] - line2[x].channel[ch]) > dist) {
- diff = 1;
- break;
- }
- }
- if (!diff)
- line2[x] = empty;
- }
- i_plinf(out, 0, xsize, y, line2);
- }
- myfree(line1);
- myfree(line2);
- }
-
- return out;
-}
-
-struct fount_state;
-static double linear_fount_f(double x, double y, struct fount_state *state);
-static double bilinear_fount_f(double x, double y, struct fount_state *state);
-static double radial_fount_f(double x, double y, struct fount_state *state);
-static double square_fount_f(double x, double y, struct fount_state *state);
-static double revolution_fount_f(double x, double y,
- struct fount_state *state);
-static double conical_fount_f(double x, double y, struct fount_state *state);
-
-typedef double (*fount_func)(double, double, struct fount_state *);
-static fount_func fount_funcs[] =
-{
- linear_fount_f,
- bilinear_fount_f,
- radial_fount_f,
- square_fount_f,
- revolution_fount_f,
- conical_fount_f,
-};
-
-static double linear_interp(double pos, i_fountain_seg *seg);
-static double sine_interp(double pos, i_fountain_seg *seg);
-static double sphereup_interp(double pos, i_fountain_seg *seg);
-static double spheredown_interp(double pos, i_fountain_seg *seg);
-typedef double (*fount_interp)(double pos, i_fountain_seg *seg);
-static fount_interp fount_interps[] =
-{
- linear_interp,
- linear_interp,
- sine_interp,
- sphereup_interp,
- spheredown_interp,
-};
-
-static void direct_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg);
-static void hue_up_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg);
-static void hue_down_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg);
-typedef void (*fount_cinterp)(i_fcolor *out, double pos, i_fountain_seg *seg);
-static fount_cinterp fount_cinterps[] =
-{
- direct_cinterp,
- hue_up_cinterp,
- hue_down_cinterp,
-};
-
-typedef double (*fount_repeat)(double v);
-static double fount_r_none(double v);
-static double fount_r_sawtooth(double v);
-static double fount_r_triangle(double v);
-static double fount_r_saw_both(double v);
-static double fount_r_tri_both(double v);
-static fount_repeat fount_repeats[] =
-{
- fount_r_none,
- fount_r_sawtooth,
- fount_r_triangle,
- fount_r_saw_both,
- fount_r_tri_both,
-};
-
-static int simple_ssample(i_fcolor *out, double x, double y,
- struct fount_state *state);
-static int random_ssample(i_fcolor *out, double x, double y,
- struct fount_state *state);
-static int circle_ssample(i_fcolor *out, double x, double y,
- struct fount_state *state);
-typedef int (*fount_ssample)(i_fcolor *out, double x, double y,
- struct fount_state *state);
-static fount_ssample fount_ssamples[] =
-{
- NULL,
- simple_ssample,
- random_ssample,
- circle_ssample,
-};
-
-static int
-fount_getat(i_fcolor *out, double x, double y, struct fount_state *state);
-
-/*
- Keep state information used by each type of fountain fill
-*/
-struct fount_state {
- /* precalculated for the equation of the line perpendicular to the line AB */
- double lA, lB, lC;
- double AB;
- double sqrtA2B2;
- double mult;
- double cos;
- double sin;
- double theta;
- int xa, ya;
- void *ssample_data;
- fount_func ffunc;
- fount_repeat rpfunc;
- fount_ssample ssfunc;
- double parm;
- i_fountain_seg *segs;
- int count;
-};
-
-static void
-fount_init_state(struct fount_state *state, double xa, double ya,
- double xb, double yb, i_fountain_type type,
- i_fountain_repeat repeat, int combine, int super_sample,
- double ssample_param, int count, i_fountain_seg *segs);
-
-static void
-fount_finish_state(struct fount_state *state);
-
-#define EPSILON (1e-6)
-
-/*
-=item i_fountain(im, xa, ya, xb, yb, type, repeat, combine, super_sample, ssample_param, count, segs)
-
-Draws a fountain fill using A(xa, ya) and B(xb, yb) as reference points.
-
-I<type> controls how the reference points are used:
-
-=over
-
-=item i_ft_linear
-
-linear, where A is 0 and B is 1.
-
-=item i_ft_bilinear
-
-linear in both directions from A.
-
-=item i_ft_radial
-
-circular, where A is the centre of the fill, and B is a point
-on the radius.
-
-=item i_ft_radial_square
-
-where A is the centre of the fill and B is the centre of
-one side of the square.
-
-=item i_ft_revolution
-
-where A is the centre of the fill and B defines the 0/1.0
-angle of the fill.
-
-=item i_ft_conical
-
-similar to i_ft_revolution, except that the revolution goes in both
-directions
-
-=back
-
-I<repeat> can be one of:
-
-=over
-
-=item i_fr_none
-
-values < 0 are treated as zero, values > 1 are treated as 1.
-
-=item i_fr_sawtooth
-
-negative values are treated as 0, positive values are modulo 1.0
-
-=item i_fr_triangle
-
-negative values are treated as zero, if (int)value is odd then the value is treated as 1-(value
-mod 1.0), otherwise the same as for sawtooth.
-
-=item i_fr_saw_both
-
-like i_fr_sawtooth, except that the sawtooth pattern repeats into
-negative values.
-
-=item i_fr_tri_both
-
-Like i_fr_triangle, except that negative values are handled as their
-absolute values.
-
-=back
-
-If combine is non-zero then non-opaque values are combined with the
-underlying color.
-
-I<super_sample> controls super sampling, if any. At some point I'll
-probably add a adaptive super-sampler. Current possible values are:
-
-=over
-
-=item i_fts_none
-
-No super-sampling is done.
-
-=item i_fts_grid
-
-A square grid of points withing the pixel are sampled.
-
-=item i_fts_random
-
-Random points within the pixel are sampled.
-
-=item i_fts_circle
-
-Points on the radius of a circle are sampled. This produces fairly
-good results, but is fairly slow since sin() and cos() are evaluated
-for each point.
-
-=back
-
-I<ssample_param> is intended to be roughly the number of points
-sampled within the pixel.
-
-I<count> and I<segs> define the segments of the fill.
-
-=cut
-
-*/
-
-int
-i_fountain(i_img *im, double xa, double ya, double xb, double yb,
- i_fountain_type type, i_fountain_repeat repeat,
- int combine, int super_sample, double ssample_param,
- int count, i_fountain_seg *segs) {
- struct fount_state state;
- int x, y;
- i_fcolor *line = NULL;
- i_fcolor *work = NULL;
- int line_bytes;
- i_fountain_seg *my_segs;
- i_fill_combine_f combine_func = NULL;
- i_fill_combinef_f combinef_func = NULL;
-
- i_clear_error();
-
- /* i_fountain() allocates floating colors even for 8-bit images,
- so we need to do this check */
- line_bytes = sizeof(i_fcolor) * im->xsize;
- if (line_bytes / sizeof(i_fcolor) != im->xsize) {
- i_push_error(0, "integer overflow calculating memory allocation");
- return 0;
- }
-
- line = mymalloc(line_bytes); /* checked 17feb2005 tonyc */
-
- i_get_combine(combine, &combine_func, &combinef_func);
- if (combinef_func)
- work = mymalloc(line_bytes); /* checked 17feb2005 tonyc */
-
- fount_init_state(&state, xa, ya, xb, yb, type, repeat, combine,
- super_sample, ssample_param, count, segs);
- my_segs = state.segs;
-
- for (y = 0; y < im->ysize; ++y) {
- i_glinf(im, 0, im->xsize, y, line);
- for (x = 0; x < im->xsize; ++x) {
- i_fcolor c;
- int got_one;
- if (super_sample == i_fts_none)
- got_one = fount_getat(&c, x, y, &state);
- else
- got_one = state.ssfunc(&c, x, y, &state);
- if (got_one) {
- if (combine)
- work[x] = c;
- else
- line[x] = c;
- }
- }
- if (combine)
- combinef_func(line, work, im->channels, im->xsize);
- i_plinf(im, 0, im->xsize, y, line);
- }
- fount_finish_state(&state);
- if (work) myfree(work);
- myfree(line);
-
- return 1;
-}
-
-typedef struct {
- i_fill_t base;
- struct fount_state state;
-} i_fill_fountain_t;
-
-static void
-fill_fountf(i_fill_t *fill, int x, int y, int width, int channels,
- i_fcolor *data);
-static void
-fount_fill_destroy(i_fill_t *fill);
-
-/*
-=item i_new_fill_fount(xa, ya, xb, yb, type, repeat, combine, super_sample, ssample_param, count, segs)
-
-=category Fills
-=synopsis fill = i_new_fill_fount(0, 0, 100, 100, i_ft_linear, i_ft_linear,
-=synopsis i_fr_triangle, 0, i_fts_grid, 9, 1, segs);
-
-
-Creates a new general fill which fills with a fountain fill.
-
-=cut
-*/
-
-i_fill_t *
-i_new_fill_fount(double xa, double ya, double xb, double yb,
- i_fountain_type type, i_fountain_repeat repeat,
- int combine, int super_sample, double ssample_param,
- int count, i_fountain_seg *segs) {
- i_fill_fountain_t *fill = mymalloc(sizeof(i_fill_fountain_t));
-
- fill->base.fill_with_color = NULL;
- fill->base.fill_with_fcolor = fill_fountf;
- fill->base.destroy = fount_fill_destroy;
- if (combine)
- i_get_combine(combine, &fill->base.combine, &fill->base.combinef);
- else {
- fill->base.combine = NULL;
- fill->base.combinef = NULL;
- }
- fount_init_state(&fill->state, xa, ya, xb, yb, type, repeat, combine,
- super_sample, ssample_param, count, segs);
-
- return &fill->base;
-}
-
-/*
-=back
-
-=head1 INTERNAL FUNCTIONS
-
-=over
-
-=item fount_init_state(...)
-
-Used by both the fountain fill filter and the fountain fill.
-
-=cut
-*/
-
-static void
-fount_init_state(struct fount_state *state, double xa, double ya,
- double xb, double yb, i_fountain_type type,
- i_fountain_repeat repeat, int combine, int super_sample,
- double ssample_param, int count, i_fountain_seg *segs) {
- int i, j;
- int bytes;
- i_fountain_seg *my_segs = mymalloc(sizeof(i_fountain_seg) * count); /* checked 2jul06 - duplicating original */
- /*int have_alpha = im->channels == 2 || im->channels == 4;*/
-
- memset(state, 0, sizeof(*state));
- /* we keep a local copy that we can adjust for speed */
- for (i = 0; i < count; ++i) {
- i_fountain_seg *seg = my_segs + i;
-
- *seg = segs[i];
- if (seg->type < 0 || seg->type >= i_fst_end)
- seg->type = i_fst_linear;
- if (seg->color < 0 || seg->color >= i_fc_end)
- seg->color = i_fc_direct;
- if (seg->color == i_fc_hue_up || seg->color == i_fc_hue_down) {
- /* so we don't have to translate to HSV on each request, do it here */
- for (j = 0; j < 2; ++j) {
- i_rgb_to_hsvf(seg->c+j);
- }
- if (seg->color == i_fc_hue_up) {
- if (seg->c[1].channel[0] <= seg->c[0].channel[0])
- seg->c[1].channel[0] += 1.0;
- }
- else {
- if (seg->c[0].channel[0] <= seg->c[0].channel[1])
- seg->c[0].channel[0] += 1.0;
- }
- }
- /*printf("start %g mid %g end %g c0(%g,%g,%g,%g) c1(%g,%g,%g,%g) type %d color %d\n",
- seg->start, seg->middle, seg->end, seg->c[0].channel[0],
- seg->c[0].channel[1], seg->c[0].channel[2], seg->c[0].channel[3],
- seg->c[1].channel[0], seg->c[1].channel[1], seg->c[1].channel[2],
- seg->c[1].channel[3], seg->type, seg->color);*/
-
- }
-
- /* initialize each engine */
- /* these are so common ... */
- state->lA = xb - xa;
- state->lB = yb - ya;
- state->AB = sqrt(state->lA * state->lA + state->lB * state->lB);
- state->xa = xa;
- state->ya = ya;
- switch (type) {
- default:
- type = i_ft_linear; /* make the invalid value valid */
- case i_ft_linear:
- case i_ft_bilinear:
- state->lC = ya * ya - ya * yb + xa * xa - xa * xb;
- state->mult = 1;
- state->mult = 1/linear_fount_f(xb, yb, state);
- break;
-
- case i_ft_radial:
- state->mult = 1.0 / sqrt((double)(xb-xa)*(xb-xa)
- + (double)(yb-ya)*(yb-ya));
- break;
-
- case i_ft_radial_square:
- state->cos = state->lA / state->AB;
- state->sin = state->lB / state->AB;
- state->mult = 1.0 / state->AB;
- break;
-
- case i_ft_revolution:
- state->theta = atan2(yb-ya, xb-xa);
- state->mult = 1.0 / (PI * 2);
- break;
-
- case i_ft_conical:
- state->theta = atan2(yb-ya, xb-xa);
- state->mult = 1.0 / PI;
- break;
- }
- state->ffunc = fount_funcs[type];
- if (super_sample < 0
- || super_sample >= (int)(sizeof(fount_ssamples)/sizeof(*fount_ssamples))) {
- super_sample = 0;
- }
- state->ssample_data = NULL;
- switch (super_sample) {
- case i_fts_grid:
- ssample_param = floor(0.5 + sqrt(ssample_param));
- bytes = ssample_param * ssample_param * sizeof(i_fcolor);
- if (bytes / sizeof(i_fcolor) == ssample_param * ssample_param) {
- state->ssample_data = mymalloc(sizeof(i_fcolor) * ssample_param * ssample_param); /* checked 1jul06 tonyc */
- }
- else {
- super_sample = i_fts_none;
- }
- break;
-
- case i_fts_random:
- case i_fts_circle:
- ssample_param = floor(0.5+ssample_param);
- bytes = sizeof(i_fcolor) * ssample_param;
- if (bytes / sizeof(i_fcolor) == ssample_param) {
- state->ssample_data = mymalloc(sizeof(i_fcolor) * ssample_param);
- }
- else {
- super_sample = i_fts_none;
- }
- break;
- }
- state->parm = ssample_param;
- state->ssfunc = fount_ssamples[super_sample];
- if (repeat < 0 || repeat >= (sizeof(fount_repeats)/sizeof(*fount_repeats)))
- repeat = 0;
- state->rpfunc = fount_repeats[repeat];
- state->segs = my_segs;
- state->count = count;
-}
-
-static void
-fount_finish_state(struct fount_state *state) {
- if (state->ssample_data)
- myfree(state->ssample_data);
- myfree(state->segs);
-}
-
-
-/*
-=item fount_getat(out, x, y, ffunc, rpfunc, state, segs, count)
-
-Evaluates the fountain fill at the given point.
