X-Git-Url: http://git.imager.perl.org/imager.git/blobdiff_plain/b0950e71537ef6d4cc52fbc63637754cf11662dd..b96f5e9e574301854c7f78f3f55a40f3cc5e85e9:/image.c diff --git a/image.c b/image.c index 4fd56b4a..56057e87 100644 --- a/image.c +++ b/image.c @@ -1,6 +1,7 @@ -#include "image.h" -#include "imagei.h" -#include "io.h" +#define IMAGER_NO_CONTEXT + +#include "imager.h" +#include "imageri.h" /* =head1 NAME @@ -13,7 +14,7 @@ image.c - implements most of the basic functions of Imager and much of the rest i_color *c; c = i_color_new(red, green, blue, alpha); ICL_DESTROY(c); - i = i_img_new(); + i = i_img_8_new(); i_img_destroy(i); // and much more @@ -31,6 +32,8 @@ Some of these functions are internal. =cut */ +im_context_t (*im_get_context)(void) = NULL; + #define XAXIS 0 #define YAXIS 1 #define XYAXIS 2 @@ -38,20 +41,61 @@ Some of these functions are internal. #define minmax(a,b,i) ( ((a>=i)?a: ( (b<=i)?b:i )) ) /* Hack around an obscure linker bug on solaris - probably due to builtin gcc thingies */ -static void fake(void) { ceil(1); } - -static int i_ppix_d(i_img *im, int x, int y, i_color *val); -static int i_gpix_d(i_img *im, int x, int y, i_color *val); -static int i_glin_d(i_img *im, int l, int r, int y, i_color *vals); -static int i_plin_d(i_img *im, int l, int r, int y, i_color *vals); -static int i_ppixf_d(i_img *im, int x, int y, i_fcolor *val); -static int i_gpixf_d(i_img *im, int x, int y, i_fcolor *val); -static int i_glinf_d(i_img *im, int l, int r, int y, i_fcolor *vals); -static int i_plinf_d(i_img *im, int l, int r, int y, i_fcolor *vals); -static int i_gsamp_d(i_img *im, int l, int r, int y, i_sample_t *samps, const int *chans, int chan_count); -static int i_gsampf_d(i_img *im, int l, int r, int y, i_fsample_t *samps, const int *chans, int chan_count); -/*static int i_psamp_d(i_img *im, int l, int r, int y, i_sample_t *samps, int *chans, int chan_count); - static int i_psampf_d(i_img *im, int l, int r, int y, i_fsample_t *samps, int *chans, int chan_count);*/ +void i_linker_bug_fake(void) { ceil(1); } + +/* +=item i_img_alloc() +=category Image Implementation + +Allocates a new i_img structure. + +When implementing a new image type perform the following steps in your +image object creation function: + +=over + +=item 1. + +allocate the image with i_img_alloc(). + +=item 2. + +initialize any function pointers or other data as needed, you can +overwrite the whole block if you need to. + +=item 3. + +initialize Imager's internal data by calling i_img_init() on the image +object. + +=back + +=cut +*/ + +i_img * +im_img_alloc(pIMCTX) { + return mymalloc(sizeof(i_img)); +} + +/* +=item i_img_init(C) +=category Image Implementation + +Imager internal initialization of images. + +Currently this does very little, in the future it may be used to +support threads, or color profiles. + +=cut +*/ + +void +im_img_init(pIMCTX, i_img *img) { + img->im_data = NULL; + img->context = aIMCTX; + im_context_refinc(aIMCTX, "img_init"); +} /* =item ICL_new_internal(r, g, b, a) @@ -69,15 +113,16 @@ Return a new color object with values passed to it. i_color * ICL_new_internal(unsigned char r,unsigned char g,unsigned char b,unsigned char a) { i_color *cl = NULL; + dIMCTX; - mm_log((1,"ICL_new_internal(r %d,g %d,b %d,a %d)\n", r, g, b, a)); + im_log((aIMCTX,1,"ICL_new_internal(r %d,g %d,b %d,a %d)\n", r, g, b, a)); - if ( (cl=mymalloc(sizeof(i_color))) == NULL) m_fatal(2,"malloc() error\n"); + if ( (cl=mymalloc(sizeof(i_color))) == NULL) im_fatal(aIMCTX, 2,"malloc() error\n"); cl->rgba.r = r; cl->rgba.g = g; cl->rgba.b = b; cl->rgba.a = a; - mm_log((1,"(%p) <- ICL_new_internal\n",cl)); + im_log((aIMCTX,1,"(%p) <- ICL_new_internal\n",cl)); return cl; } @@ -98,15 +143,16 @@ ICL_new_internal(unsigned char r,unsigned char g,unsigned char b,unsigned char a i_color * ICL_set_internal(i_color *cl,unsigned char r,unsigned char g,unsigned char b,unsigned char a) { - mm_log((1,"ICL_set_internal(cl* %p,r %d,g %d,b %d,a %d)\n",cl,r,g,b,a)); + dIMCTX; + im_log((aIMCTX,1,"ICL_set_internal(cl* %p,r %d,g %d,b %d,a %d)\n",cl,r,g,b,a)); if (cl == NULL) if ( (cl=mymalloc(sizeof(i_color))) == NULL) - m_fatal(2,"malloc() error\n"); + im_fatal(aIMCTX, 2,"malloc() error\n"); cl->rgba.r=r; cl->rgba.g=g; cl->rgba.b=b; cl->rgba.a=a; - mm_log((1,"(%p) <- ICL_set_internal\n",cl)); + im_log((aIMCTX,1,"(%p) <- ICL_set_internal\n",cl)); return cl; } @@ -143,9 +189,10 @@ Dump color information to log - strictly for debugging. */ void -ICL_info(i_color *cl) { - mm_log((1,"i_color_info(cl* %p)\n",cl)); - mm_log((1,"i_color_info: (%d,%d,%d,%d)\n",cl->rgba.r,cl->rgba.g,cl->rgba.b,cl->rgba.a)); +ICL_info(i_color const *cl) { + dIMCTX; + im_log((aIMCTX, 1,"i_color_info(cl* %p)\n",cl)); + im_log((aIMCTX, 1,"i_color_info: (%d,%d,%d,%d)\n",cl->rgba.r,cl->rgba.g,cl->rgba.b,cl->rgba.a)); } /* @@ -160,7 +207,8 @@ Destroy ancillary data for Color object. void ICL_DESTROY(i_color *cl) { - mm_log((1,"ICL_DESTROY(cl* %p)\n",cl)); + dIMCTX; + im_log((aIMCTX, 1,"ICL_DESTROY(cl* %p)\n",cl)); myfree(cl); } @@ -171,15 +219,16 @@ ICL_DESTROY(i_color *cl) { */ i_fcolor *i_fcolor_new(double r, double g, double b, double a) { i_fcolor *cl = NULL; + dIMCTX; - mm_log((1,"i_fcolor_new(r %g,g %g,b %g,a %g)\n", r, g, b, a)); + im_log((aIMCTX, 1,"i_fcolor_new(r %g,g %g,b %g,a %g)\n", r, g, b, a)); - if ( (cl=mymalloc(sizeof(i_fcolor))) == NULL) m_fatal(2,"malloc() error\n"); + if ( (cl=mymalloc(sizeof(i_fcolor))) == NULL) im_fatal(aIMCTX, 2,"malloc() error\n"); cl->rgba.r = r; cl->rgba.g = g; cl->rgba.b = b; cl->rgba.a = a; - mm_log((1,"(%p) <- i_fcolor_new\n",cl)); + im_log((aIMCTX, 1,"(%p) <- i_fcolor_new\n",cl)); return cl; } @@ -193,193 +242,6 @@ void i_fcolor_destroy(i_fcolor *cl) { myfree(cl); } -/* -=item IIM_base_8bit_direct (static) - -A static i_img object used to initialize direct 8-bit per sample images. - -=cut -*/ -static i_img IIM_base_8bit_direct = -{ - 0, /* channels set */ - 0, 0, 0, /* xsize, ysize, bytes */ - ~0U, /* ch_mask */ - i_8_bits, /* bits */ - i_direct_type, /* type */ - 0, /* virtual */ - NULL, /* idata */ - { 0, 0, NULL }, /* tags */ - NULL, /* ext_data */ - - i_ppix_d, /* i_f_ppix */ - i_ppixf_d, /* i_f_ppixf */ - i_plin_d, /* i_f_plin */ - i_plinf_d, /* i_f_plinf */ - i_gpix_d, /* i_f_gpix */ - i_gpixf_d, /* i_f_gpixf */ - i_glin_d, /* i_f_glin */ - i_glinf_d, /* i_f_glinf */ - i_gsamp_d, /* i_f_gsamp */ - i_gsampf_d, /* i_f_gsampf */ - - NULL, /* i_f_gpal */ - NULL, /* i_f_ppal */ - NULL, /* i_f_addcolors */ - NULL, /* i_f_getcolors */ - NULL, /* i_f_colorcount */ - NULL, /* i_f_maxcolors */ - NULL, /* i_f_findcolor */ - NULL, /* i_f_setcolors */ - - NULL, /* i_f_destroy */ -}; - -/*static void set_8bit_direct(i_img *im) { - im->i_f_ppix = i_ppix_d; - im->i_f_ppixf = i_ppixf_d; - im->i_f_plin = i_plin_d; - im->i_f_plinf = i_plinf_d; - im->i_f_gpix = i_gpix_d; - im->i_f_gpixf = i_gpixf_d; - im->i_f_glin = i_glin_d; - im->i_f_glinf = i_glinf_d; - im->i_f_gpal = NULL; - im->i_f_ppal = NULL; - im->i_f_addcolor = NULL; - im->i_f_getcolor = NULL; - im->i_f_colorcount = NULL; - im->i_f_findcolor = NULL; - }*/ - -/* -=item IIM_new(x, y, ch) - -Creates a new image object I pixels wide, and I pixels high with I channels. - -=cut -*/ - - -i_img * -IIM_new(int x,int y,int ch) { - i_img *im; - mm_log((1,"IIM_new(x %d,y %d,ch %d)\n",x,y,ch)); - - im=i_img_empty_ch(NULL,x,y,ch); - - mm_log((1,"(%p) <- IIM_new\n",im)); - return