-
-This is called by both the non-super-sampling and super-sampling code.
-
-You might think that it would make sense to sample the fill parameter
-instead, and combine those, but this breaks badly.
-
-=cut
-*/
-
-static int
-fount_getat(i_fcolor *out, double x, double y, struct fount_state *state) {
- double v = (state->rpfunc)((state->ffunc)(x, y, state));
- int i;
-
- i = 0;
- while (i < state->count
- && (v < state->segs[i].start || v > state->segs[i].end)) {
- ++i;
- }
- if (i < state->count) {
- v = (fount_interps[state->segs[i].type])(v, state->segs+i);
- (fount_cinterps[state->segs[i].color])(out, v, state->segs+i);
- return 1;
- }
- else
- return 0;
-}
-
-/*
-=item linear_fount_f(x, y, state)
-
-Calculate the fill parameter for a linear fountain fill.
-
-Uses the point to line distance function, with some precalculation
-done in i_fountain().
-
-=cut
-*/
-static double
-linear_fount_f(double x, double y, struct fount_state *state) {
- return (state->lA * x + state->lB * y + state->lC) / state->AB * state->mult;
-}
-
-/*
-=item bilinear_fount_f(x, y, state)
-
-Calculate the fill parameter for a bi-linear fountain fill.
-
-=cut
-*/
-static double
-bilinear_fount_f(double x, double y, struct fount_state *state) {
- return fabs((state->lA * x + state->lB * y + state->lC) / state->AB * state->mult);
-}
-
-/*
-=item radial_fount_f(x, y, state)
-
-Calculate the fill parameter for a radial fountain fill.
-
-Simply uses the distance function.
-
-=cut
- */
-static double
-radial_fount_f(double x, double y, struct fount_state *state) {
- return sqrt((double)(state->xa-x)*(state->xa-x)
- + (double)(state->ya-y)*(state->ya-y)) * state->mult;
-}
-
-/*
-=item square_fount_f(x, y, state)
-
-Calculate the fill parameter for a square fountain fill.
-
-Works by rotating the reference co-ordinate around the centre of the
-square.
-
-=cut
-*/
-static double
-square_fount_f(double x, double y, struct fount_state *state) {
- int xc, yc; /* centred on A */
- double xt, yt; /* rotated by theta */
- xc = x - state->xa;
- yc = y - state->ya;
- xt = fabs(xc * state->cos + yc * state->sin);
- yt = fabs(-xc * state->sin + yc * state->cos);
- return (xt > yt ? xt : yt) * state->mult;
-}
-
-/*
-=item revolution_fount_f(x, y, state)
-
-Calculates the fill parameter for the revolution fountain fill.
-
-=cut
-*/
-static double
-revolution_fount_f(double x, double y, struct fount_state *state) {
- double angle = atan2(y - state->ya, x - state->xa);
-
- angle -= state->theta;
- if (angle < 0) {
- angle = fmod(angle+ PI * 4, PI*2);
- }
-
- return angle * state->mult;
-}
-
-/*
-=item conical_fount_f(x, y, state)
-
-Calculates the fill parameter for the conical fountain fill.
-
-=cut
-*/
-static double
-conical_fount_f(double x, double y, struct fount_state *state) {
- double angle = atan2(y - state->ya, x - state->xa);
-
- angle -= state->theta;
- if (angle < -PI)
- angle += PI * 2;
- else if (angle > PI)
- angle -= PI * 2;
-
- return fabs(angle) * state->mult;
-}
-
-/*
-=item linear_interp(pos, seg)
-
-Calculates linear interpolation on the fill parameter. Breaks the
-segment into 2 regions based in the I<middle> value.
-
-=cut
-*/
-static double
-linear_interp(double pos, i_fountain_seg *seg) {
- if (pos < seg->middle) {
- double len = seg->middle - seg->start;
- if (len < EPSILON)
- return 0.0;
- else
- return (pos - seg->start) / len / 2;
- }
- else {
- double len = seg->end - seg->middle;
- if (len < EPSILON)
- return 1.0;
- else
- return 0.5 + (pos - seg->middle) / len / 2;
- }
-}
-
-/*
-=item sine_interp(pos, seg)
-
-Calculates sine function interpolation on the fill parameter.
-
-=cut
-*/
-static double
-sine_interp(double pos, i_fountain_seg *seg) {
- /* I wonder if there's a simple way to smooth the transition for this */
- double work = linear_interp(pos, seg);
-
- return (1-cos(work * PI))/2;
-}
-
-/*
-=item sphereup_interp(pos, seg)
-
-Calculates spherical interpolation on the fill parameter, with the cusp
-at the low-end.
-
-=cut
-*/
-static double
-sphereup_interp(double pos, i_fountain_seg *seg) {
- double work = linear_interp(pos, seg);
-
- return sqrt(1.0 - (1-work) * (1-work));
-}
-
-/*
-=item spheredown_interp(pos, seg)
-
-Calculates spherical interpolation on the fill parameter, with the cusp
-at the high-end.
-
-=cut
-*/
-static double
-spheredown_interp(double pos, i_fountain_seg *seg) {
- double work = linear_interp(pos, seg);
-
- return 1-sqrt(1.0 - work * work);
-}
-
-/*
-=item direct_cinterp(out, pos, seg)
-
-Calculates the fountain color based on direct scaling of the channels
-of the color channels.
-
-=cut
-*/
-static void
-direct_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg) {
- int ch;
- for (ch = 0; ch < MAXCHANNELS; ++ch) {
- out->channel[ch] = seg->c[0].channel[ch] * (1 - pos)
- + seg->c[1].channel[ch] * pos;
- }
-}
-
-/*
-=item hue_up_cinterp(put, pos, seg)
-
-Calculates the fountain color based on scaling a HSV value. The hue
-increases as the fill parameter increases.
-
-=cut
-*/
-static void
-hue_up_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg) {
- int ch;
- for (ch = 0; ch < MAXCHANNELS; ++ch) {
- out->channel[ch] = seg->c[0].channel[ch] * (1 - pos)
- + seg->c[1].channel[ch] * pos;
- }
- i_hsv_to_rgbf(out);
-}
-
-/*
-=item hue_down_cinterp(put, pos, seg)
-
-Calculates the fountain color based on scaling a HSV value. The hue
-decreases as the fill parameter increases.
-
-=cut
-*/
-static void
-hue_down_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg) {
- int ch;
- for (ch = 0; ch < MAXCHANNELS; ++ch) {
- out->channel[ch] = seg->c[0].channel[ch] * (1 - pos)
- + seg->c[1].channel[ch] * pos;
- }
- i_hsv_to_rgbf(out);
-}
-
-/*
-=item simple_ssample(out, parm, x, y, state, ffunc, rpfunc, segs, count)
-
-Simple grid-based super-sampling.
-
-=cut
-*/
-static int
-simple_ssample(i_fcolor *out, double x, double y, struct fount_state *state) {
- i_fcolor *work = state->ssample_data;
- int dx, dy;
- int grid = state->parm;
- double base = -0.5 + 0.5 / grid;
- double step = 1.0 / grid;
- int ch, i;
- int samp_count = 0;
-
- for (dx = 0; dx < grid; ++dx) {
- for (dy = 0; dy < grid; ++dy) {
- if (fount_getat(work+samp_count, x + base + step * dx,
- y + base + step * dy, state)) {
- ++samp_count;
- }
- }
- }
- for (ch = 0; ch < MAXCHANNELS; ++ch) {
- out->channel[ch] = 0;
- for (i = 0; i < samp_count; ++i) {
- out->channel[ch] += work[i].channel[ch];
- }
- /* we divide by 4 rather than samp_count since if there's only one valid
- sample it should be mostly transparent */
- out->channel[ch] /= grid * grid;
- }
- return samp_count;
-}
-
-/*
-=item random_ssample(out, parm, x, y, state, ffunc, rpfunc, segs, count)
-
-Random super-sampling.
-
-=cut
-*/
-static int
-random_ssample(i_fcolor *out, double x, double y,
- struct fount_state *state) {
- i_fcolor *work = state->ssample_data;
- int i, ch;
- int maxsamples = state->parm;
- double rand_scale = 1.0 / RAND_MAX;
- int samp_count = 0;
- for (i = 0; i < maxsamples; ++i) {
- if (fount_getat(work+samp_count, x - 0.5 + rand() * rand_scale,
- y - 0.5 + rand() * rand_scale, state)) {
- ++samp_count;
- }
- }
- for (ch = 0; ch < MAXCHANNELS; ++ch) {
- out->channel[ch] = 0;
- for (i = 0; i < samp_count; ++i) {
- out->channel[ch] += work[i].channel[ch];
- }
- /* we divide by maxsamples rather than samp_count since if there's
- only one valid sample it should be mostly transparent */
- out->channel[ch] /= maxsamples;
- }
- return samp_count;
-}
-
-/*
-=item circle_ssample(out, parm, x, y, state, ffunc, rpfunc, segs, count)
-
-Super-sampling around the circumference of a circle.
-
-I considered saving the sin()/cos() values and transforming step-size
-around the circle, but that's inaccurate, though it may not matter
-much.
-
-=cut
- */
-static int
-circle_ssample(i_fcolor *out, double x, double y,
- struct fount_state *state) {
- i_fcolor *work = state->ssample_data;
- int i, ch;
- int maxsamples = state->parm;
- double angle = 2 * PI / maxsamples;
- double radius = 0.3; /* semi-random */
- int samp_count = 0;
- for (i = 0; i < maxsamples; ++i) {
- if (fount_getat(work+samp_count, x + radius * cos(angle * i),
- y + radius * sin(angle * i), state)) {
- ++samp_count;
- }
- }
- for (ch = 0; ch < MAXCHANNELS; ++ch) {
- out->channel[ch] = 0;
- for (i = 0; i < samp_count; ++i) {
- out->channel[ch] += work[i].channel[ch];
- }
- /* we divide by maxsamples rather than samp_count since if there's
- only one valid sample it should be mostly transparent */
- out->channel[ch] /= maxsamples;
- }
- return samp_count;
-}
-
-/*
-=item fount_r_none(v)
-
-Implements no repeats. Simply clamps the fill value.
-
-=cut
-*/
-static double
-fount_r_none(double v) {
- return v < 0 ? 0 : v > 1 ? 1 : v;
-}
-
-/*
-=item fount_r_sawtooth(v)
-
-Implements sawtooth repeats. Clamps negative values and uses fmod()
-on others.