im; -} - - -void -IIM_DESTROY(i_img *im) { - mm_log((1,"IIM_DESTROY(im* %p)\n",im)); - i_img_destroy(im); - /* myfree(cl); */ -} - - - -/* -=item i_img_new() - -Create new image reference - notice that this isn't an object yet and -this should be fixed asap. - -=cut -*/ - - -i_img * -i_img_new() { - i_img *im; - - mm_log((1,"i_img_struct()\n")); - if ( (im=mymalloc(sizeof(i_img))) == NULL) - m_fatal(2,"malloc() error\n"); - - *im = IIM_base_8bit_direct; - im->xsize=0; - im->ysize=0; - im->channels=3; - im->ch_mask=MAXINT; - im->bytes=0; - im->idata=NULL; - - mm_log((1,"(%p) <- i_img_struct\n",im)); - return im; -} - -/* -=item i_img_empty(im, x, y) - -Re-new image reference (assumes 3 channels) - - im - Image pointer - x - xsize of destination image - y - ysize of destination image - -**FIXME** what happens if a live image is passed in here? - -Should this just call i_img_empty_ch()? - -=cut -*/ - -i_img * -i_img_empty(i_img *im,int x,int y) { - mm_log((1,"i_img_empty(*im %p, x %d, y %d)\n",im, x, y)); - return i_img_empty_ch(im, x, y, 3); -} - -/* -=item i_img_empty_ch(im, x, y, ch) - -Re-new image reference - - im - Image pointer - x - xsize of destination image - y - ysize of destination image - ch - number of channels - -=cut -*/ - -i_img * -i_img_empty_ch(i_img *im,int x,int y,int ch) { - mm_log((1,"i_img_empty_ch(*im %p, x %d, y %d, ch %d)\n", im, x, y, ch)); - - if (x < 1 || y < 1) { - i_push_error(0, "Image sizes must be positive"); - return NULL; - } - if (ch < 1 || ch > MAXCHANNELS) { - i_push_errorf(0, "channels must be between 1 and %d", MAXCHANNELS); - return NULL; - } - - if (im == NULL) - if ( (im=mymalloc(sizeof(i_img))) == NULL) - m_fatal(2,"malloc() error\n"); - - memcpy(im, &IIM_base_8bit_direct, sizeof(i_img)); - i_tags_new(&im->tags); - im->xsize = x; - im->ysize = y; - im->channels = ch; - im->ch_mask = MAXINT; - im->bytes=x*y*im->channels; - if ( (im->idata=mymalloc(im->bytes)) == NULL) m_fatal(2,"malloc() error\n"); - memset(im->idata,0,(size_t)im->bytes); - - im->ext_data = NULL; - - mm_log((1,"(%p) <- i_img_empty_ch\n",im)); - return im; -} - /* =item i_img_exorcise(im) @@ -392,7 +254,8 @@ Free image data. void i_img_exorcise(i_img *im) { - mm_log((1,"i_img_exorcise(im* 0x%x)\n",im)); + dIMCTXim(im); + im_log((aIMCTX,1,"i_img_exorcise(im* %p)\n",im)); i_tags_destroy(&im->tags); if (im->i_f_destroy) (im->i_f_destroy)(im); @@ -402,33 +265,34 @@ i_img_exorcise(i_img *im) { im->ysize = 0; im->channels = 0; - im->i_f_ppix=i_ppix_d; - im->i_f_gpix=i_gpix_d; - im->i_f_plin=i_plin_d; - im->i_f_glin=i_glin_d; im->ext_data=NULL; } /* -=item i_img_destroy(im) - -Destroy image and free data via exorcise. +=item i_img_destroy(C) +=order 90 +=category Image creation/destruction +=synopsis i_img_destroy(img) - im - Image pointer +Destroy an image object =cut */ void i_img_destroy(i_img *im) { - mm_log((1,"i_img_destroy(im %p)\n",im)); + dIMCTXim(im); + im_log((aIMCTX, 1,"i_img_destroy(im %p)\n",im)); i_img_exorcise(im); if (im) { myfree(im); } + im_context_refdec(aIMCTX, "img_destroy"); } /* =item i_img_info(im, info) +=category Image + Return image information im - Image pointer @@ -446,11 +310,14 @@ info is an array of 4 integers with the following values: void -i_img_info(i_img *im,int *info) { - mm_log((1,"i_img_info(im 0x%x)\n",im)); +i_img_info(i_img *im, i_img_dim *info) { + dIMCTXim(im); + im_log((aIMCTX,1,"i_img_info(im %p)\n",im)); if (im != NULL) { - mm_log((1,"i_img_info: xsize=%d ysize=%d channels=%d mask=%ud\n",im->xsize,im->ysize,im->channels,im->ch_mask)); - mm_log((1,"i_img_info: idata=0x%d\n",im->idata)); + im_log((aIMCTX,1,"i_img_info: xsize=%" i_DF " ysize=%" i_DF " channels=%d " + "mask=%ud\n", + i_DFc(im->xsize), i_DFc(im->ysize), im->channels,im->ch_mask)); + im_log((aIMCTX,1,"i_img_info: idata=%p\n",im->idata)); info[0] = im->xsize; info[1] = im->ysize; info[2] = im->channels; @@ -464,9 +331,15 @@ i_img_info(i_img *im,int *info) { } /* -=item i_img_setmask(im, ch_mask) +=item i_img_setmask(C, C) +=category Image Information +=synopsis // only channel 0 writable +=synopsis i_img_setmask(img, 0x01); -Set the image channel mask for I to I. +Set the image channel mask for C to C. + +The image channel mask gives some control over which channels can be +written to in the image. =cut */ @@ -475,9 +348,11 @@ i_img_setmask(i_img *im,int ch_mask) { im->ch_mask=ch_mask; } /* -=item i_img_getmask(im) +=item i_img_getmask(C) +=category Image Information +=synopsis int mask = i_img_getmask(img); -Get the image channel mask for I. +Get the image channel mask for C. =cut */ @@ -485,34 +360,67 @@ int i_img_getmask(i_img *im) { return im->ch_mask; } /* -=item i_img_getchannels(im) +=item i_img_getchannels(C) +=category Image Information +=synopsis int channels = i_img_getchannels(img); -Get the number of channels in I. +Get the number of channels in C. =cut */ int i_img_getchannels(i_img *im) { return im->channels; } +/* +=item i_img_get_width(C) +=category Image Information +=synopsis i_img_dim width = i_img_get_width(im); + +Returns the width in pixels of the image. + +=cut +*/ +i_img_dim +i_img_get_width(i_img *im) { + return im->xsize; +} + +/* +=item i_img_get_height(C) +=category Image Information +=synopsis i_img_dim height = i_img_get_height(im); + +Returns the height in pixels of the image. +=cut +*/ +i_img_dim +i_img_get_height(i_img *im) { + return im->ysize; +} /* -=item i_copyto_trans(im, src, x1, y1, x2, y2, tx, ty, trans) +=item i_copyto_trans(C, C, C, C, C, C, C, C, C) + +=category Image -(x1,y1) (x2,y2) specifies the region to copy (in the source coordinates) -(tx,ty) specifies the upper left corner for the target image. -pass NULL in trans for non transparent i_colors. +(C,C) (C,C) specifies the region to copy (in the +source coordinates) (C,C) specifies the upper left corner for +the target image. pass NULL in C for non transparent i_colors. =cut */ void -i_copyto_trans(i_img *im,i_img *src,int x1,int y1,int x2,int y2,int tx,int ty,i_color *trans) { +i_copyto_trans(i_img *im,i_img *src,i_img_dim x1,i_img_dim y1,i_img_dim x2,i_img_dim y2,i_img_dim tx,i_img_dim ty,const i_color *trans) { i_color pv; - int x,y,t,ttx,tty,tt,ch; + i_img_dim x,y,t,ttx,tty,tt; + int ch; + dIMCTXim(im); - mm_log((1,"i_copyto_trans(im* %p,src 0x%x, x1 %d, y1 %d, x2 %d, y2 %d, tx %d, ty %d, trans* 0x%x)\n", - im, src, x1, y1, x2, y2, tx, ty, trans)); + im_log((aIMCTX, 1,"i_copyto_trans(im* %p,src %p, p1(" i_DFp "), p2(" i_DFp "), " + "to(" i_DFp "), trans* %p)\n", + im, src, i_DFcp(x1, y1), i_DFcp(x2, y2), i_DFcp(tx, ty), trans)); if (x2 x2 or y1 > y2 then the corresponding co-ordinates are swapped. - -=cut -*/ +=category Image -void -i_copyto(i_img *im, i_img *src, int x1, int y1, int x2, int y2, int tx, int ty) { - int x, y, t, ttx, tty; - - if (x2bits == i_8_bits) { - i_color pv; - tty = ty; - for(y=y1; y. -/* -=item i_copy(im, src) +Tags are not copied, only the image data. -Copies the contents of the image I over the image I. +Returns: i_img * =cut */ -void -i_copy(i_img *im, i_img *src) { - int y, y1, x1; +i_img * +i_copy(i_img *src) { + i_img_dim y, y1, x1; + dIMCTXim(src); + i_img *im = i_sametype(src, src->xsize, src->ysize); - mm_log((1,"i_copy(im* %p,src %p)\n", im, src)); + im_log((aIMCTX,1,"i_copy(src %p)\n", src)); + + if (!im) + return NULL; x1 = src->xsize; y1 = src->ysize; if (src->type == i_direct_type) { if (src->bits == i_8_bits) { i_color *pv; - i_img_empty_ch(im, x1, y1, src->channels); pv = mymalloc(sizeof(i_color) * x1); for (y = 0; y < y1; ++y) { @@ -616,14 +484,6 @@ i_copy(i_img *im, i_img *src) { } else { i_fcolor *pv; - if (src->bits == i_16_bits) - i_img_16_new_low(im, x1, y1, src->channels); - else if (src->bits == i_double_bits) - i_img_double_new_low(im, x1, y1, src->channels); - else { - fprintf(stderr, "i_copy(): Unknown image bit size %d\n", src->bits); - return; /* I dunno */ - } pv = mymalloc(sizeof(i_fcolor) * x1); for (y = 0; y < y1; ++y) { @@ -634,20 +494,8 @@ i_copy(i_img *im, i_img *src) { } } else { - i_color temp; - int index; - int count; i_palidx *vals; - /* paletted image */ - i_img_pal_new_low(im, x1, y1, src->channels, i_maxcolors(src)); - /* copy across the palette */ - count = i_colorcount(src); - for (index = 0; index < count; ++index) { - i_getcolors(src, index, &temp, 1); - i_addcolors(im, &temp, 1); - } - vals = mymalloc(sizeof(i_palidx) * x1); for (y = 0; y < y1; ++y) { i_gpal(src, 0, x1, y, vals); @@ -655,217 +503,16 @@ i_copy(i_img *im, i_img *src) { } myfree(vals); } -} - - -/* -=item i_rubthru(im, src, tx, ty, src_minx, src_miny, src_maxx, src_maxy ) - -Takes the sub image I and -overlays it at (I,I) on the image object. - -The alpha channel of each pixel in I is used to control how much -the existing colour in I is replaced, if it is 255 then the colour -is completely replaced, if it is 0 then the original colour is left -unmodified. - -=cut -*/ - -int -i_rubthru(i_img *im, i_img *src, int tx, int ty, int src_minx, int src_miny, - int src_maxx, int src_maxy) { - int x, y, ttx, tty; - int chancount; - int chans[3]; - int alphachan; - int ch; - - mm_log((1,"i_rubthru(im %p, src %p, tx %d, ty %d, src_minx %d, " - "src_miny %d, src_maxx %d, src_maxy %d)\n", - im, src, tx, ty, src_minx, src_miny, src_maxx, src_maxy)); - i_clear_error(); - - if (im->channels == 3 && src->channels == 4) { - chancount = 3; - chans[0] = 0; chans[1] = 1; chans[2] = 2; - alphachan = 3; - } - else if (im->channels == 3 && src->channels == 2) { - chancount = 3; - chans[0] = chans[1] = chans[2] = 0; - alphachan = 1; - } - else if (im->channels == 1 && src->channels == 2) { - chancount = 1; - chans[0] = 0; - alphachan = 1; - } - else { - i_push_error(0, "rubthru can only work where (dest, src) channels are (3,4), (3,2) or (1,2)"); - return 0; - } - - if (im->bits <= 8) { - /* if you change this code, please make sure the else branch is - changed in a similar fashion - TC */ - int alpha; - i_color pv, orig, dest; - tty = ty; - for(y = src_miny; y < src_maxy; y++) { - ttx = tx; - for(x = src_minx; x < src_maxx; x++) { - i_gpix(src, x, y, &pv); - i_gpix(im, ttx, tty, &orig); - alpha = pv.channel[alphachan]; - for (ch = 0; ch < chancount; ++ch) { - dest.channel[ch] = (alpha * pv.channel[chans[ch]] - + (255 - alpha) * orig.channel[ch])/255; - } - i_ppix(im, ttx, tty, &dest); - ttx++; - } - tty++; - } - } - else { - double alpha; - i_fcolor pv, orig, dest; - - tty = ty; - for(y = src_miny; y < src_maxy; y++) { - ttx = tx; - for(x = src_minx; x < src_maxx; x++) { - i_gpixf(src, x, y, &pv); - i_gpixf(im, ttx, tty, &orig); - alpha = pv.channel[alphachan]; - for (ch = 0; ch < chancount; ++ch) { - dest.channel[ch] = alpha * pv.channel[chans[ch]] - + (1 - alpha) * orig.channel[ch]; - } - i_ppixf(im, ttx, tty, &dest); - ttx++; - } - tty++; - } - } - return 1; + return im; } - /* -=item i_flipxy(im, axis) - -Flips the image inplace around the axis specified. -Returns 0 if parameters are invalid. - im - Image pointer - axis - 0 = x, 1 = y, 2 = both +http://en.wikipedia.org/wiki/Lanczos_resampling -=cut */ -undef_int -i_flipxy(i_img *im, int direction) { - int x, x2, y, y2, xm, ym; - int xs = im->xsize; - int ys = im->ysize; - - mm_log((1, "i_flipxy(im %p, direction %d)\n", im, direction )); - - if (!im) return 0; - - switch (direction) { - case XAXIS: /* Horizontal flip */ - xm = xs/2; - ym = ys; - for(y=0; y == 0) or the y-axis (I == 1). */ i_img* -i_scaleaxis(i_img *im, float Value, int Axis) { - int hsize, vsize, i, j, k, l, lMax, iEnd, jEnd; - int LanczosWidthFactor; - float *l0, *l1, OldLocation; - int T; - float t; +i_scaleaxis(i_img *im, double Value, int Axis) { + i_img_dim hsize, vsize, i, j, k, l, lMax, iEnd, jEnd; + i_img_dim LanczosWidthFactor; + float *l0, *l1; + double OldLocation; + i_img_dim T; + double t; float F, PictureValue[MAXCHANNELS]; short psave; i_color val,val1,val2; i_img *new_img; + int has_alpha = i_img_has_alpha(im); + int color_chans = i_img_color_channels(im); + dIMCTXim(im); - mm_log((1,"i_scaleaxis(im %p,Value %.2f,Axis %d)\n",im,Value,Axis)); - + i_clear_error(); + im_log((aIMCTX, 1,"i_scaleaxis(im %p,Value %.2f,Axis %d)\n",im,Value,Axis)); if (Axis == XAXIS) { - hsize = (int)(0.5 + im->xsize * Value); + hsize = (i_img_dim)(0.5 + im->xsize * Value); if (hsize < 1) { hsize = 1; Value = 1.0 / im->xsize; @@ -916,7 +567,7 @@ i_scaleaxis(i_img *im, float Value, int Axis) { iEnd = vsize; } else { hsize = im->xsize; - vsize = (int)(0.5 + im->ysize * Value); + vsize = (i_img_dim)(0.5 + im->ysize * Value); if (vsize < 1) { vsize = 1; @@ -927,19 +578,23 @@ i_scaleaxis(i_img *im, float Value, int Axis) { iEnd = hsize; } - new_img = i_img_empty_ch(NULL, hsize, vsize, im->channels); + new_img = i_img_8_new(hsize, vsize, im->channels); + if (!new_img) { + i_push_error(0, "cannot create output image"); + return NULL; + } /* 1.4 is a magic number, setting it to 2 will cause rather blurred images */ - LanczosWidthFactor = (Value >= 1) ? 1 : (int) (1.4/Value); + LanczosWidthFactor = (Value >= 1) ? 1 : (i_img_dim) (1.4/Value); lMax = LanczosWidthFactor << 1; l0 = mymalloc(lMax * sizeof(float)); l1 = mymalloc(lMax * sizeof(float)); for (j=0; jchannels; k++) PictureValue[k] = 0.0; for (l=0; l= im->xsize) ? im->xsize-1 : Mx; i_gpix(im, Mx, i, &val1); i_gpix(im, mx, i, &val2); - - for (k=0; kchannels; k++) { - PictureValue[k] += l1[l] * val1.channel[k]; - PictureValue[k] += l0[lMax-l-1] * val2.channel[k]; + + if (has_alpha) { + i_sample_t alpha1 = val1.channel[color_chans]; + i_sample_t alpha2 = val2.channel[color_chans]; + for (k=0; k < color_chans; k++) { + PictureValue[k] += l1[l] * val1.channel[k] * alpha1 / 255; + PictureValue[k] += l0[lMax-l-1] * val2.channel[k] * alpha2 / 255; + } + PictureValue[color_chans] += l1[l] * val1.channel[color_chans]; + PictureValue[color_chans] += l0[lMax-l-1] * val2.channel[color_chans]; + } + else { + for (k=0; kchannels; k++) { + PictureValue[k] += l1[l] * val1.channel[k]; + PictureValue[k] += l0[lMax-l-1] * val2.channel[k]; + } + } + } + + if (has_alpha) { + float fa = PictureValue[color_chans] / LanczosWidthFactor; + int alpha = minmax(0, 255, fa+0.5); + if (alpha) { + for (k = 0; k < color_chans; ++k) { + psave = (short)(0.5+(PictureValue[k] / LanczosWidthFactor * 255 / fa)); + val.channel[k]=minmax(0,255,psave); + } + val.channel[color_chans] = alpha; + } + else { + /* zero alpha, so the pixel has no color */ + for (k = 0; k < im->channels; ++k) + val.channel[k] = 0; } } - for(k=0;kchannels;k++) { - psave = (short)(0.5+(PictureValue[k] / LanczosWidthFactor)); - val.channel[k]=minmax(0,255,psave); + else { + for(k=0;kchannels;k++) { + psave = (short)(0.5+(PictureValue[k] / LanczosWidthFactor)); + val.channel[k]=minmax(0,255,psave); + } } i_ppix(new_img, j, i, &val); } @@ -989,21 +675,50 @@ i_scaleaxis(i_img *im, float Value, int Axis) { for (i=0; ichannels; k++) PictureValue[k] = 0.0; for (l=0; l < lMax; l++) { - int mx = T-lMax+l+1; - int Mx = T+l+1; + i_img_dim mx = T-lMax+l+1; + i_img_dim Mx = T+l+1; mx = (mx < 0) ? 