-
-=cut
-*/
-static double
-fount_r_sawtooth(double v) {
- return v < 0 ? 0 : fmod(v, 1.0);
-}
-
-/*
-=item fount_r_triangle(v)
-
-Implements triangle repeats. Clamps negative values, uses fmod to get
-a range 0 through 2 and then adjusts values > 1.
-
-=cut
-*/
-static double
-fount_r_triangle(double v) {
- if (v < 0)
- return 0;
- else {
- v = fmod(v, 2.0);
- return v > 1.0 ? 2.0 - v : v;
- }
-}
-
-/*
-=item fount_r_saw_both(v)
-
-Implements sawtooth repeats in the both postive and negative directions.
-
-Adjusts the value to be postive and then just uses fmod().
-
-=cut
-*/
-static double
-fount_r_saw_both(double v) {
- if (v < 0)
- v += 1+(int)(-v);
- return fmod(v, 1.0);
-}
-
-/*
-=item fount_r_tri_both(v)
-
-Implements triangle repeats in the both postive and negative directions.
-
-Uses fmod on the absolute value, and then adjusts values > 1.
-
-=cut
-*/
-static double
-fount_r_tri_both(double v) {
- v = fmod(fabs(v), 2.0);
- return v > 1.0 ? 2.0 - v : v;
-}
-
-/*
-=item fill_fountf(fill, x, y, width, channels, data)
-
-The fill function for fountain fills.
-
-=cut
-*/
-static void
-fill_fountf(i_fill_t *fill, int x, int y, int width, int channels,
- i_fcolor *data) {
- i_fill_fountain_t *f = (i_fill_fountain_t *)fill;
-
- while (width--) {
- i_fcolor c;
- int got_one;
-
- if (f->state.ssfunc)
- got_one = f->state.ssfunc(&c, x, y, &f->state);
- else
- got_one = fount_getat(&c, x, y, &f->state);
-
- *data++ = c;
-
- ++x;
- }
-}
-
-/*
-=item fount_fill_destroy(fill)
-
-=cut
-*/
-static void
-fount_fill_destroy(i_fill_t *fill) {
- i_fill_fountain_t *f = (i_fill_fountain_t *)fill;
- fount_finish_state(&f->state);
-}
-
-/*
-=back
-
-=head1 AUTHOR
-
-Arnar M. Hrafnkelsson <addi@umich.edu>
-
-Tony Cook <tony@develop-help.com> (i_fountain())
-
-=head1 SEE ALSO
-
-Imager(3)
-
-=cut
-*/
--- /dev/null
+#include "imager.h"
+#include "imageri.h"
+#include <stdlib.h>
+#include <math.h>
+
+
+/*
+=head1 NAME
+
+filters.im - implements filters that operate on images
+
+=head1 SYNOPSIS
+
+
+ i_contrast(im, 0.8);
+ i_hardinvert(im);
+ i_unsharp_mask(im, 2.0, 1.0);
+ // and more
+
+=head1 DESCRIPTION
+
+filters.c implements basic filters for Imager. These filters
+should be accessible from the filter interface as defined in
+the pod for Imager.
+
+=head1 FUNCTION REFERENCE
+
+Some of these functions are internal.
+
+=over
+
+=cut
+*/
+
+
+
+
+/*
+=item saturate(in)
+
+Clamps the input value between 0 and 255. (internal)
+
+ in - input integer
+
+=cut
+*/
+
+static
+unsigned char
+saturate(int in) {
+ if (in>255) { return 255; }
+ else if (in>0) return in;
+ return 0;
+}
+
+
+
+/*
+=item i_contrast(im, intensity)
+
+Scales the pixel values by the amount specified.
+
+ im - image object
+ intensity - scalefactor
+
+=cut
+*/
+
+void
+i_contrast(i_img *im, float intensity) {
+ int x, y;
+ unsigned char ch;
+ unsigned int new_color;
+ i_color rcolor;
+
+ mm_log((1,"i_contrast(im %p, intensity %f)\n", im, intensity));
+
+ if(intensity < 0) return;
+
+ for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) {
+ i_gpix(im, x, y, &rcolor);
+
+ for(ch = 0; ch < im->channels; ch++) {
+ new_color = (unsigned int) rcolor.channel[ch];
+ new_color *= intensity;
+
+ if(new_color > 255) {
+ new_color = 255;
+ }
+ rcolor.channel[ch] = (unsigned char) new_color;
+ }
+ i_ppix(im, x, y, &rcolor);
+ }
+}
+
+
+/*
+=item i_hardinvert(im)
+
+Inverts the pixel values of the input image.
+
+ im - image object
+
+=cut
+*/
+
+void
+i_hardinvert(i_img *im) {
+ int x, y;
+ int ch;
+ int color_channels = i_img_color_channels(im);
+
+ mm_log((1,"i_hardinvert(im %p)\n", im));
+
+#code im->bits <= 8
+ IM_COLOR *row, *entry;
+
+ /* always rooms to allocate a single line of i_color */
+ row = mymalloc(sizeof(IM_COLOR) * im->xsize); /* checked 17feb2005 tonyc */
+
+ for(y = 0; y < im->ysize; y++) {
+ IM_GLIN(im, 0, im->xsize, y, row);
+ entry = row;
+ for(x = 0; x < im->xsize; x++) {
+ for(ch = 0; ch < color_channels; ch++) {
+ entry->channel[ch] = IM_SAMPLE_MAX - entry->channel[ch];
+ }
+ ++entry;
+ }
+ IM_PLIN(im, 0, im->xsize, y, row);
+ }
+ myfree(row);
+#/code
+}
+
+
+
+/*
+=item i_noise(im, amount, type)
+
+Inverts the pixel values by the amount specified.
+
+ im - image object
+ amount - deviation in pixel values
+ type - noise individual for each channel if true
+
+=cut
+*/
+
+#ifdef WIN32
+/* random() is non-ASCII, even if it is better than rand() */
+#define random() rand()
+#endif
+
+void
+i_noise(i_img *im, float amount, unsigned char type) {
+ int x, y;
+ unsigned char ch;
+ int new_color;
+ float damount = amount * 2;
+ i_color rcolor;
+ int color_inc = 0;
+
+ mm_log((1,"i_noise(im %p, intensity %.2f\n", im, amount));
+
+ if(amount < 0) return;
+
+ for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) {
+ i_gpix(im, x, y, &rcolor);
+
+ if(type == 0) {
+ color_inc = (amount - (damount * ((float)random() / RAND_MAX)));
+ }
+
+ for(ch = 0; ch < im->channels; ch++) {
+ new_color = (int) rcolor.channel[ch];
+
+ if(type != 0) {
+ new_color += (amount - (damount * ((float)random() / RAND_MAX)));
+ } else {
+ new_color += color_inc;
+ }
+
+ if(new_color < 0) {
+ new_color = 0;
+ }
+ if(new_color > 255) {
+ new_color = 255;
+ }
+
+ rcolor.channel[ch] = (unsigned char) new_color;
+ }
+
+ i_ppix(im, x, y, &rcolor);
+ }
+}
+
+
+/*
+=item i_noise(im, amount, type)
+
+Inverts the pixel values by the amount specified.
+
+ im - image object
+ amount - deviation in pixel values
+ type - noise individual for each channel if true
+
+=cut
+*/
+
+
+/*
+=item i_applyimage(im, add_im, mode)
+
+Apply's an image to another image
+
+ im - target image
+ add_im - image that is applied to target
+ mode - what method is used in applying:
+
+ 0 Normal
+ 1 Multiply
+ 2 Screen
+ 3 Overlay
+ 4 Soft Light
+ 5 Hard Light
+ 6 Color dodge
+ 7 Color Burn
+ 8 Darker
+ 9 Lighter
+ 10 Add
+ 11 Subtract
+ 12 Difference
+ 13 Exclusion
+
+=cut
+*/
+
+void i_applyimage(i_img *im, i_img *add_im, unsigned char mode) {
+ int x, y;
+ int mx, my;
+
+ mm_log((1, "i_applyimage(im %p, add_im %p, mode %d", im, add_im, mode));
+
+ mx = (add_im->xsize <= im->xsize) ? add_im->xsize : add_im->xsize;
+ my = (add_im->ysize <= im->ysize) ? add_im->ysize : add_im->ysize;
+
+ for(x = 0; x < mx; x++) {
+ for(y = 0; y < my; y++) {
+ }
+ }
+}
+
+
+/*
+=item i_bumpmap(im, bump, channel, light_x, light_y, st)
+
+Makes a bumpmap on image im using the bump image as the elevation map.
+
+ im - target image
+ bump - image that contains the elevation info
+ channel - to take the elevation information from
+ light_x - x coordinate of light source
+ light_y - y coordinate of light source
+ st - length of shadow
+
+=cut
+*/
+
+void
+i_bumpmap(i_img *im, i_img *bump, int channel, int light_x, int light_y, int st) {
+ int x, y, ch;
+ int mx, my;
+ i_color x1_color, y1_color, x2_color, y2_color, dst_color;
+ double nX, nY;
+ double tX, tY, tZ;
+ double aX, aY, aL;
+ double fZ;
+ unsigned char px1, px2, py1, py2;
+
+ i_img new_im;
+
+ mm_log((1, "i_bumpmap(im %p, add_im %p, channel %d, light_x %d, light_y %d, st %d)\n",
+ im, bump, channel, light_x, light_y, st));
+
+
+ if(channel >= bump->channels) {
+ mm_log((1, "i_bumpmap: channel = %d while bump image only has %d channels\n", channel, bump->channels));
+ return;
+ }
+
+ mx = (bump->xsize <= im->xsize) ? bump->xsize : im->xsize;
+ my = (bump->ysize <= im->ysize) ? bump->ysize : im->ysize;
+
+ i_img_empty_ch(&new_im, im->xsize, im->ysize, im->channels);
+
+ aX = (light_x > (mx >> 1)) ? light_x : mx - light_x;
+ aY = (light_y > (my >> 1)) ? light_y : my - light_y;
+
+ aL = sqrt((aX * aX) + (aY * aY));
+
+ for(y = 1; y < my - 1; y++) {
+ for(x = 1; x < mx - 1; x++) {
+ i_gpix(bump, x + st, y, &x1_color);
+ i_gpix(bump, x, y + st, &y1_color);
+ i_gpix(bump, x - st, y, &x2_color);
+ i_gpix(bump, x, y - st, &y2_color);
+
+ i_gpix(im, x, y, &dst_color);
+
+ px1 = x1_color.channel[channel];
+ py1 = y1_color.channel[channel];
+ px2 = x2_color.channel[channel];
+ py2 = y2_color.channel[channel];
+
+ nX = px1 - px2;
+ nY = py1 - py2;
+
+ nX += 128;
+ nY += 128;
+
+ fZ = (sqrt((nX * nX) + (nY * nY)) / aL);
+
+ tX = abs(x - light_x) / aL;
+ tY = abs(y - light_y) / aL;
+
+ tZ = 1 - (sqrt((tX * tX) + (tY * tY)) * fZ);
+
+ if(tZ < 0) tZ = 0;
+ if(tZ > 2) tZ = 2;
+
+ for(ch = 0; ch < im->channels; ch++)
+ dst_color.channel[ch] = (unsigned char) (float)(dst_color.channel[ch] * tZ);
+
+ i_ppix(&new_im, x, y, &dst_color);
+ }
+ }
+
+ i_copyto(im, &new_im, 0, 0, (int)im->xsize, (int)im->ysize, 0, 0);
+
+ i_img_exorcise(&new_im);
+}
+
+
+
+
+typedef struct {
+ float x,y,z;
+} fvec;
+
+
+static
+float
+dotp(fvec *a, fvec *b) {
+ return a->x*b->x+a->y*b->y+a->z*b->z;
+}
+
+static
+void
+normalize(fvec *a) {
+ double d = sqrt(dotp(a,a));
+ a->x /= d;
+ a->y /= d;
+ a->z /= d;
+}
+
+
+/*
+ positive directions:
+
+ x - right,
+ y - down
+ z - out of the plane
+
+ I = Ia + Ip*( cd*Scol(N.L) + cs*(R.V)^n )
+
+ Here, the variables are:
+
+ * Ia - ambient colour
+ * Ip - intensity of the point light source
+ * cd - diffuse coefficient
+ * Scol - surface colour
+ * cs - specular coefficient
+ * n - objects shinyness
+ * N - normal vector
+ * L - lighting vector
+ * R - reflection vector
+ * V - vision vector
+
+ static void fvec_dump(fvec *x) {
+ printf("(%.2f %.2f %.2f)", x->x, x->y, x->z);
+ }
+*/
+
+/* XXX: Should these return a code for success? */
+
+
+
+
+/*
+=item i_bumpmap_complex(im, bump, channel, tx, ty, Lx, Ly, Lz, Ip, cd, cs, n, Ia, Il, Is)
+
+Makes a bumpmap on image im using the bump image as the elevation map.
+
+ im - target image
+ bump - image that contains the elevation info
+ channel - to take the elevation information from
+ tx - shift in x direction of where to start applying bumpmap
+ ty - shift in y direction of where to start applying bumpmap
+ Lx - x position/direction of light
+ Ly - y position/direction of light
+ Lz - z position/direction of light
+ Ip - light intensity
+ cd - diffuse coefficient
+ cs - specular coefficient
+ n - surface shinyness
+ Ia - ambient colour
+ Il - light colour
+ Is - specular colour
+
+if z<0 then the L is taken to be the direction the light is shining in. Otherwise
+the L is taken to be the position of the Light, Relative to the image.
+
+=cut
+*/
+
+
+void
+i_bumpmap_complex(i_img *im,
+ i_img *bump,
+ int channel,
+ int tx,
+ int ty,
+ float Lx,
+ float Ly,
+ float Lz,
+ float cd,
+ float cs,
+ float n,
+ i_color *Ia,
+ i_color *Il,
+ i_color *Is) {
+ i_img new_im;
+
+ int inflight;
+ int x, y, ch;
+ int mx, Mx, my, My;
+
+ float cdc[MAXCHANNELS];
+ float csc[MAXCHANNELS];
+
+ i_color x1_color, y1_color, x2_color, y2_color;
+
+ i_color Scol; /* Surface colour */
+
+ fvec L; /* Light vector */
+ fvec N; /* surface normal */
+ fvec R; /* Reflection vector */
+ fvec V; /* Vision vector */
+
+ mm_log((1, "i_bumpmap_complex(im %p, bump %p, channel %d, tx %d, ty %d, Lx %.2f, Ly %.2f, Lz %.2f, cd %.2f, cs %.2f, n %.2f, Ia %p, Il %p, Is %p)\n",
+ im, bump, channel, tx, ty, Lx, Ly, Lz, cd, cs, n, Ia, Il, Is));
+
+ if (channel >= bump->channels) {
+ mm_log((1, "i_bumpmap_complex: channel = %d while bump image only has %d channels\n", channel, bump->channels));
+ return;
+ }
+
+ for(ch=0; ch<im->channels; ch++) {
+ cdc[ch] = (float)Il->channel[ch]*cd/255.f;
+ csc[ch] = (float)Is->channel[ch]*cs/255.f;
+ }
+
+ mx = 1;
+ my = 1;
+ Mx = bump->xsize-1;
+ My = bump->ysize-1;
+
+ V.x = 0;
+ V.y = 0;
+ V.z = 1;
+
+ if (Lz < 0) { /* Light specifies a direction vector, reverse it to get the vector from surface to light */
+ L.x = -Lx;
+ L.y = -Ly;
+ L.z = -Lz;
+ normalize(&L);
+ } else { /* Light is the position of the light source */
+ inflight = 0;
+ L.x = -0.2;
+ L.y = -0.4;
+ L.z = 1;
+ normalize(&L);
+ }
+
+ i_img_empty_ch(&new_im, im->xsize, im->ysize, im->channels);
+
+ for(y = 0; y < im->ysize; y++) {
+ for(x = 0; x < im->xsize; x++) {
+ double dp1, dp2;
+ double dx = 0, dy = 0;
+
+ /* Calculate surface normal */
+ if (mx<x && x<Mx && my<y && y<My) {
+ i_gpix(bump, x + 1, y, &x1_color);
+ i_gpix(bump, x - 1, y, &x2_color);
+ i_gpix(bump, x, y + 1, &y1_color);
+ i_gpix(bump, x, y - 1, &y2_color);
+ dx = x2_color.channel[channel] - x1_color.channel[channel];
+ dy = y2_color.channel[channel] - y1_color.channel[channel];
+ } else {
+ dx = 0;
+ dy = 0;
+ }
+ N.x = -dx * 0.015;
+ N.y = -dy * 0.015;
+ N.z = 1;
+ normalize(&N);
+
+ /* Calculate Light vector if needed */
+ if (Lz>=0) {
+ L.x = Lx - x;
+ L.y = Ly - y;
+ L.z = Lz;
+ normalize(&L);
+ }
+
+ dp1 = dotp(&L,&N);
+ R.x = -L.x + 2*dp1*N.x;
+ R.y = -L.y + 2*dp1*N.y;
+ R.z = -L.z + 2*dp1*N.z;
+
+ dp2 = dotp(&R,&V);
+
+ dp1 = dp1<0 ?0 : dp1;
+ dp2 = pow(dp2<0 ?0 : dp2,n);
+
+ i_gpix(im, x, y, &Scol);
+
+ for(ch = 0; ch < im->channels; ch++)
+ Scol.channel[ch] =
+ saturate( Ia->channel[ch] + cdc[ch]*Scol.channel[ch]*dp1 + csc[ch]*dp2 );
+
+ i_ppix(&new_im, x, y, &Scol);
+ }
+ }
+
+ i_copyto(im, &new_im, 0, 0, (int)im->xsize, (int)im->ysize, 0, 0);
+ i_img_exorcise(&new_im);
+}
+
+
+/*
+=item i_postlevels(im, levels)
+
+Quantizes Images to fewer levels.
+
+ im - target image
+ levels - number of levels
+
+=cut
+*/
+
+void
+i_postlevels(i_img *im, int levels) {
+ int x, y, ch;
+ float pv;
+ int rv;
+ float av;
+
+ i_color rcolor;
+
+ rv = (int) ((float)(256 / levels));
+ av = (float)levels;
+
+ for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) {
+ i_gpix(im, x, y, &rcolor);
+
+ for(ch = 0; ch < im->channels; ch++) {
+ pv = (((float)rcolor.channel[ch] / 255)) * av;
+ pv = (int) ((int)pv * rv);
+
+ if(pv < 0) pv = 0;
+ else if(pv > 255) pv = 255;
+
+ rcolor.channel[ch] = (unsigned char) pv;
+ }
+ i_ppix(im, x, y, &rcolor);
+ }
+}
+
+
+/*
+=item i_mosaic(im, size)
+
+Makes an image looks like a mosaic with tilesize of size
+
+ im - target image
+ size - size of tiles
+
+=cut
+*/
+
+void
+i_mosaic(i_img *im, int size) {
+ int x, y, ch;
+ int lx, ly, z;
+ long sqrsize;
+
+ i_color rcolor;
+ long col[256];
+
+ sqrsize = size * size;
+
+ for(y = 0; y < im->ysize; y += size) for(x = 0; x < im->xsize; x += size) {
+ for(z = 0; z < 256; z++) col[z] = 0;
+
+ for(lx = 0; lx < size; lx++) {
+ for(ly = 0; ly < size; ly++) {
+ i_gpix(im, (x + lx), (y + ly), &rcolor);
+
+ for(ch = 0; ch < im->channels; ch++) {
+ col[ch] += rcolor.channel[ch];
+ }
+ }
+ }
+
+ for(ch = 0; ch < im->channels; ch++)
+ rcolor.channel[ch] = (int) ((float)col[ch] / sqrsize);
+
+
+ for(lx = 0; lx < size; lx++)
+ for(ly = 0; ly < size; ly++)
+ i_ppix(im, (x + lx), (y + ly), &rcolor);
+
+ }
+}
+
+
+/*
+=item i_watermark(im, wmark, tx, ty, pixdiff)
+
+Applies a watermark to the target image
+
+ im - target image
+ wmark - watermark image
+ tx - x coordinate of where watermark should be applied
+ ty - y coordinate of where watermark should be applied
+ pixdiff - the magnitude of the watermark, controls how visible it is
+
+=cut
+*/
+
+void
+i_watermark(i_img *im, i_img *wmark, int tx, int ty, int pixdiff) {
+ int vx, vy, ch;
+ i_color val, wval;
+
+ int mx = wmark->xsize;
+ int my = wmark->ysize;
+
+ for(vx=0;vx<mx;vx++) for(vy=0;vy<my;vy++) {
+
+ i_gpix(im, tx+vx, ty+vy,&val );
+ i_gpix(wmark, vx, vy, &wval);
+
+ for(ch=0;ch<im->channels;ch++)
+ val.channel[ch] = saturate( val.channel[ch] + (pixdiff* (wval.channel[0]-128) )/128 );
+
+ i_ppix(im,tx+vx,ty+vy,&val);
+ }
+}
+
+
+/*
+=item i_autolevels(im, lsat, usat, skew)
+
+Scales and translates each color such that it fills the range completely.
+Skew is not implemented yet - purpose is to control the color skew that can
+occur when changing the contrast.
+
+ im - target image
+ lsat - fraction of pixels that will be truncated at the lower end of the spectrum
+ usat - fraction of pixels that will be truncated at the higher end of the spectrum
+ skew - not used yet
+
+=cut
+*/
+
+void
+i_autolevels(i_img *im, float lsat, float usat, float skew) {
+ i_color val;
+ int i, x, y, rhist[256], ghist[256], bhist[256];
+ int rsum, rmin, rmax;
+ int gsum, gmin, gmax;
+ int bsum, bmin, bmax;
+ int rcl, rcu, gcl, gcu, bcl, bcu;
+
+ mm_log((1,"i_autolevels(im %p, lsat %f,usat %f,skew %f)\n", im, lsat,usat,skew));
+
+ rsum=gsum=bsum=0;
+ for(i=0;i<256;i++) rhist[i]=ghist[i]=bhist[i] = 0;
+ /* create histogram for each channel */
+ for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) {
+ i_gpix(im, x, y, &val);
+ rhist[val.channel[0]]++;
+ ghist[val.channel[1]]++;
+ bhist[val.channel[2]]++;
+ }
+
+ for(i=0;i<256;i++) {
+ rsum+=rhist[i];
+ gsum+=ghist[i];
+ bsum+=bhist[i];
+ }
+
+ rmin = gmin = bmin = 0;
+ rmax = gmax = bmax = 255;
+
+ rcu = rcl = gcu = gcl = bcu = bcl = 0;
+
+ for(i=0; i<256; i++) {
+ rcl += rhist[i]; if ( (rcl<rsum*lsat) ) rmin=i;
+ rcu += rhist[255-i]; if ( (rcu<rsum*usat) ) rmax=255-i;
+
+ gcl += ghist[i]; if ( (gcl<gsum*lsat) ) gmin=i;
+ gcu += ghist[255-i]; if ( (gcu<gsum*usat) ) gmax=255-i;
+
+ bcl += bhist[i]; if ( (bcl<bsum*lsat) ) bmin=i;
+ bcu += bhist[255-i]; if ( (bcu<bsum*usat) ) bmax=255-i;
+ }
+
+ for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) {
+ i_gpix(im, x, y, &val);
+ val.channel[0]=saturate((val.channel[0]-rmin)*255/(rmax-rmin));
+ val.channel[1]=saturate((val.channel[1]-gmin)*255/(gmax-gmin));
+ val.channel[2]=saturate((val.channel[2]-bmin)*255/(bmax-bmin));
+ i_ppix(im, x, y, &val);
+ }
+}
+
+/*
+=item Noise(x,y)
+
+Pseudo noise utility function used to generate perlin noise. (internal)
+
+ x - x coordinate
+ y - y coordinate
+
+=cut
+*/
+
+static
+float
+Noise(int x, int y) {
+ int n = x + y * 57;
+ n = (n<<13) ^ n;
+ return ( 1.0 - ( (n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824.0);
+}
+
+/*
+=item SmoothedNoise1(x,y)
+
+Pseudo noise utility function used to generate perlin noise. (internal)
+
+ x - x coordinate
+ y - y coordinate
+
+=cut
+*/
+
+static
+float
+SmoothedNoise1(float x, float y) {
+ float corners = ( Noise(x-1, y-1)+Noise(x+1, y-1)+Noise(x-1, y+1)+Noise(x+1, y+1) ) / 16;
+ float sides = ( Noise(x-1, y) +Noise(x+1, y) +Noise(x, y-1) +Noise(x, y+1) ) / 8;
+ float center = Noise(x, y) / 4;
+ return corners + sides + center;
+}
+
+
+/*
+=item G_Interpolate(a, b, x)
+
+Utility function used to generate perlin noise. (internal)
+
+=cut
+*/
+
+static
+float C_Interpolate(float a, float b, float x) {
+ /* float ft = x * 3.1415927; */
+ float ft = x * PI;
+ float f = (1 - cos(ft)) * .5;
+ return a*(1-f) + b*f;
+}
+
+
+/*
+=item InterpolatedNoise(x, y)
+
+Utility function used to generate perlin noise. (internal)
+
+=cut
+*/
+
+static
+float
+InterpolatedNoise(float x, float y) {
+
+ int integer_X = x;
+ float fractional_X = x - integer_X;
+ int integer_Y = y;
+ float fractional_Y = y - integer_Y;
+
+ float v1 = SmoothedNoise1(integer_X, integer_Y);
+ float v2 = SmoothedNoise1(integer_X + 1, integer_Y);
+ float v3 = SmoothedNoise1(integer_X, integer_Y + 1);
+ float v4 = SmoothedNoise1(integer_X + 1, integer_Y + 1);
+
+ float i1 = C_Interpolate(v1 , v2 , fractional_X);
+ float i2 = C_Interpolate(v3 , v4 , fractional_X);
+
+ return C_Interpolate(i1 , i2 , fractional_Y);
+}
+
+
+
+/*
+=item PerlinNoise_2D(x, y)
+
+Utility function used to generate perlin noise. (internal)
+
+=cut
+*/
+
+static
+float
+PerlinNoise_2D(float x, float y) {
+ int i,frequency;
+ float amplitude;
+ float total = 0;
+ int Number_Of_Octaves=6;
+ int n = Number_Of_Octaves - 1;
+
+ for(i=0;i<n;i++) {
+ frequency = 2*i;
+ amplitude = PI;
+ total = total + InterpolatedNoise(x * frequency, y * frequency) * amplitude;
+ }
+
+ return total;
+}
+
+
+/*
+=item i_radnoise(im, xo, yo, rscale, ascale)
+
+Perlin-like radial noise.