0 : mx; Mx = (Mx >= im->ysize) ? im->ysize-1 : Mx; i_gpix(im, i, Mx, &val1); i_gpix(im, i, mx, &val2); - for (k=0; kchannels; k++) { - PictureValue[k] += l1[l] * val1.channel[k]; - PictureValue[k] += l0[lMax-l-1] * val2.channel[k]; + if (has_alpha) { + i_sample_t alpha1 = val1.channel[color_chans]; + i_sample_t alpha2 = val2.channel[color_chans]; + for (k=0; k < color_chans; k++) { + PictureValue[k] += l1[l] * val1.channel[k] * alpha1 / 255; + PictureValue[k] += l0[lMax-l-1] * val2.channel[k] * alpha2 / 255; + } + PictureValue[color_chans] += l1[l] * val1.channel[color_chans]; + PictureValue[color_chans] += l0[lMax-l-1] * val2.channel[color_chans]; + } + else { + for (k=0; kchannels; k++) { + PictureValue[k] += l1[l] * val1.channel[k]; + PictureValue[k] += l0[lMax-l-1] * val2.channel[k]; + } } } - for (k=0; kchannels; k++) { - psave = (short)(0.5+(PictureValue[k] / LanczosWidthFactor)); - val.channel[k] = minmax(0, 255, psave); + if (has_alpha) { + float fa = PictureValue[color_chans] / LanczosWidthFactor; + int alpha = minmax(0, 255, fa+0.5); + if (alpha) { + for (k = 0; k < color_chans; ++k) { + psave = (short)(0.5+(PictureValue[k] / LanczosWidthFactor * 255 / fa)); + val.channel[k]=minmax(0,255,psave); + } + val.channel[color_chans] = alpha; + } + else { + for (k = 0; k < im->channels; ++k) + val.channel[k] = 0; + } + } + else { + for(k=0;kchannels;k++) { + psave = (short)(0.5+(PictureValue[k] / LanczosWidthFactor)); + val.channel[k]=minmax(0,255,psave); + } } i_ppix(new_img, i, j, &val); } @@ -1013,7 +728,7 @@ i_scaleaxis(i_img *im, float Value, int Axis) { myfree(l0); myfree(l1); - mm_log((1,"(%p) <- i_scaleaxis\n", new_img)); + im_log((aIMCTX, 1,"(%p) <- i_scaleaxis\n", new_img)); return new_img; } @@ -1031,39 +746,44 @@ nothing is gained by doing it in two steps i_img* -i_scale_nn(i_img *im, float scx, float scy) { +i_scale_nn(i_img *im, double scx, double scy) { - int nxsize,nysize,nx,ny; + i_img_dim nxsize,nysize,nx,ny; i_img *new_img; i_color val; + dIMCTXim(im); - mm_log((1,"i_scale_nn(im 0x%x,scx %.2f,scy %.2f)\n",im,scx,scy)); + im_log((aIMCTX, 1,"i_scale_nn(im %p,scx %.2f,scy %.2f)\n",im,scx,scy)); - nxsize = (int) ((float) im->xsize * scx); + nxsize = (i_img_dim) ((double) im->xsize * scx); if (nxsize < 1) { nxsize = 1; - scx = 1 / im->xsize; + scx = 1.0 / im->xsize; } - nysize = (int) ((float) im->ysize * scy); + nysize = (i_img_dim) ((double) im->ysize * scy); if (nysize < 1) { nysize = 1; - scy = 1 / im->ysize; + scy = 1.0 / im->ysize; } + im_assert(scx != 0 && scy != 0); new_img=i_img_empty_ch(NULL,nxsize,nysize,im->channels); for(ny=0;ny, C, C) + +=category Image creation/destruction +=synopsis i_img *img = i_sametype(src, width, height); Returns an image of the same type (sample size, channels, paletted/direct). @@ -1072,7 +792,10 @@ For paletted images the palette is copied from the source. =cut */ -i_img *i_sametype(i_img *src, int xsize, int ysize) { +i_img * +i_sametype(i_img *src, i_img_dim xsize, i_img_dim ysize) { + dIMCTXim(src); + if (src->type == i_direct_type) { if (src->bits == 8) { return i_img_empty_ch(NULL, xsize, ysize, src->channels); @@ -1103,7 +826,10 @@ i_img *i_sametype(i_img *src, int xsize, int ysize) { } /* -=item i_sametype_chans(i_img *im, int xsize, int ysize, int channels) +=item i_sametype_chans(C, C, C, C) + +=category Image creation/destruction +=synopsis i_img *img = i_sametype_chans(src, width, height, channels); Returns an image of the same type (sample size). @@ -1112,7 +838,10 @@ For paletted images the equivalent direct type is returned. =cut */ -i_img *i_sametype_chans(i_img *src, int xsize, int ysize, int channels) { +i_img * +i_sametype_chans(i_img *src, i_img_dim xsize, i_img_dim ysize, int channels) { + dIMCTXim(src); + if (src->bits == 8) { return i_img_empty_ch(NULL, xsize, ysize, channels); } @@ -1150,11 +879,12 @@ The operators for this function are defined in L. i_img* i_transform(i_img *im, int *opx,int opxl,int *opy,int opyl,double parm[],int parmlen) { double rx,ry; - int nxsize,nysize,nx,ny; + i_img_dim nxsize,nysize,nx,ny; i_img *new_img; i_color val; + dIMCTXim(im); - mm_log((1,"i_transform(im 0x%x, opx 0x%x, opxl %d, opy 0x%x, opyl %d, parm 0x%x, parmlen %d)\n",im,opx,opxl,opy,opyl,parm,parmlen)); + im_log((aIMCTX, 1,"i_transform(im %p, opx %p, opxl %d, opy %p, opyl %d, parm %p, parmlen %d)\n",im,opx,opxl,opy,opyl,parm,parmlen)); nxsize = im->xsize; nysize = im->ysize ; @@ -1176,7 +906,7 @@ i_transform(i_img *im, int *opx,int opxl,int *opy,int opyl,double parm[],int par i_ppix(new_img,nx,ny,&val); } - mm_log((1,"(0x%x) <- i_transform\n",new_img)); + im_log((aIMCTX, 1,"(%p) <- i_transform\n",new_img)); return new_img; } @@ -1192,19 +922,23 @@ can return zero. =cut */ + float i_img_diff(i_img *im1,i_img *im2) { - int x,y,ch,xb,yb,chb; + i_img_dim x, y, xb, yb; + int ch, chb; float tdiff; i_color val1,val2; + dIMCTXim(im1); - mm_log((1,"i_img_diff(im1 0x%x,im2 0x%x)\n",im1,im2)); + im_log((aIMCTX, 1,"i_img_diff(im1 %p,im2 %p)\n",im1,im2)); xb=(im1->xsizexsize)?im1->xsize:im2->xsize; yb=(im1->ysizeysize)?im1->ysize:im2->ysize; chb=(im1->channelschannels)?im1->channels:im2->channels; - mm_log((1,"i_img_diff: xb=%d xy=%d chb=%d\n",xb,yb,chb)); + im_log((aIMCTX, 1,"i_img_diff: b=(" i_DFp ") chb=%d\n", + i_DFcp(xb,yb), chb)); tdiff=0; for(y=0;yxsize; - my=im->ysize; - fx=(mx+1)/2; - fy=(my+1)/2; +Calculates the sum of the squares of the differences between +correspoding channels in two images. +If the images are not the same size then only the common area is +compared, hence even if images are different sizes this function +can return zero. - /* horizontal pass */ - - new_img=i_img_empty_ch(NULL,fx*2,fy*2,im->channels); - new_img2=i_img_empty_ch(NULL,fx*2,fy*2,im->channels); - - c=0; - for(y=0;ychannels;ch++) { - dval1.channel[ch]=(val1.channel[ch]+val2.channel[ch])/2; - dval2.channel[ch]=(255+val1.channel[ch]-val2.channel[ch])/2; - } - i_ppix(new_img,x,y,&dval1); - i_ppix(new_img,x+fx,y,&dval2); - } - - for(y=0;ychannels;ch++) { - dval1.channel[ch]=(val1.channel[ch]+val2.channel[ch])/2; - dval2.channel[ch]=(255+val1.channel[ch]-val2.channel[ch])/2; - } - i_ppix(new_img2,x,y,&dval1); - i_ppix(new_img2,x,y+fy,&dval2); - } - - i_img_destroy(new_img); - return new_img2; -} - -/* -=item i_count_colors(im, maxc) - -returns number of colors or -1 -to indicate that it was more than max colors +This is like i_img_diff() but looks at floating point samples instead. =cut */ -int -i_count_colors(i_img *im,int maxc) { - struct octt *ct; - int x,y; - int xsize,ysize; - i_color val; - int colorcnt; - - mm_log((1,"i_count_colors(im 0x%08X,maxc %d)\n")); - - xsize=im->xsize; - ysize=im->ysize; - ct=octt_new(); - - colorcnt=0; - for(y=0;y maxc) { octt_delete(ct); return -1; } - } - octt_delete(ct); - return colorcnt; -} -/* -=back +double +i_img_diffd(i_img *im1,i_img *im2) { + i_img_dim x, y, xb, yb; + int ch, chb; + double tdiff; + i_fcolor val1,val2; + dIMCTXim(im1); -=head2 8-bit per sample image internal functions + im_log((aIMCTX, 1,"i_img_diffd(im1 %p,im2 %p)\n",im1,im2)); -These are the functions installed in an 8-bit per sample image. - -=over - -=item