+
+ im - target image
+ xo - x coordinate of center
+ yo - y coordinate of center
+ rscale - radial scale
+ ascale - angular scale
+
+=cut
+*/
+
+void
+i_radnoise(i_img *im, int xo, int yo, float rscale, float ascale) {
+ int x, y, ch;
+ i_color val;
+ unsigned char v;
+ float xc, yc, r;
+ double a;
+
+ for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) {
+ xc = (float)x-xo+0.5;
+ yc = (float)y-yo+0.5;
+ r = rscale*sqrt(xc*xc+yc*yc)+1.2;
+ a = (PI+atan2(yc,xc))*ascale;
+ v = saturate(128+100*(PerlinNoise_2D(a,r)));
+ /* v=saturate(120+12*PerlinNoise_2D(xo+(float)x/scale,yo+(float)y/scale)); Good soft marble */
+ for(ch=0; ch<im->channels; ch++) val.channel[ch]=v;
+ i_ppix(im, x, y, &val);
+ }
+}
+
+
+/*
+=item i_turbnoise(im, xo, yo, scale)
+
+Perlin-like 2d noise noise.
+
+ im - target image
+ xo - x coordinate translation
+ yo - y coordinate translation
+ scale - scale of noise
+
+=cut
+*/
+
+void
+i_turbnoise(i_img *im, float xo, float yo, float scale) {
+ int x,y,ch;
+ unsigned char v;
+ i_color val;
+
+ for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) {
+ /* v=saturate(125*(1.0+PerlinNoise_2D(xo+(float)x/scale,yo+(float)y/scale))); */
+ v = saturate(120*(1.0+sin(xo+(float)x/scale+PerlinNoise_2D(xo+(float)x/scale,yo+(float)y/scale))));
+ for(ch=0; ch<im->channels; ch++) val.channel[ch] = v;
+ i_ppix(im, x, y, &val);
+ }
+}
+
+
+
+/*
+=item i_gradgen(im, num, xo, yo, ival, dmeasure)
+
+Gradient generating function.
+
+ im - target image
+ num - number of points given
+ xo - array of x coordinates
+ yo - array of y coordinates
+ ival - array of i_color objects
+ dmeasure - distance measure to be used.
+ 0 = Euclidean
+ 1 = Euclidean squared
+ 2 = Manhattan distance
+
+=cut
+*/
+
+
+void
+i_gradgen(i_img *im, int num, int *xo, int *yo, i_color *ival, int dmeasure) {
+
+ i_color val;
+ int p, x, y, ch;
+ int channels = im->channels;
+ int xsize = im->xsize;
+ int ysize = im->ysize;
+ int bytes;
+
+ float *fdist;
+
+ mm_log((1,"i_gradgen(im %p, num %d, xo %p, yo %p, ival %p, dmeasure %d)\n", im, num, xo, yo, ival, dmeasure));
+
+ for(p = 0; p<num; p++) {
+ mm_log((1,"i_gradgen: (%d, %d)\n", xo[p], yo[p]));
+ ICL_info(&ival[p]);
+ }
+
+ /* on the systems I have sizeof(float) == sizeof(int) and thus
+ this would be same size as the arrays xo and yo point at, but this
+ may not be true for other systems
+
+ since the arrays here are caller controlled, I assume that on
+ overflow is a programming error rather than an end-user error, so
+ calling exit() is justified.
+ */
+ bytes = sizeof(float) * num;
+ if (bytes / num != sizeof(float)) {
+ fprintf(stderr, "integer overflow calculating memory allocation");
+ exit(1);
+ }
+ fdist = mymalloc( bytes ); /* checked 14jul05 tonyc */
+
+ for(y = 0; y<ysize; y++) for(x = 0; x<xsize; x++) {
+ float cs = 0;
+ float csd = 0;
+ for(p = 0; p<num; p++) {
+ int xd = x-xo[p];
+ int yd = y-yo[p];
+ switch (dmeasure) {
+ case 0: /* euclidean */
+ fdist[p] = sqrt(xd*xd + yd*yd); /* euclidean distance */
+ break;
+ case 1: /* euclidean squared */
+ fdist[p] = xd*xd + yd*yd; /* euclidean distance */
+ break;
+ case 2: /* euclidean squared */
+ fdist[p] = i_max(xd*xd, yd*yd); /* manhattan distance */
+ break;
+ default:
+ i_fatal(3,"i_gradgen: Unknown distance measure\n");
+ }
+ cs += fdist[p];
+ }
+
+ csd = 1/((num-1)*cs);
+
+ for(p = 0; p<num; p++) fdist[p] = (cs-fdist[p])*csd;
+
+ for(ch = 0; ch<channels; ch++) {
+ int tres = 0;
+ for(p = 0; p<num; p++) tres += ival[p].channel[ch] * fdist[p];
+ val.channel[ch] = saturate(tres);
+ }
+ i_ppix(im, x, y, &val);
+ }
+ myfree(fdist);
+
+}
+
+void
+i_nearest_color_foo(i_img *im, int num, int *xo, int *yo, i_color *ival, int dmeasure) {
+
+ int p, x, y;
+ int xsize = im->xsize;
+ int ysize = im->ysize;
+
+ mm_log((1,"i_gradgen(im %p, num %d, xo %p, yo %p, ival %p, dmeasure %d)\n", im, num, xo, yo, ival, dmeasure));
+
+ for(p = 0; p<num; p++) {
+ mm_log((1,"i_gradgen: (%d, %d)\n", xo[p], yo[p]));
+ ICL_info(&ival[p]);
+ }
+
+ for(y = 0; y<ysize; y++) for(x = 0; x<xsize; x++) {
+ int midx = 0;
+ float mindist = 0;
+ float curdist = 0;
+
+ int xd = x-xo[0];
+ int yd = y-yo[0];
+
+ switch (dmeasure) {
+ case 0: /* euclidean */
+ mindist = sqrt(xd*xd + yd*yd); /* euclidean distance */
+ break;
+ case 1: /* euclidean squared */
+ mindist = xd*xd + yd*yd; /* euclidean distance */
+ break;
+ case 2: /* euclidean squared */
+ mindist = i_max(xd*xd, yd*yd); /* manhattan distance */
+ break;
+ default:
+ i_fatal(3,"i_nearest_color: Unknown distance measure\n");
+ }
+
+ for(p = 1; p<num; p++) {
+ xd = x-xo[p];
+ yd = y-yo[p];
+ switch (dmeasure) {
+ case 0: /* euclidean */
+ curdist = sqrt(xd*xd + yd*yd); /* euclidean distance */
+ break;
+ case 1: /* euclidean squared */
+ curdist = xd*xd + yd*yd; /* euclidean distance */
+ break;
+ case 2: /* euclidean squared */
+ curdist = i_max(xd*xd, yd*yd); /* manhattan distance */
+ break;
+ default:
+ i_fatal(3,"i_nearest_color: Unknown distance measure\n");
+ }
+ if (curdist < mindist) {
+ mindist = curdist;
+ midx = p;
+ }
+ }
+ i_ppix(im, x, y, &ival[midx]);
+ }
+}
+
+/*
+=item i_nearest_color(im, num, xo, yo, oval, dmeasure)
+
+This wasn't document - quoth Addi:
+
+ An arty type of filter
+
+FIXME: check IRC logs for actual text.
+
+Inputs:
+
+=over
+
+=item *
+
+i_img *im - image to render on.
+
+=item *
+
+int num - number of points/colors in xo, yo, oval
+
+=item *
+
+int *xo - array of I<num> x positions
+
+=item *
+
+int *yo - array of I<num> y positions
+
+=item *
+
+i_color *oval - array of I<num> colors
+
+xo, yo, oval correspond to each other, the point xo[i], yo[i] has a
+color something like oval[i], at least closer to that color than other
+points.
+
+=item *
+
+int dmeasure - how we measure the distance from some point P(x,y) to
+any (xo[i], yo[i]).
+
+Valid values are:
+
+=over
+
+=item 0
+
+euclidean distance: sqrt((x2-x1)**2 + (y2-y1)**2)
+
+=item 1
+
+square of euclidean distance: ((x2-x1)**2 + (y2-y1)**2)
+
+=item 2
+
+manhattan distance: max((y2-y1)**2, (x2-x1)**2)
+
+=back
+
+An invalid value causes an error exit (the program is aborted).
+
+=back
+
+=cut
+ */
+
+int
+i_nearest_color(i_img *im, int num, int *xo, int *yo, i_color *oval, int dmeasure) {
+ i_color *ival;
+ float *tval;
+ float c1, c2;
+ i_color val;
+ int p, x, y, ch;
+ int xsize = im->xsize;
+ int ysize = im->ysize;
+ int *cmatch;
+ int ival_bytes, tval_bytes;
+
+ mm_log((1,"i_nearest_color(im %p, num %d, xo %p, yo %p, oval %p, dmeasure %d)\n", im, num, xo, yo, oval, dmeasure));
+
+ i_clear_error();
+
+ if (num <= 0) {
+ i_push_error(0, "no points supplied to nearest_color filter");
+ return 0;
+ }
+
+ if (dmeasure < 0 || dmeasure > i_dmeasure_limit) {
+ i_push_error(0, "distance measure invalid");
+ return 0;
+ }
+
+ tval_bytes = sizeof(float)*num*im->channels;
+ if (tval_bytes / num != sizeof(float) * im->channels) {
+ i_push_error(0, "integer overflow calculating memory allocation");
+ return 0;
+ }
+ ival_bytes = sizeof(i_color) * num;
+ if (ival_bytes / sizeof(i_color) != num) {
+ i_push_error(0, "integer overflow calculating memory allocation");
+ return 0;
+ }
+ tval = mymalloc( tval_bytes ); /* checked 17feb2005 tonyc */
+ ival = mymalloc( ival_bytes ); /* checked 17feb2005 tonyc */
+ cmatch = mymalloc( sizeof(int)*num ); /* checked 17feb2005 tonyc */
+
+ for(p = 0; p<num; p++) {
+ for(ch = 0; ch<im->channels; ch++) tval[ p * im->channels + ch] = 0;
+ cmatch[p] = 0;
+ }
+
+
+ for(y = 0; y<ysize; y++) for(x = 0; x<xsize; x++) {
+ int midx = 0;
+ float mindist = 0;
+ float curdist = 0;
+
+ int xd = x-xo[0];
+ int yd = y-yo[0];
+
+ switch (dmeasure) {
+ case 0: /* euclidean */
+ mindist = sqrt(xd*xd + yd*yd); /* euclidean distance */
+ break;
+ case 1: /* euclidean squared */
+ mindist = xd*xd + yd*yd; /* euclidean distance */
+ break;
+ case 2: /* manhatten distance */
+ mindist = i_max(xd*xd, yd*yd); /* manhattan distance */
+ break;
+ default:
+ i_fatal(3,"i_nearest_color: Unknown distance measure\n");
+ }
+
+ for(p = 1; p<num; p++) {
+ xd = x-xo[p];
+ yd = y-yo[p];
+ switch (dmeasure) {
+ case 0: /* euclidean */
+ curdist = sqrt(xd*xd + yd*yd); /* euclidean distance */
+ break;
+ case 1: /* euclidean squared */
+ curdist = xd*xd + yd*yd; /* euclidean distance */
+ break;
+ case 2: /* euclidean squared */
+ curdist = i_max(xd*xd, yd*yd); /* manhattan distance */
+ break;
+ default:
+ i_fatal(3,"i_nearest_color: Unknown distance measure\n");
+ }
+ if (curdist < mindist) {
+ mindist = curdist;
+ midx = p;
+ }
+ }
+
+ cmatch[midx]++;
+ i_gpix(im, x, y, &val);
+ c2 = 1.0/(float)(cmatch[midx]);
+ c1 = 1.0-c2;
+
+ for(ch = 0; ch<im->channels; ch++)
+ tval[midx*im->channels + ch] =
+ c1*tval[midx*im->channels + ch] + c2 * (float) val.channel[ch];
+
+ }
+
+ for(p = 0; p<num; p++) for(ch = 0; ch<im->channels; ch++)
+ ival[p].channel[ch] = tval[p*im->channels + ch];
+
+ i_nearest_color_foo(im, num, xo, yo, ival, dmeasure);
+
+ return 1;
+}
+
+/*
+=item i_unsharp_mask(im, stddev, scale)
+
+Perform an usharp mask, which is defined as subtracting the blurred
+image from double the original.
+
+=cut
+*/
+
+void
+i_unsharp_mask(i_img *im, double stddev, double scale) {
+ i_img *copy;
+ int x, y, ch;
+
+ if (scale < 0)
+ return;
+ /* it really shouldn't ever be more than 1.0, but maybe ... */
+ if (scale > 100)
+ scale = 100;
+
+ copy = i_copy(im);
+ i_gaussian(copy, stddev);
+ if (im->bits == i_8_bits) {
+ i_color *blur = mymalloc(im->xsize * sizeof(i_color)); /* checked 17feb2005 tonyc */
+ i_color *out = mymalloc(im->xsize * sizeof(i_color)); /* checked 17feb2005 tonyc */
+
+ for (y = 0; y < im->ysize; ++y) {
+ i_glin(copy, 0, copy->xsize, y, blur);
+ i_glin(im, 0, im->xsize, y, out);
+ for (x = 0; x < im->xsize; ++x) {
+ for (ch = 0; ch < im->channels; ++ch) {
+ /*int temp = out[x].channel[ch] +
+ scale * (out[x].channel[ch] - blur[x].channel[ch]);*/
+ int temp = out[x].channel[ch] * 2 - blur[x].channel[ch];
+ if (temp < 0)
+ temp = 0;
+ else if (temp > 255)
+ temp = 255;
+ out[x].channel[ch] = temp;
+ }
+ }
+ i_plin(im, 0, im->xsize, y, out);
+ }
+
+ myfree(blur);
+ myfree(out);
+ }
+ else {
+ i_fcolor *blur = mymalloc(im->xsize * sizeof(i_fcolor)); /* checked 17feb2005 tonyc */
+ i_fcolor *out = mymalloc(im->xsize * sizeof(i_fcolor)); /* checked 17feb2005 tonyc */
+
+ for (y = 0; y < im->ysize; ++y) {
+ i_glinf(copy, 0, copy->xsize, y, blur);
+ i_glinf(im, 0, im->xsize, y, out);
+ for (x = 0; x < im->xsize; ++x) {
+ for (ch = 0; ch < im->channels; ++ch) {
+ double temp = out[x].channel[ch] +
+ scale * (out[x].channel[ch] - blur[x].channel[ch]);
+ if (temp < 0)
+ temp = 0;
+ else if (temp > 1.0)
+ temp = 1.0;
+ out[x].channel[ch] = temp;
+ }
+ }
+ i_plinf(im, 0, im->xsize, y, out);
+ }
+
+ myfree(blur);
+ myfree(out);
+ }
+ i_img_destroy(copy);
+}
+
+/*
+=item i_diff_image(im1, im2, mindist)
+
+Creates a new image that is transparent, except where the pixel in im2
+is different from im1, where it is the pixel from im2.
+
+The samples must differ by at least mindiff to be considered different.
+
+=cut
+*/
+
+i_img *
+i_diff_image(i_img *im1, i_img *im2, double mindist) {
+ i_img *out;
+ int outchans, diffchans;
+ int xsize, ysize;
+
+ i_clear_error();
+ if (im1->channels != im2->channels) {
+ i_push_error(0, "different number of channels");
+ return NULL;
+ }
+
+ outchans = diffchans = im1->channels;
+ if (outchans == 1 || outchans == 3)
+ ++outchans;
+
+ xsize = i_min(im1->xsize, im2->xsize);
+ ysize = i_min(im1->ysize, im2->ysize);
+
+ out = i_sametype_chans(im1, xsize, ysize, outchans);
+
+ if (im1->bits == i_8_bits && im2->bits == i_8_bits) {
+ i_color *line1 = mymalloc(xsize * sizeof(*line1)); /* checked 17feb2005 tonyc */
+ i_color *line2 = mymalloc(xsize * sizeof(*line1)); /* checked 17feb2005 tonyc */
+ i_color empty;
+ int x, y, ch;
+ int imindist = (int)mindist;
+
+ for (ch = 0; ch < MAXCHANNELS; ++ch)
+ empty.channel[ch] = 0;
+
+ for (y = 0; y < ysize; ++y) {
+ i_glin(im1, 0, xsize, y, line1);
+ i_glin(im2, 0, xsize, y, line2);
+ if (outchans != diffchans) {
+ /* give the output an alpha channel since it doesn't have one */
+ for (x = 0; x < xsize; ++x)
+ line2[x].channel[diffchans] = 255;
+ }
+ for (x = 0; x < xsize; ++x) {
+ int diff = 0;
+ for (ch = 0; ch < diffchans; ++ch) {
+ if (line1[x].channel[ch] != line2[x].channel[ch]
+ && abs(line1[x].channel[ch] - line2[x].channel[ch]) > imindist) {
+ diff = 1;
+ break;
+ }
+ }
+ if (!diff)
+ line2[x] = empty;
+ }
+ i_plin(out, 0, xsize, y, line2);
+ }
+ myfree(line1);
+ myfree(line2);
+ }
+ else {
+ i_fcolor *line1 = mymalloc(xsize * sizeof(*line1)); /* checked 17feb2005 tonyc */
+ i_fcolor *line2 = mymalloc(xsize * sizeof(*line2)); /* checked 17feb2005 tonyc */
+ i_fcolor empty;
+ int x, y, ch;
+ double dist = mindist / 255.0;
+
+ for (ch = 0; ch < MAXCHANNELS; ++ch)
+ empty.channel[ch] = 0;
+
+ for (y = 0; y < ysize; ++y) {
+ i_glinf(im1, 0, xsize, y, line1);
+ i_glinf(im2, 0, xsize, y, line2);
+ if (outchans != diffchans) {
+ /* give the output an alpha channel since it doesn't have one */
+ for (x = 0; x < xsize; ++x)
+ line2[x].channel[diffchans] = 1.0;
+ }
+ for (x = 0; x < xsize; ++x) {
+ int diff = 0;
+ for (ch = 0; ch < diffchans; ++ch) {
+ if (line1[x].channel[ch] != line2[x].channel[ch]
+ && fabs(line1[x].channel[ch] - line2[x].channel[ch]) > dist) {
+ diff = 1;
+ break;
+ }
+ }
+ if (!diff)
+ line2[x] = empty;
+ }
+ i_plinf(out, 0, xsize, y, line2);
+ }
+ myfree(line1);
+ myfree(line2);
+ }
+
+ return out;
+}
+
+struct fount_state;
+static double linear_fount_f(double x, double y, struct fount_state *state);
+static double bilinear_fount_f(double x, double y, struct fount_state *state);
+static double radial_fount_f(double x, double y, struct fount_state *state);
+static double square_fount_f(double x, double y, struct fount_state *state);
+static double revolution_fount_f(double x, double y,
+ struct fount_state *state);
+static double conical_fount_f(double x, double y, struct fount_state *state);
+
+typedef double (*fount_func)(double, double, struct fount_state *);
+static fount_func fount_funcs[] =
+{
+ linear_fount_f,
+ bilinear_fount_f,
+ radial_fount_f,
+ square_fount_f,
+ revolution_fount_f,
+ conical_fount_f,
+};
+
+static double linear_interp(double pos, i_fountain_seg *seg);
+static double sine_interp(double pos, i_fountain_seg *seg);
+static double sphereup_interp(double pos, i_fountain_seg *seg);
+static double spheredown_interp(double pos, i_fountain_seg *seg);
+typedef double (*fount_interp)(double pos, i_fountain_seg *seg);
+static fount_interp fount_interps[] =
+{
+ linear_interp,
+ linear_interp,
+ sine_interp,
+ sphereup_interp,
+ spheredown_interp,
+};
+
+static void direct_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg);
+static void hue_up_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg);
+static void hue_down_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg);
+typedef void (*fount_cinterp)(i_fcolor *out, double pos, i_fountain_seg *seg);
+static fount_cinterp fount_cinterps[] =
+{
+ direct_cinterp,
+ hue_up_cinterp,
+ hue_down_cinterp,
+};
+
+typedef double (*fount_repeat)(double v);
+static double fount_r_none(double v);
+static double fount_r_sawtooth(double v);
+static double fount_r_triangle(double v);
+static double fount_r_saw_both(double v);
+static double fount_r_tri_both(double v);
+static fount_repeat fount_repeats[] =
+{
+ fount_r_none,
+ fount_r_sawtooth,
+ fount_r_triangle,
+ fount_r_saw_both,
+ fount_r_tri_both,
+};
+
+static int simple_ssample(i_fcolor *out, double x, double y,
+ struct fount_state *state);
+static int random_ssample(i_fcolor *out, double x, double y,
+ struct fount_state *state);
+static int circle_ssample(i_fcolor *out, double x, double y,
+ struct fount_state *state);
+typedef int (*fount_ssample)(i_fcolor *out, double x, double y,
+ struct fount_state *state);
+static fount_ssample fount_ssamples[] =
+{
+ NULL,
+ simple_ssample,
+ random_ssample,
+ circle_ssample,
+};
+
+static int
+fount_getat(i_fcolor *out, double x, double y, struct fount_state *state);
+
+/*
+ Keep state information used by each type of fountain fill
+*/
+struct fount_state {
+ /* precalculated for the equation of the line perpendicular to the line AB */
+ double lA, lB, lC;
+ double AB;
+ double sqrtA2B2;
+ double mult;
+ double cos;
+ double sin;
+ double theta;
+ int xa, ya;
+ void *ssample_data;
+ fount_func ffunc;
+ fount_repeat rpfunc;
+ fount_ssample ssfunc;
+ double parm;
+ i_fountain_seg *segs;
+ int count;
+};
+
+static void
+fount_init_state(struct fount_state *state, double xa, double ya,
+ double xb, double yb, i_fountain_type type,
+ i_fountain_repeat repeat, int combine, int super_sample,
+ double ssample_param, int count, i_fountain_seg *segs);
+
+static void
+fount_finish_state(struct fount_state *state);
+
+#define EPSILON (1e-6)
+
+/*
+=item i_fountain(im, xa, ya, xb, yb, type, repeat, combine, super_sample, ssample_param, count, segs)
+
+Draws a fountain fill using A(xa, ya) and B(xb, yb) as reference points.
+
+I<type> controls how the reference points are used:
+
+=over
+
+=item i_ft_linear
+
+linear, where A is 0 and B is 1.
+
+=item i_ft_bilinear
+
+linear in both directions from A.
+
+=item i_ft_radial
+
+circular, where A is the centre of the fill, and B is a point
+on the radius.
+
+=item i_ft_radial_square
+
+where A is the centre of the fill and B is the centre of
+one side of the square.
+
+=item i_ft_revolution
+
+where A is the centre of the fill and B defines the 0/1.0
+angle of the fill.
+
+=item i_ft_conical
+
+similar to i_ft_revolution, except that the revolution goes in both
+directions
+
+=back
+
+I<repeat> can be one of:
+
+=over
+
+=item i_fr_none
+
+values < 0 are treated as zero, values > 1 are treated as 1.
+
+=item i_fr_sawtooth
+
+negative values are treated as 0, positive values are modulo 1.0
+
+=item i_fr_triangle
+
+negative values are treated as zero, if (int)value is odd then the value is treated as 1-(value
+mod 1.0), otherwise the same as for sawtooth.
+
+=item i_fr_saw_both
+
+like i_fr_sawtooth, except that the sawtooth pattern repeats into
+negative values.