i_ppix_d(im, x, y, col) - -Internal function. + xb=(im1->xsizexsize)?im1->xsize:im2->xsize; + yb=(im1->ysizeysize)?im1->ysize:im2->ysize; + chb=(im1->channelschannels)?im1->channels:im2->channels; -This is the function kept in the i_f_ppix member of an i_img object. -It does a normal store of a pixel into the image with range checking. + im_log((aIMCTX, 1,"i_img_diffd: b(" i_DFp ") chb=%d\n", + i_DFcp(xb, yb), chb)); -Returns 0 if the pixel could be set, -1 otherwise. + tdiff=0; + for(y=0;y-1 && xxsize && y>-1 && yysize ) { - for(ch=0;chchannels;ch++) - if (im->ch_mask&(1<idata[(x+y*im->xsize)*im->channels+ch]=val->channel[ch]; - return 0; + for(ch=0;ch-1 && xxsize && y>-1 && yysize) { - for(ch=0;chchannels;ch++) - val->channel[ch]=im->idata[(x+y*im->xsize)*im->channels+ch]; - return 0; - } - for(ch=0;chchannels;ch++) val->channel[ch] = 0; - return -1; /* error was cliped */ + return tdiff; } -/* -=item i_glin_d(im, l, r, y, vals) - -Reads a line of data from the image, storing the pixels at vals. - -The line runs from (l,y) inclusive to (r,y) non-inclusive - -vals should point at space for (r-l) pixels. - -l should never be less than zero (to avoid confusion about where to -put the pixels in vals). - -Returns the number of pixels copied (eg. if r, l or y is out of range) - -=cut -*/ -static int -i_glin_d(i_img *im, int l, int r, int y, i_color *vals) { - int ch, count, i; - unsigned char *data; - if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) { - if (r > im->xsize) - r = im->xsize; - data = im->idata + (l+y*im->xsize) * im->channels; - count = r - l; - for (i = 0; i < count; ++i) { - for (ch = 0; ch < im->channels; ++ch) - vals[i].channel[ch] = *data++; - } - return count; - } - else { - return 0; - } -} +i_img_samef(i_img *im1,i_img *im2, double epsilon, char const *what) { + i_img_dim x,y,xb,yb; + int ch, chb; + i_fcolor val1,val2; + dIMCTXim(im1); -/* -=item i_plin_d(im, l, r, y, vals) - -Writes a line of data into the image, using the pixels at vals. - -The line runs from (l,y) inclusive to (r,y) non-inclusive + if (what == NULL) + what = "(null)"; -vals should point at (r-l) pixels. + im_log((aIMCTX,1,"i_img_samef(im1 %p,im2 %p, epsilon %g, what '%s')\n", im1, im2, epsilon, what)); -l should never be less than zero (to avoid confusion about where to -get the pixels in vals). + xb=(im1->xsizexsize)?im1->xsize:im2->xsize; + yb=(im1->ysizeysize)?im1->ysize:im2->ysize; + chb=(im1->channelschannels)?im1->channels:im2->channels; -Returns the number of pixels copied (eg. if r, l or y is out of range) + im_log((aIMCTX, 1,"i_img_samef: b(" i_DFp ") chb=%d\n", + i_DFcp(xb, yb), chb)); -=cut -*/ -static -int -i_plin_d(i_img *im, int l, int r, int y, i_color *vals) { - int ch, count, i; - unsigned char *data; - if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) { - if (r > im->xsize) - r = im->xsize; - data = im->idata + (l+y*im->xsize) * im->channels; - count = r - l; - for (i = 0; i < count; ++i) { - for (ch = 0; ch < im->channels; ++ch) { - if (im->ch_mask & (1 << ch)) - *data = vals[i].channel[ch]; - ++data; + for(y = 0; y < yb; y++) { + for(x = 0; x < xb; x++) { + i_gpixf(im1, x, y, &val1); + i_gpixf(im2, x, y, &val2); + + for(ch = 0; ch < chb; ch++) { + double sdiff = val1.channel[ch] - val2.channel[ch]; + if (fabs(sdiff) > epsilon) { + im_log((aIMCTX, 1,"i_img_samef <- different %g @(" i_DFp ")\n", + sdiff, i_DFcp(x, y))); + return 0; + } } } - return count; - } - else { - return 0; } + im_log((aIMCTX, 1,"i_img_samef <- same\n")); + + return 1; } -/* -=item i_ppixf_d(im, x, y, val) +/* just a tiny demo of haar wavelets */ -=cut -*/ -static -int -i_ppixf_d(i_img *im, int x, int y, i_fcolor *val) { - int ch; +i_img* +i_haar(i_img *im) { + i_img_dim mx,my; + i_img_dim fx,fy; + i_img_dim x,y; + int ch,c; + i_img *new_img,*new_img2; + i_color val1,val2,dval1,dval2; + dIMCTXim(im); - if ( x>-1 && xxsize && y>-1 && yysize ) { - for(ch=0;chchannels;ch++) - if (im->ch_mask&(1<idata[(x+y*im->xsize)*im->channels+ch] = - SampleFTo8(val->channel[ch]); - } - return 0; - } - return -1; /* error was clipped */ -} + mx=im->xsize; + my=im->ysize; + fx=(mx+1)/2; + fy=(my+1)/2; -/* -=item i_gpixf_d(im, x, y, val) -=cut -*/ -static -int -i_gpixf_d(i_img *im, int x, int y, i_fcolor *val) { - int ch; - if (x>-1 && xxsize && y>-1 && yysize) { + /* horizontal pass */ + + new_img=i_img_empty_ch(NULL,fx*2,fy*2,im->channels); + new_img2=i_img_empty_ch(NULL,fx*2,fy*2,im->channels); + + c=0; + for(y=0;ychannels;ch++) { - val->channel[ch] = - Sample8ToF(im->idata[(x+y*im->xsize)*im->channels+ch]); + dval1.channel[ch]=(val1.channel[ch]+val2.channel[ch])/2; + dval2.channel[ch]=(255+val1.channel[ch]-val2.channel[ch])/2; } - return 0; + i_ppix(new_img,x,y,&dval1); + i_ppix(new_img,x+fx,y,&dval2); } - return -1; /* error was cliped */ -} - -/* -=item i_glinf_d(im, l, r, y, vals) - -Reads a line of data from the image, storing the pixels at vals. -The line runs from (l,y) inclusive to (r,y) non-inclusive + for(y=0;ychannels;ch++) { + dval1.channel[ch]=(val1.channel[ch]+val2.channel[ch])/2; + dval2.channel[ch]=(255+val1.channel[ch]-val2.channel[ch])/2; + } + i_ppix(new_img2,x,y,&dval1); + i_ppix(new_img2,x,y+fy,&dval2); + } -vals should point at space for (r-l) pixels. + i_img_destroy(new_img); + return new_img2; +} -l should never be less than zero (to avoid confusion about where to -put the pixels in vals). +/* +=item i_count_colors(im, maxc) -Returns the number of pixels copied (eg. if r, l or y is out of range) +returns number of colors or -1 +to indicate that it was more than max colors =cut */ -static +/* This function has been changed and is now faster. It's using + * i_gsamp instead of i_gpix */ int -i_glinf_d(i_img *im, int l, int r, int y, i_fcolor *vals) { - int ch, count, i; - unsigned char *data; - if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) { - if (r > im->xsize) - r = im->xsize; - data = im->idata + (l+y*im->xsize) * im->channels; - count = r - l; - for (i = 0; i < count; ++i) { - for (ch = 0; ch < im->channels; ++ch) - vals[i].channel[ch] = Sample8ToF(*data++); - } - return count; +i_count_colors(i_img *im,int maxc) { + struct octt *ct; + i_img_dim x,y; + int colorcnt; + int channels[3]; + int *samp_chans; + i_sample_t * samp; + i_img_dim xsize = im->xsize; + i_img_dim ysize = im->ysize; + int samp_cnt = 3 * xsize; + + if (im->channels >= 3) { + samp_chans = NULL; } else { - return 0; + channels[0] = channels[1] = channels[2] = 0; + samp_chans = channels; } -} - -/* -=item i_plinf_d(im, l, r, y, vals) - -Writes a line of data into the image, using the pixels at vals. -The line runs from (l,y) inclusive to (r,y) non-inclusive + ct = octt_new(); -vals should point at (r-l) pixels. + samp = (i_sample_t *) mymalloc( xsize * 3 * sizeof(i_sample_t)); -l should never be less than zero (to avoid confusion about where to -get the pixels in vals). - -Returns the number of pixels copied (eg. if r, l or y is out of range) - -=cut -*/ -static -int -i_plinf_d(i_img *im, int l, int r, int y, i_fcolor *vals) { - int ch, count, i; - unsigned char *data; - if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) { - if (r > im->xsize) - r = im->xsize; - data = im->idata + (l+y*im->xsize) * im->channels; - count = r - l; - for (i = 0; i < count; ++i) { - for (ch = 0; ch < im->channels; ++ch) { - if (im->ch_mask & (1 << ch)) - *data = SampleFTo8(vals[i].channel[ch]); - ++data; + colorcnt = 0; + for(y = 0; y < ysize; ) { + i_gsamp(im, 0, xsize, y++, samp, samp_chans, 3); + for(x = 0; x < samp_cnt; ) { + colorcnt += octt_add(ct, samp[x], samp[x+1], samp[x+2]); + x += 3; + if (colorcnt > maxc) { + octt_delete(ct); + return -1; + } } - } - return count; - } - else { - return 0; } + myfree(samp); + octt_delete(ct); + return colorcnt; } -/* -=item i_gsamp_d(i_img *im, int l, int r, int y, i_sample_t *samps, int *chans, int chan_count) - -Reads sample values from im for the horizontal line (l, y) to (r-1,y) -for the channels specified by chans, an array of int with chan_count -elements. - -Returns the number of samples read (which should be (r-l) * bits_set(chan_mask) - -=cut -*/ -static -int -i_gsamp_d(i_img *im, int l, int r, int y, i_sample_t *samps, - const int *chans, int chan_count) { - int ch, count, i, w; - unsigned char *data; - - if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) { - if (r > im->xsize) - r = im->xsize; - data = im->idata + (l+y*im->xsize) * im->channels; - w = r - l; - count = 0; - - if (chans) { - /* make sure we have good channel numbers */ - for (ch = 0; ch < chan_count; ++ch) { - if (chans[ch] < 0 || chans[ch] >= im->channels) { - i_push_errorf(0, "No channel %d in this image", chans[ch]); - return 0; +/* sorts the array ra[0..n-1] into increasing order using heapsort algorithm + * (adapted from the Numerical Recipes) + */ +/* Needed by get_anonymous_color_histo */ +static void +hpsort(unsigned int n, unsigned *ra) { + unsigned int i, + ir, + j, + l, + rra; + + if (n < 2) return; + l = n >> 1; + ir = n - 1; + for(;;) { + if (l > 0) { + rra = ra[--l]; } - } - for (i = 0; i < w; ++i) { - for (ch = 0; ch < chan_count; ++ch) { - *samps++ = data[chans[ch]]; - ++count; + else { + rra = ra[ir]; + ra[ir] = ra[0]; + if (--ir == 0) { + ra[0] = rra; + break; + } } - data += im->channels; - } - } - else { - for (i = 0; i < w; ++i) { - for (ch = 0; ch < chan_count; ++ch) { - *samps++ = data[ch]; - ++count; + i = l; + j = 2 * l + 1; + while (j <= ir) { + if (j < ir && ra[j] < ra[j+1]) j++; + if (rra < ra[j]) { + ra[i] = ra[j]; + i = j; + j++; j <<= 1; j--; + } + else break; } - data += im->channels; - } + ra[i] = rra; } - - return count; - } - else { - return 0; - } } -/* -=item i_gsampf_d(i_img *im, int l, int r, int y, i_fsample_t *samps, int *chans, int chan_count) - -Reads sample values from im for the horizontal line (l, y) to (r-1,y) -for the channels specified by chan_mask, where bit 0 is the first -channel. - -Returns the number of samples read (which should be (r-l) * bits_set(chan_mask) - -=cut -*/ -static +/* This function constructs an ordered list which represents how much the + * different colors are used. So for instance (100, 100, 500) means that one + * color is used for 500 pixels, another for 100 pixels and another for 100 + * pixels. It's tuned for performance. You might not like the way I've hardcoded + * the maxc ;-) and you might want to change the name... */ +/* Uses octt_histo */ int -i_gsampf_d(i_img *im, int l, int r, int y, i_fsample_t *samps, - const int *chans, int chan_count) { - int ch, count, i, w; - unsigned char *data; - for (ch = 0; ch < chan_count; ++ch) { - if (chans[ch] < 0 || chans[ch] >= im->channels) { - i_push_errorf(0, "No channel %d in this image", chans[ch]); - } +i_get_anonymous_color_histo(i_img *im, unsigned int **col_usage, int maxc) { + struct octt *ct; + i_img_dim x,y; + int colorcnt; + unsigned int *col_usage_it; + i_sample_t * samp; + int channels[3]; + int *samp_chans; + + i_img_dim xsize = im->xsize; + i_img_dim ysize = im->ysize; + int samp_cnt = 3 * xsize; + ct = octt_new(); + + samp = (i_sample_t *) mymalloc( xsize * 3 * sizeof(i_sample_t)); + + if (im->channels >= 3) { + samp_chans = NULL; + } + else { + channels[0] = channels[1] = channels[2] = 0; + samp_chans = channels; } - if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) { - if (r > im->xsize) - r = im->xsize; - data = im->idata + (l+y*im->xsize) * im->channels; - w = r - l; - count = 0; - if (chans) { - /* make sure we have good channel numbers */ - for (ch = 0; ch < chan_count; ++ch) { - if (chans[ch] < 0 || chans[ch] >= im->channels) { - i_push_errorf(0, "No channel %d in this image", chans[ch]); - return 0; - } - } - for (i = 0; i < w; ++i) { - for (ch = 0; ch < chan_count; ++ch) { - *samps++ = Sample8ToF(data[chans[ch]]); - ++count; - } - data += im->channels; + colorcnt = 0; + for(y = 0; y < ysize; ) { + i_gsamp(im, 0, xsize, y++, samp, samp_chans, 3); + for(x = 0; x < samp_cnt; ) { + colorcnt += octt_add(ct, samp[x], samp[x+1], samp[x+2]); + x += 3; + if (colorcnt > maxc) { + octt_delete(ct); + return -1; } } - else { - for (i = 0; i < w; ++i) { - for (ch = 0; ch < chan_count; ++ch) { - *samps++ = Sample8ToF(data[ch]); - ++count; - } - data += im->channels; - } - } - return count; - } - else { - return 0; } + myfree(samp); + /* Now that we know the number of colours... */ + col_usage_it = *col_usage = (unsigned int *) mymalloc(colorcnt * sizeof(unsigned int)); + octt_histo(ct, &col_usage_it); + hpsort(colorcnt, *col_usage); + octt_delete(ct); + return colorcnt; } /* @@ -1680,12 +1242,12 @@ i_sample_t versions. =over -=item i_ppixf_fp(i_img *im, int x, int y, i_fcolor *pix) +=item i_ppixf_fp(i_img *im, i_img_dim x, i_img_dim y, i_fcolor *pix) =cut */ -int i_ppixf_fp(i_img *im, int x, int y, i_fcolor *pix) { +int i_ppixf_fp(i_img *im, i_img_dim x, i_img_dim y, const i_fcolor *pix) { i_color temp; int ch; @@ -1696,15 +1258,15 @@ int i_ppixf_fp(i_img *im, int x, int y, i_fcolor *pix) { } /* -=item i_gpixf_fp(i_img *im, int x, int y, i_fcolor *pix) +=item i_gpixf_fp(i_img *im, i_img_dim x, i_img_dim y, i_fcolor *pix) =cut */ -int i_gpixf_fp(i_img *im, int x, int y, i_fcolor *pix) { +int i_gpixf_fp(i_img *im, i_img_dim x, i_img_dim y, i_fcolor *pix) { i_color temp; int ch; - if (i_gpix(im, x, y, &temp)) { + if (i_gpix(im, x, y, &temp) == 0) { for (ch = 0; ch < im->channels; ++ch) pix->channel[ch] = Sample8ToF(temp.channel[ch]); return 0; @@ -1714,19 +1276,21 @@ int i_gpixf_fp(i_img *im, int x, int y, i_fcolor *pix) { } /* -=item i_plinf_fp(i_img *im, int l, int r, int y, i_fcolor *pix) +=item i_plinf_fp(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, i_fcolor *pix) =cut */ -int i_plinf_fp(i_img *im, int l, int r, int y, i_fcolor *pix) { +i_img_dim +i_plinf_fp(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, const i_fcolor *pix) { i_color *work; if (y >= 0 && y < im->ysize && l < im->xsize && l >= 0) { if (r > im->xsize) r = im->xsize; if (r > l) { - int ret; - int i, ch; + i_img_dim ret; + i_img_dim i; + int ch; work = mymalloc(sizeof(i_color) * (r-l)); for (i = 0; i < r-l; ++i) { for (ch = 0; ch < im->channels; ++ch) @@ -1747,19 +1311,21 @@ int i_plinf_fp(i_img *im, int l, int r, int y, i_fcolor *pix) { } /* -=item i_glinf_fp(i_img *im, int l, int r, int y, i_fcolor *pix) +=item i_glinf_fp(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, i_fcolor *pix) =cut */ -int i_glinf_fp(i_img *im, int l, int r, int y, i_fcolor *pix) { +i_img_dim +i_glinf_fp(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, i_fcolor *pix) { i_color *work; if (y >= 0 && y < im->ysize && l < im->xsize && l >= 0) { if (r > im->xsize) r = im->xsize; if (r > l) { - int ret; - int i, ch; + i_img_dim ret; + i_img_dim i; + int ch; work = mymalloc(sizeof(i_color) * (r-l)); ret = i_plin(im, l, r, y, work); for (i = 0; i < r-l; ++i) { @@ -1780,11 +1346,13 @@ int i_glinf_fp(i_img *im, int l, int r, int y, i_fcolor *pix) { } /* -=item i_gsampf_fp(i_img *im, int l, int r, int y, i_fsample_t *samp, int *chans, int chan_count) +=item i_gsampf_fp(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, i_fsample_t *samp, int *chans, int chan_count) =cut */ -int i_gsampf_fp(i_img *im, int l, int r, int y, i_fsample_t *samp, + +i_img_dim +i_gsampf_fp(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, i_fsample_t *samp, int const *chans, int chan_count) { i_sample_t *work; @@ -1792,8 +1360,8 @@ int i_gsampf_fp(i_img *im, int l, int r, int y, i_fsample_t *samp, if (r > im->xsize) r = im->xsize; if (r > l) { - int ret; - int i; + i_img_dim ret; + i_img_dim i; work = mymalloc(sizeof(i_sample_t) * (r-l)); ret = i_gsamp(im, l, r, y, work, chans, chan_count); for (i = 0; i < ret; ++i) { @@ -1823,11 +1391,11 @@ im->ext_data points at. =over -=item i_addcolors_forward(i_img *im, i_color *colors, int count) +=item i_addcolors_forward(i_img *im, const i_color *colors, int count) =cut */ -int i_addcolors_forward(i_img *im, i_color *colors, int count) { +int i_addcolors_forward(i_img *im, const i_color *colors, int count) { return i_addcolors(*(i_img **)im->ext_data, colors, count); } @@ -1841,11 +1409,11 @@ int i_getcolors_forward(i_img *im, int i, i_color *color, int count) { } /* -=item i_setcolors_forward(i_img *im, int i, i_color *color, int count) +=item i_setcolors_forward(i_img *im, int i, const i_color *color, int count) =cut */ -int i_setcolors_forward(i_img *im, int i, i_color *color, int count) { +int i_setcolors_forward(i_img *im, int i, const i_color *color, int count) { return i_setcolors(*(i_img **)im->ext_data, i, color, count); } @@ -1868,275 +1436,378 @@ int i_maxcolors_forward(i_img *im) { } /* -=item i_findcolor_forward(i_img *im, i_color *color, i_palidx *entry) +=item i_findcolor_forward(i_img *im, const i_color *color, i_palidx *entry) =cut */ -int i_findcolor_forward(i_img *im, i_color *color, i_palidx *entry) { +int i_findcolor_forward(i_img *im, const i_color *color, i_palidx *entry) { return i_findcolor(*(i_img **)im->ext_data, color, entry); } /* =back -=head2 Stream reading and writing wrapper functions +=head2 Fallback handler =over -=item i_gen_reader(i_gen_read_data *info, char *buf, int length) +=item i_gsamp_bits_fb -Performs general read buffering for file readers that permit reading -to be done through a callback. +=cut +*/ -The final callback gets two parameters, a I value, and a I -value, where I is the amount of data that the file library needs -to read, and I is the amount of space available in the buffer -maintained by these functions. +i_img_dim +i_gsamp_bits_fb(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, unsigned *samps, + const int *chans, int chan_count, int bits) { + dIMCTXim(im); -This means if you need to read from a stream that you don't know the -length of, you can return I bytes, taking the performance hit of -possibly expensive callbacks (eg. back to perl code), or if you are -reading from a stream where it doesn't matter if some data is lost, or -if the total length of the stream is known, you can return I -bytes. + if (bits < 1 || bits > 32) { + i_push_error(0, "Invalid bits, must be 1..32"); + return -1; + } -=cut -*/ + if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) { + double scale; + int ch; + i_img_dim count, i, w; + + if (bits == 32) + scale = 4294967295.0; + else + scale = (double)(1 << bits) - 1; -int -i_gen_reader(i_gen_read_data *gci, char *buf, int length) { - int total; - - if (length < gci->length - gci->cpos) { - /* simplest case */ - memcpy(buf, gci->buffer+gci->cpos, length); - gci->cpos += length; - return length; - } - - total = 0; - memcpy(buf, gci->buffer+gci->cpos, gci->length-gci->cpos); - total += gci->length - gci->cpos; - length -= gci->length - gci->cpos; - buf += gci->length - gci->cpos; - if (length < (int)sizeof(gci->buffer)) { - int did_read; - int copy_size; - while (length - && (did_read = (gci->cb)(gci->userdata, gci->buffer, length, - sizeof(gci->buffer))) > 0) { - gci->cpos = 0; - gci->length = did_read; - - copy_size = i_min(length, gci->length); - memcpy(buf, gci->buffer, copy_size); - gci->cpos += copy_size; - buf += copy_size; - total += copy_size; - length -= copy_size; + if (r > im->xsize) + r = im->xsize; + w = r - l; + count = 0; + + if (chans) { + /* make sure we have good channel numbers */ + for (ch = 0; ch < chan_count; ++ch) { + if (chans[ch] < 0 || chans[ch] >= im->channels) { + im_push_errorf(aIMCTX, 0, "No channel %d in this image", chans[ch]); + return -1; + } + } + for (i = 0; i < w; ++i) { + i_fcolor c; + i_gpixf(im, l+i, y, &c); + for (ch = 0; ch < chan_count; ++ch) { + *samps++ = (unsigned)(c.channel[ch] * scale + 0.5); + ++count; + } + } } + else { + if (chan_count <= 0 || chan_count > im->channels) { + i_push_error(0, "Invalid channel count"); + return -1; + } + for (i = 0; i < w; ++i) { + i_fcolor c; + i_gpixf(im, l+i, y, &c); + for (ch = 0; ch < chan_count; ++ch) { + *samps++ = (unsigned)(c.channel[ch] * scale + 0.5); + ++count; + } + } + } + + return count; } else { - /* just read the rest - too big for our buffer*/ - int did_read; - while ((did_read = (gci->cb)(gci->userdata, buf, length, length)) > 0) { - length -= did_read; - total += did_read; - buf += did_read; - } + i_push_error(0, "Image position outside of image"); + return -1; } - return total; } -/* -=item i_gen_read_data_new(i_read_callback_t cb, char *userdata) +struct magic_entry { + unsigned char *magic; + size_t magic_size; + char *name; + unsigned char *mask; +}; -For use by callback file readers to initialize the reader buffer. +static int +test_magic(unsigned char *buffer, size_t length, struct magic_entry const *magic) { + if (length < magic->magic_size) + return 0; + if (magic->mask) { + int i; + unsigned char *bufp = buffer, + *maskp = magic->mask, + *magicp = magic->magic; -Allocates, initializes and returns the reader buffer. + for (i = 0; i < magic->magic_size; ++i) { + int mask = *maskp == 'x' ? 0xFF : *maskp == ' ' ? 0 : *maskp; + ++maskp; -See also L and L. + if ((*bufp++ & mask) != (*magicp++ & mask)) + return 0; + } -=cut -*/ -i_gen_read_data * -i_gen_read_data_new(i_read_callback_t cb, char *userdata) { - i_gen_read_data *self = mymalloc(sizeof(i_gen_read_data)); - self->cb = cb; - self->userdata = userdata; - self->length = 0; - self->cpos = 0; - - return self; + return 1; + } + else { + return !memcmp(magic->magic, buffer, magic->magic_size); + } } /* -=item i_free_gen_read_data(i_gen_read_data *) +=item i_test_format_probe(io_glue *data, int length) -Cleans up. +Check the beginning of the supplied file for a 'magic number' =cut */ -void i_free_gen_read_data(i_gen_read_data *self) { - myfree(self); -} -/* -=item i_gen_writer(i_gen_write_data *info, char const *data, int size) +#define FORMAT_ENTRY(magic, type) \ + { (unsigned char *)(magic ""), sizeof(magic)-1, type } +#define FORMAT_ENTRY2(magic, type, mask) \ + { (unsigned char *)(magic ""), sizeof(magic)-1, type, (unsigned char *)(mask) } -Performs write buffering for a callback based file writer. +const char * +i_test_format_probe(io_glue *data, int length) { + static const struct magic_entry