+
+=item i_fr_tri_both
+
+Like i_fr_triangle, except that negative values are handled as their
+absolute values.
+
+=back
+
+If combine is non-zero then non-opaque values are combined with the
+underlying color.
+
+I<super_sample> controls super sampling, if any. At some point I'll
+probably add a adaptive super-sampler. Current possible values are:
+
+=over
+
+=item i_fts_none
+
+No super-sampling is done.
+
+=item i_fts_grid
+
+A square grid of points withing the pixel are sampled.
+
+=item i_fts_random
+
+Random points within the pixel are sampled.
+
+=item i_fts_circle
+
+Points on the radius of a circle are sampled. This produces fairly
+good results, but is fairly slow since sin() and cos() are evaluated
+for each point.
+
+=back
+
+I<ssample_param> is intended to be roughly the number of points
+sampled within the pixel.
+
+I<count> and I<segs> define the segments of the fill.
+
+=cut
+
+*/
+
+int
+i_fountain(i_img *im, double xa, double ya, double xb, double yb,
+ i_fountain_type type, i_fountain_repeat repeat,
+ int combine, int super_sample, double ssample_param,
+ int count, i_fountain_seg *segs) {
+ struct fount_state state;
+ int x, y;
+ i_fcolor *line = NULL;
+ i_fcolor *work = NULL;
+ int line_bytes;
+ i_fountain_seg *my_segs;
+ i_fill_combine_f combine_func = NULL;
+ i_fill_combinef_f combinef_func = NULL;
+
+ i_clear_error();
+
+ /* i_fountain() allocates floating colors even for 8-bit images,
+ so we need to do this check */
+ line_bytes = sizeof(i_fcolor) * im->xsize;
+ if (line_bytes / sizeof(i_fcolor) != im->xsize) {
+ i_push_error(0, "integer overflow calculating memory allocation");
+ return 0;
+ }
+
+ line = mymalloc(line_bytes); /* checked 17feb2005 tonyc */
+
+ i_get_combine(combine, &combine_func, &combinef_func);
+ if (combinef_func)
+ work = mymalloc(line_bytes); /* checked 17feb2005 tonyc */
+
+ fount_init_state(&state, xa, ya, xb, yb, type, repeat, combine,
+ super_sample, ssample_param, count, segs);
+ my_segs = state.segs;
+
+ for (y = 0; y < im->ysize; ++y) {
+ i_glinf(im, 0, im->xsize, y, line);
+ for (x = 0; x < im->xsize; ++x) {
+ i_fcolor c;
+ int got_one;
+ if (super_sample == i_fts_none)
+ got_one = fount_getat(&c, x, y, &state);
+ else
+ got_one = state.ssfunc(&c, x, y, &state);
+ if (got_one) {
+ if (combine)
+ work[x] = c;
+ else
+ line[x] = c;
+ }
+ }
+ if (combine)
+ combinef_func(line, work, im->channels, im->xsize);
+ i_plinf(im, 0, im->xsize, y, line);
+ }
+ fount_finish_state(&state);
+ if (work) myfree(work);
+ myfree(line);
+
+ return 1;
+}
+
+typedef struct {
+ i_fill_t base;
+ struct fount_state state;
+} i_fill_fountain_t;
+
+static void
+fill_fountf(i_fill_t *fill, int x, int y, int width, int channels,
+ i_fcolor *data);
+static void
+fount_fill_destroy(i_fill_t *fill);
+
+/*
+=item i_new_fill_fount(xa, ya, xb, yb, type, repeat, combine, super_sample, ssample_param, count, segs)
+
+=category Fills
+=synopsis fill = i_new_fill_fount(0, 0, 100, 100, i_ft_linear, i_ft_linear,
+=synopsis i_fr_triangle, 0, i_fts_grid, 9, 1, segs);
+
+
+Creates a new general fill which fills with a fountain fill.
+
+=cut
+*/
+
+i_fill_t *
+i_new_fill_fount(double xa, double ya, double xb, double yb,
+ i_fountain_type type, i_fountain_repeat repeat,
+ int combine, int super_sample, double ssample_param,
+ int count, i_fountain_seg *segs) {
+ i_fill_fountain_t *fill = mymalloc(sizeof(i_fill_fountain_t));
+
+ fill->base.fill_with_color = NULL;
+ fill->base.fill_with_fcolor = fill_fountf;
+ fill->base.destroy = fount_fill_destroy;
+ if (combine)
+ i_get_combine(combine, &fill->base.combine, &fill->base.combinef);
+ else {
+ fill->base.combine = NULL;
+ fill->base.combinef = NULL;
+ }
+ fount_init_state(&fill->state, xa, ya, xb, yb, type, repeat, combine,
+ super_sample, ssample_param, count, segs);
+
+ return &fill->base;
+}
+
+/*
+=back
+
+=head1 INTERNAL FUNCTIONS
+
+=over
+
+=item fount_init_state(...)
+
+Used by both the fountain fill filter and the fountain fill.
+
+=cut
+*/
+
+static void
+fount_init_state(struct fount_state *state, double xa, double ya,
+ double xb, double yb, i_fountain_type type,
+ i_fountain_repeat repeat, int combine, int super_sample,
+ double ssample_param, int count, i_fountain_seg *segs) {
+ int i, j;
+ int bytes;
+ i_fountain_seg *my_segs = mymalloc(sizeof(i_fountain_seg) * count); /* checked 2jul06 - duplicating original */
+ /*int have_alpha = im->channels == 2 || im->channels == 4;*/
+
+ memset(state, 0, sizeof(*state));
+ /* we keep a local copy that we can adjust for speed */
+ for (i = 0; i < count; ++i) {
+ i_fountain_seg *seg = my_segs + i;
+
+ *seg = segs[i];
+ if (seg->type < 0 || seg->type >= i_fst_end)
+ seg->type = i_fst_linear;
+ if (seg->color < 0 || seg->color >= i_fc_end)
+ seg->color = i_fc_direct;
+ if (seg->color == i_fc_hue_up || seg->color == i_fc_hue_down) {
+ /* so we don't have to translate to HSV on each request, do it here */
+ for (j = 0; j < 2; ++j) {
+ i_rgb_to_hsvf(seg->c+j);
+ }
+ if (seg->color == i_fc_hue_up) {
+ if (seg->c[1].channel[0] <= seg->c[0].channel[0])
+ seg->c[1].channel[0] += 1.0;
+ }
+ else {
+ if (seg->c[0].channel[0] <= seg->c[0].channel[1])
+ seg->c[0].channel[0] += 1.0;
+ }
+ }
+ /*printf("start %g mid %g end %g c0(%g,%g,%g,%g) c1(%g,%g,%g,%g) type %d color %d\n",
+ seg->start, seg->middle, seg->end, seg->c[0].channel[0],
+ seg->c[0].channel[1], seg->c[0].channel[2], seg->c[0].channel[3],
+ seg->c[1].channel[0], seg->c[1].channel[1], seg->c[1].channel[2],
+ seg->c[1].channel[3], seg->type, seg->color);*/
+
+ }
+
+ /* initialize each engine */
+ /* these are so common ... */
+ state->lA = xb - xa;
+ state->lB = yb - ya;
+ state->AB = sqrt(state->lA * state->lA + state->lB * state->lB);
+ state->xa = xa;
+ state->ya = ya;
+ switch (type) {
+ default:
+ type = i_ft_linear; /* make the invalid value valid */
+ case i_ft_linear:
+ case i_ft_bilinear:
+ state->lC = ya * ya - ya * yb + xa * xa - xa * xb;
+ state->mult = 1;
+ state->mult = 1/linear_fount_f(xb, yb, state);
+ break;
+
+ case i_ft_radial:
+ state->mult = 1.0 / sqrt((double)(xb-xa)*(xb-xa)
+ + (double)(yb-ya)*(yb-ya));
+ break;
+
+ case i_ft_radial_square:
+ state->cos = state->lA / state->AB;
+ state->sin = state->lB / state->AB;
+ state->mult = 1.0 / state->AB;
+ break;
+
+ case i_ft_revolution:
+ state->theta = atan2(yb-ya, xb-xa);
+ state->mult = 1.0 / (PI * 2);
+ break;
+
+ case i_ft_conical:
+ state->theta = atan2(yb-ya, xb-xa);
+ state->mult = 1.0 / PI;
+ break;
+ }
+ state->ffunc = fount_funcs[type];
+ if (super_sample < 0
+ || super_sample >= (int)(sizeof(fount_ssamples)/sizeof(*fount_ssamples))) {
+ super_sample = 0;
+ }
+ state->ssample_data = NULL;
+ switch (super_sample) {
+ case i_fts_grid:
+ ssample_param = floor(0.5 + sqrt(ssample_param));
+ bytes = ssample_param * ssample_param * sizeof(i_fcolor);
+ if (bytes / sizeof(i_fcolor) == ssample_param * ssample_param) {
+ state->ssample_data = mymalloc(sizeof(i_fcolor) * ssample_param * ssample_param); /* checked 1jul06 tonyc */
+ }
+ else {
+ super_sample = i_fts_none;
+ }
+ break;
+
+ case i_fts_random:
+ case i_fts_circle:
+ ssample_param = floor(0.5+ssample_param);
+ bytes = sizeof(i_fcolor) * ssample_param;
+ if (bytes / sizeof(i_fcolor) == ssample_param) {
+ state->ssample_data = mymalloc(sizeof(i_fcolor) * ssample_param);
+ }
+ else {
+ super_sample = i_fts_none;
+ }
+ break;
+ }
+ state->parm = ssample_param;
+ state->ssfunc = fount_ssamples[super_sample];
+ if (repeat < 0 || repeat >= (sizeof(fount_repeats)/sizeof(*fount_repeats)))
+ repeat = 0;
+ state->rpfunc = fount_repeats[repeat];
+ state->segs = my_segs;
+ state->count = count;
+}
+
+static void
+fount_finish_state(struct fount_state *state) {
+ if (state->ssample_data)
+ myfree(state->ssample_data);
+ myfree(state->segs);
+}
+
+
+/*
+=item fount_getat(out, x, y, ffunc, rpfunc, state, segs, count)
+
+Evaluates the fountain fill at the given point.
+
+This is called by both the non-super-sampling and super-sampling code.
+
+You might think that it would make sense to sample the fill parameter
+instead, and combine those, but this breaks badly.
+
+=cut
+*/
+
+static int
+fount_getat(i_fcolor *out, double x, double y, struct fount_state *state) {
+ double v = (state->rpfunc)((state->ffunc)(x, y, state));
+ int i;
+
+ i = 0;
+ while (i < state->count
+ && (v < state->segs[i].start || v > state->segs[i].end)) {
+ ++i;
+ }
+ if (i < state->count) {
+ v = (fount_interps[state->segs[i].type])(v, state->segs+i);
+ (fount_cinterps[state->segs[i].color])(out, v, state->segs+i);
+ return 1;
+ }
+ else
+ return 0;
+}
+
+/*
+=item linear_fount_f(x, y, state)
+
+Calculate the fill parameter for a linear fountain fill.
+
+Uses the point to line distance function, with some precalculation
+done in i_fountain().
+
+=cut
+*/
+static double
+linear_fount_f(double x, double y, struct fount_state *state) {
+ return (state->lA * x + state->lB * y + state->lC) / state->AB * state->mult;
+}
+
+/*
+=item bilinear_fount_f(x, y, state)
+
+Calculate the fill parameter for a bi-linear fountain fill.
+
+=cut
+*/
+static double
+bilinear_fount_f(double x, double y, struct fount_state *state) {
+ return fabs((state->lA * x + state->lB * y + state->lC) / state->AB * state->mult);
+}
+
+/*
+=item radial_fount_f(x, y, state)
+
+Calculate the fill parameter for a radial fountain fill.
+
+Simply uses the distance function.
+
+=cut
+ */
+static double
+radial_fount_f(double x, double y, struct fount_state *state) {
+ return sqrt((double)(state->xa-x)*(state->xa-x)
+ + (double)(state->ya-y)*(state->ya-y)) * state->mult;
+}
+
+/*
+=item square_fount_f(x, y, state)
+
+Calculate the fill parameter for a square fountain fill.
+
+Works by rotating the reference co-ordinate around the centre of the
+square.
+
+=cut
+*/
+static double
+square_fount_f(double x, double y, struct fount_state *state) {
+ int xc, yc; /* centred on A */
+ double xt, yt; /* rotated by theta */
+ xc = x - state->xa;
+ yc = y - state->ya;
+ xt = fabs(xc * state->cos + yc * state->sin);
+ yt = fabs(-xc * state->sin + yc * state->cos);
+ return (xt > yt ? xt : yt) * state->mult;
+}
+
+/*
+=item revolution_fount_f(x, y, state)
+
+Calculates the fill parameter for the revolution fountain fill.
+
+=cut
+*/
+static double
+revolution_fount_f(double x, double y, struct fount_state *state) {
+ double angle = atan2(y - state->ya, x - state->xa);
+
+ angle -= state->theta;
+ if (angle < 0) {
+ angle = fmod(angle+ PI * 4, PI*2);
+ }
+
+ return angle * state->mult;
+}
+
+/*
+=item conical_fount_f(x, y, state)
+
+Calculates the fill parameter for the conical fountain fill.
+
+=cut
+*/
+static double
+conical_fount_f(double x, double y, struct fount_state *state) {
+ double angle = atan2(y - state->ya, x - state->xa);
+
+ angle -= state->theta;
+ if (angle < -PI)
+ angle += PI * 2;
+ else if (angle > PI)
+ angle -= PI * 2;
+
+ return fabs(angle) * state->mult;
+}
+
+/*
+=item linear_interp(pos, seg)
+
+Calculates linear interpolation on the fill parameter. Breaks the
+segment into 2 regions based in the I<middle> value.
+
+=cut
+*/
+static double
+linear_interp(double pos, i_fountain_seg *seg) {
+ if (pos < seg->middle) {
+ double len = seg->middle - seg->start;
+ if (len < EPSILON)
+ return 0.0;
+ else
+ return (pos - seg->start) / len / 2;
+ }
+ else {
+ double len = seg->end - seg->middle;
+ if (len < EPSILON)
+ return 1.0;
+ else
+ return 0.5 + (pos - seg->middle) / len / 2;
+ }
+}
+
+/*
+=item sine_interp(pos, seg)
+
+Calculates sine function interpolation on the fill parameter.
+
+=cut
+*/
+static double
+sine_interp(double pos, i_fountain_seg *seg) {
+ /* I wonder if there's a simple way to smooth the transition for this */
+ double work = linear_interp(pos, seg);
+
+ return (1-cos(work * PI))/2;
+}
+
+/*
+=item sphereup_interp(pos, seg)
+
+Calculates spherical interpolation on the fill parameter, with the cusp
+at the low-end.
+
+=cut
+*/
+static double
+sphereup_interp(double pos, i_fountain_seg *seg) {
+ double work = linear_interp(pos, seg);
+
+ return sqrt(1.0 - (1-work) * (1-work));
+}
+
+/*
+=item spheredown_interp(pos, seg)
+
+Calculates spherical interpolation on the fill parameter, with the cusp
+at the high-end.
+
+=cut
+*/
+static double
+spheredown_interp(double pos, i_fountain_seg *seg) {
+ double work = linear_interp(pos, seg);
+
+ return 1-sqrt(1.0 - work * work);
+}
+
+/*
+=item direct_cinterp(out, pos, seg)
+
+Calculates the fountain color based on direct scaling of the channels
+of the color channels.
+
+=cut
+*/
+static void
+direct_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg) {
+ int ch;
+ for (ch = 0; ch < MAXCHANNELS; ++ch) {
+ out->channel[ch] = seg->c[0].channel[ch] * (1 - pos)
+ + seg->c[1].channel[ch] * pos;
+ }
+}
+
+/*
+=item hue_up_cinterp(put, pos, seg)
+
+Calculates the fountain color based on scaling a HSV value. The hue
+increases as the fill parameter increases.
+
+=cut
+*/
+static void
+hue_up_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg) {
+ int ch;
+ for (ch = 0; ch < MAXCHANNELS; ++ch) {
+ out->channel[ch] = seg->c[0].channel[ch] * (1 - pos)
+ + seg->c[1].channel[ch] * pos;
+ }
+ i_hsv_to_rgbf(out);
+}
+
+/*
+=item hue_down_cinterp(put, pos, seg)
+
+Calculates the fountain color based on scaling a HSV value. The hue
+decreases as the fill parameter increases.
+
+=cut
+*/
+static void
+hue_down_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg) {
+ int ch;
+ for (ch = 0; ch < MAXCHANNELS; ++ch) {
+ out->channel[ch] = seg->c[0].channel[ch] * (1 - pos)
+ + seg->c[1].channel[ch] * pos;
+ }
+ i_hsv_to_rgbf(out);
+}
+
+/*
+=item simple_ssample(out, parm, x, y, state, ffunc, rpfunc, segs, count)
+
+Simple grid-based super-sampling.
+
+=cut
+*/
+static int
+simple_ssample(i_fcolor *out, double x, double y, struct fount_state *state) {
+ i_fcolor *work = state->ssample_data;
+ int dx, dy;
+ int grid = state->parm;
+ double base = -0.5 + 0.5 / grid;
+ double step = 1.0 / grid;
+ int ch, i;
+ int samp_count = 0;
+
+ for (dx = 0; dx < grid; ++dx) {
+ for (dy = 0; dy < grid; ++dy) {
+ if (fount_getat(work+samp_count, x + base + step * dx,
+ y + base + step * dy, state)) {
+ ++samp_count;
+ }
+ }
+ }
+ for (ch = 0; ch < MAXCHANNELS; ++ch) {
+ out->channel[ch] = 0;
+ for (i = 0; i < samp_count; ++i) {
+ out->channel[ch] += work[i].channel[ch];
+ }
+ /* we divide by 4 rather than samp_count since if there's only one valid
+ sample it should be mostly transparent */
+ out->channel[ch] /= grid * grid;
+ }
+ return samp_count;
+}
+
+/*
+=item random_ssample(out, parm, x, y, state, ffunc, rpfunc, segs, count)
+
+Random super-sampling.
+
+=cut
+*/
+static int
+random_ssample(i_fcolor *out, double x, double y,
+ struct fount_state *state) {
+ i_fcolor *work = state->ssample_data;
+ int i, ch;
+ int maxsamples = state->parm;
+ double rand_scale = 1.0 / RAND_MAX;
+ int samp_count = 0;
+ for (i = 0; i < maxsamples; ++i) {
+ if (fount_getat(work+samp_count, x - 0.5 + rand() * rand_scale,
+ y - 0.5 + rand() * rand_scale, state)) {
+ ++samp_count;
+ }
+ }
+ for (ch = 0; ch < MAXCHANNELS; ++ch) {
+ out->channel[ch] = 0;
+ for (i = 0; i < samp_count; ++i) {
+ out->channel[ch] += work[i].channel[ch];
+ }
+ /* we divide by maxsamples rather than samp_count since if there's
+ only one valid sample it should be mostly transparent */
+ out->channel[ch] /= maxsamples;
+ }
+ return samp_count;
+}
+
+/*
+=item circle_ssample(out, parm, x, y, state, ffunc, rpfunc, segs, count)
+
+Super-sampling around the circumference of a circle.
+
+I considered saving the sin()/cos() values and transforming step-size
+around the circle, but that's inaccurate, though it may not matter
+much.
+
+=cut
+ */
+static int
+circle_ssample(i_fcolor *out, double x, double y,
+ struct fount_state *state) {
+ i_fcolor *work = state->ssample_data;
+ int i, ch;
+ int maxsamples = state->parm;
+ double angle = 2 * PI / maxsamples;
+ double radius = 0.3; /* semi-random */
+ int samp_count = 0;
+ for (i = 0; i < maxsamples; ++i) {
+ if (fount_getat(work+samp_count, x + radius * cos(angle * i),
+ y + radius * sin(angle * i), state)) {
+ ++samp_count;
+ }
+ }
+ for (ch = 0; ch < MAXCHANNELS; ++ch) {
+ out->channel[ch] = 0;
+ for (i = 0; i < samp_count; ++i) {
+ out->channel[ch] += work[i].channel[ch];
+ }
+ /* we divide by maxsamples rather than samp_count since if there's
+ only one valid sample it should be mostly transparent */
+ out->channel[ch] /= maxsamples;
+ }
+ return samp_count;
+}
+
+/*
+=item fount_r_none(v)
+
+Implements no repeats. Simply clamps the fill value.
+
+=cut
+*/
+static double
+fount_r_none(double v) {
+ return v < 0 ? 0 : v > 1 ? 1 : v;
+}
+
+/*
+=item fount_r_sawtooth(v)
+
+Implements sawtooth repeats. Clamps negative values and uses fmod()
+on others.
+
+=cut
+*/
+static double
+fount_r_sawtooth(double v) {
+ return v < 0 ? 0 : fmod(v, 1.0);
+}
+
+/*
+=item fount_r_triangle(v)
+
+Implements triangle repeats. Clamps negative values, uses fmod to get
+a range 0 through 2 and then adjusts values > 1.
+
+=cut
+*/
+static double
+fount_r_triangle(double v) {
+ if (v < 0)
+ return 0;
+ else {
+ v = fmod(v, 2.0);
+ return v > 1.0 ? 2.0 - v : v;
+ }
+}
+
+/*
+=item fount_r_saw_both(v)
+
+Implements sawtooth repeats in the both postive and negative directions.
+
+Adjusts the value to be postive and then just uses fmod().
+
+=cut
+*/
+static double
+fount_r_saw_both(double v) {
+ if (v < 0)
+ v += 1+(int)(-v);
+ return fmod(v, 1.0);
+}
+
+/*
+=item fount_r_tri_both(v)
+
+Implements triangle repeats in the both postive and negative directions.
+
+Uses fmod on the absolute value, and then adjusts values > 1.
+
+=cut
+*/
+static double
+fount_r_tri_both(double v) {
+ v = fmod(fabs(v), 2.0);
+ return v > 1.0 ? 2.0 - v : v;
+}
+
+/*
+=item fill_fountf(fill, x, y, width, channels, data)
+
+The fill function for fountain fills.
+
+=cut
+*/
+static void
+fill_fountf(i_fill_t *fill, int x, int y, int width, int channels,
+ i_fcolor *data) {
+ i_fill_fountain_t *f = (i_fill_fountain_t *)fill;
+
+ while (width--) {
+ i_fcolor c;
+ int got_one;
+
+ if (f->state.ssfunc)
+ got_one = f->state.ssfunc(&c, x, y, &f->state);
+ else
+ got_one = fount_getat(&c, x, y, &f->state);
+
+ *data++ = c;
+
+ ++x;
+ }
+}
+
+/*
+=item fount_fill_destroy(fill)
+
+=cut
+*/
+static void
+fount_fill_destroy(i_fill_t *fill) {
+ i_fill_fountain_t *f = (i_fill_fountain_t *)fill;
+ fount_finish_state(&f->state);
+}
+
+/*
+=back
+
+=head1 AUTHOR
+
+Arnar M. Hrafnkelsson <addi@umich.edu>
+
+Tony Cook <tony@develop-help.com> (i_fountain())
+
+=head1 SEE ALSO
+
+Imager(3)
+
+=cut
+*/
#endif /* IMAGER_MALLOC_DEBUG */
#include "imrender.h"
+#include "immacros.h"
#endif
#define IMAGER_IMEXT_H_
#include "imexttypes.h"
+#include "immacros.h"
extern im_ext_funcs *imager_function_ext_table;
--- /dev/null
+/*
+ Imager "functions" implemented as macros
+
+ I suppose these could go in imdatatypes, but they aren't types.
+*/
+#ifndef IMAGER_IMMACROS_H_
+#define IMAGER_IMMACROS_H_
+
+/*
+=item i_img_has_alpha(im)
+
+=category Image Information
+
+Return true if the image has an alpha channel.
+
+=cut
+*/
+
+#define i_img_has_alpha(im) ((im)->channels == 2 || (im)->channels == 4)
+
+/*
+=item i_img_color_channels(im)
+
+=category Image Information
+
+The number of channels holding color information.
+
+=cut
+*/
+
+#define i_img_color_channels(im) (i_img_has_alpha(im) ? (im)->channels - 1 : (im)->channels)
+
+#endif
# Image Implementation
+ # Image Information
+
# Image quantization
# Logging
=for comment
-From: File filters.c
+From: File filters.im
=item i_new_fill_hatch(fg, bg, combine, hatch, cust_hatch, dx, dy)
From: File image.c
+=back
+
+=head2 Image Information
+
+=over
+
+=item i_img_color_channels(im)
+
+
+The number of channels holding color information.
+
+
+=for comment
+From: File immacros.h
+
+=item i_img_has_alpha(im)
+
+
+Return true if the image has an alpha channel.
+
+
+=for comment
+From: File immacros.h
+
+
=back
=head2 Image quantization
fountain Yes
gaussian Yes
gradgen No
- hardinvert No
+ hardinvert Yes
mosaic No
postlevels No
radnoise No