formats[] = { + FORMAT_ENTRY("\xFF\xD8", "jpeg"), + FORMAT_ENTRY("GIF87a", "gif"), + FORMAT_ENTRY("GIF89a", "gif"), + FORMAT_ENTRY("MM\0*", "tiff"), + FORMAT_ENTRY("II*\0", "tiff"), + FORMAT_ENTRY("BM", "bmp"), + FORMAT_ENTRY("\x89PNG\x0d\x0a\x1a\x0a", "png"), + FORMAT_ENTRY("P1", "pnm"), + FORMAT_ENTRY("P2", "pnm"), + FORMAT_ENTRY("P3", "pnm"), + FORMAT_ENTRY("P4", "pnm"), + FORMAT_ENTRY("P5", "pnm"), + FORMAT_ENTRY("P6", "pnm"), + FORMAT_ENTRY("/* XPM", "xpm"), + FORMAT_ENTRY("\x8aMNG", "mng"), + FORMAT_ENTRY("\x8aJNG", "jng"), + /* SGI RGB - with various possible parameters to avoid false positives + on similar files + values are: 2 byte magic, rle flags (0 or 1), bytes/sample (1 or 2) + */ + FORMAT_ENTRY("\x01\xDA\x00\x01", "sgi"), + FORMAT_ENTRY("\x01\xDA\x00\x02", "sgi"), + FORMAT_ENTRY("\x01\xDA\x01\x01", "sgi"), + FORMAT_ENTRY("\x01\xDA\x01\x02", "sgi"), + + FORMAT_ENTRY2("FORM ILBM", "ilbm", "xxxx xxxx"), + + /* different versions of PCX format + http://www.fileformat.info/format/pcx/ + */ + FORMAT_ENTRY("\x0A\x00\x01", "pcx"), + FORMAT_ENTRY("\x0A\x02\x01", "pcx"), + FORMAT_ENTRY("\x0A\x03\x01", "pcx"), + FORMAT_ENTRY("\x0A\x04\x01", "pcx"), + FORMAT_ENTRY("\x0A\x05\x01", "pcx"), + + /* FITS - http://fits.gsfc.nasa.gov/ */ + FORMAT_ENTRY("SIMPLE =", "fits"), + + /* PSD - Photoshop */ + FORMAT_ENTRY("8BPS\x00\x01", "psd"), + + /* EPS - Encapsulated Postscript */ + /* only reading 18 chars, so we don't include the F in EPSF */ + FORMAT_ENTRY("%!PS-Adobe-2.0 EPS", "eps"), -Failures are considered fatal, if a write fails then data will be -dropped. + /* Utah RLE */ + FORMAT_ENTRY("\x52\xCC", "utah"), -=cut -*/ -int -i_gen_writer( -i_gen_write_data *self, -char const *data, -int size) -{ - if (self->filledto && self->filledto+size > self->maxlength) { - if (self->cb(self->userdata, self->buffer, self->filledto)) { - self->filledto = 0; - } - else { - self->filledto = 0; - return 0; - } + /* GZIP compressed, only matching deflate for now */ + FORMAT_ENTRY("\x1F\x8B\x08", "gzip"), + + /* bzip2 compressed */ + FORMAT_ENTRY("BZh", "bzip2"), + + /* WEBP + http://code.google.com/speed/webp/docs/riff_container.html */ + FORMAT_ENTRY2("RIFF WEBP", "webp", "xxxx xxxx"), + + /* JPEG 2000 + This might match a little loosely */ + FORMAT_ENTRY("\x00\x00\x00\x0CjP \x0D\x0A\x87\x0A", "jp2"), + }; + static const struct magic_entry more_formats[] = { + /* these were originally both listed as ico, but cur files can + include hotspot information */ + FORMAT_ENTRY("\x00\x00\x01\x00", "ico"), /* Windows icon */ + FORMAT_ENTRY("\x00\x00\x02\x00", "cur"), /* Windows cursor */ + FORMAT_ENTRY2("\x00\x00\x00\x00\x00\x00\x00\x07", + "xwd", " xxxx"), /* X Windows Dump */ + }; + + unsigned int i; + unsigned char head[18]; + ssize_t rc; + + rc = i_io_peekn(data, head, 18); + if (rc == -1) return NULL; +#if 0 + { + int i; + fprintf(stderr, "%d bytes -", (int)rc); + for (i = 0; i < rc; ++i) + fprintf(stderr, " %02x", head[i]); + fprintf(stderr, "\n"); } - if (self->filledto+size <= self->maxlength) { - /* just save it */ - memcpy(self->buffer+self->filledto, data, size); - self->filledto += size; - return 1; +#endif + + for(i=0; iname; } - /* doesn't fit - hand it off */ - return self->cb(self->userdata, data, size); -} -/* -=item i_gen_write_data_new(i_write_callback_t cb, char *userdata, int max_length) + if ((rc == 18) && + tga_header_verify(head)) + return "tga"; -Allocates and initializes the data structure used by i_gen_writer. + for(i=0; i + if (test_magic(head, rc, entry)) + return entry->name; + } -=cut -*/ -i_gen_write_data *i_gen_write_data_new(i_write_callback_t cb, - char *userdata, int max_length) -{ - i_gen_write_data *self = mymalloc(sizeof(i_gen_write_data)); - self->cb = cb; - self->userdata = userdata; - self->maxlength = i_min(max_length, sizeof(self->buffer)); - if (self->maxlength < 0) - self->maxlength = sizeof(self->buffer); - self->filledto = 0; - - return self; + return NULL; } /* -=item i_free_gen_write_data(i_gen_write_data *info, int flush) +=item i_img_is_monochrome(img, &zero_is_white) + +=category Image Information + +Tests an image to check it meets our monochrome tests. + +The idea is that a file writer can use this to test where it should +write the image in whatever bi-level format it uses, eg. C for +C. + +For performance of encoders we require monochrome images: + +=over -Cleans up the write buffer. +=item * -Will flush any left-over data if I is non-zero. +be paletted -Returns non-zero if flush is zero or if info->cb() returns non-zero. +=item * -Return zero only if flush is non-zero and info->cb() returns zero. -ie. if it fails. +have a palette of two colors, containing only C<(0,0,0)> and +C<(255,255,255)> in either order. + +=back + +C is set to non-zero if the first palette entry is white. =cut */ -int i_free_gen_write_data(i_gen_write_data *info, int flush) -{ - int result = !flush || - info->filledto == 0 || - info->cb(info->userdata, info->buffer, info->filledto); - myfree(info); +int +i_img_is_monochrome(i_img *im, int *zero_is_white) { + if (im->type == i_palette_type + && i_colorcount(im) == 2) { + i_color colors[2]; + i_getcolors(im, 0, colors, 2); + if (im->channels == 3) { + if (colors[0].rgb.r == 255 && + colors[0].rgb.g == 255 && + colors[0].rgb.b == 255 && + colors[1].rgb.r == 0 && + colors[1].rgb.g == 0 && + colors[1].rgb.b == 0) { + *zero_is_white = 1; + return 1; + } + else if (colors[0].rgb.r == 0 && + colors[0].rgb.g == 0 && + colors[0].rgb.b == 0 && + colors[1].rgb.r == 255 && + colors[1].rgb.g == 255 && + colors[1].rgb.b == 255) { + *zero_is_white = 0; + return 1; + } + } + else if (im->channels == 1) { + if (colors[0].channel[0] == 255 && + colors[1].channel[0] == 0) { + *zero_is_white = 1; + return 1; + } + else if (colors[0].channel[0] == 0 && + colors[1].channel[0] == 255) { + *zero_is_white = 0; + return 1; + } + } + } - return result; + *zero_is_white = 0; + return 0; } +/* +=item i_get_file_background(im, &bg) +=category Files -/* -=item i_test_format_probe(io_glue *data, int length) +Retrieve the file write background color tag from the image. -Check the beginning of the supplied file for a 'magic number' +If not present, C is set to black. + +Returns 1 if the C tag was found and valid. =cut */ +int +i_get_file_background(i_img *im, i_color *bg) { + int result = i_tags_get_color(&im->tags, "i_background", 0, bg); + if (!result) { + /* black default */ + bg->channel[0] = bg->channel[1] = bg->channel[2] = 0; + } + /* always full alpha */ + bg->channel[3] = 255; -char * -i_test_format_probe(io_glue *data, int length) { + return result; +} - static struct { - char *magic; - char *name; - } formats[] = { - {"\xFF\xD8", "jpeg"}, - {"GIF87a", "gif"}, - {"GIF89a", "gif"}, - {"MM\0*", "tiff"}, - {"II*\0", "tiff"}, - {"BM", "bmp"}, - {"\x89PNG\x0d\x0a\x1a\x0a", "png"}, - {"P1", "pnm"}, - {"P2", "pnm"}, - {"P3", "pnm"}, - {"P4", "pnm"}, - {"P5", "pnm"}, - {"P6", "pnm"}, - }; - unsigned int i; - char head[18]; - char *match = NULL; - ssize_t rc; +/* +=item i_get_file_backgroundf(im, &bg) - io_glue_commit_types(data); - rc = data->readcb(data, head, 18); - if (rc == -1) return NULL; - data->seekcb(data, -rc, SEEK_CUR); +=category Files - for(i=0; ireadcb(data, head, 18); - if (rc == -1) return NULL; - x0 = (unsigned char)head[0]; - x1 = (unsigned char)head[1]; - data->seekcb(data, -rc, SEEK_CUR); - printf("Jpeg reread: %x %x\n", x0, x1); - } - */ +Implemented in terms of i_get_file_background(). - if (!match && - (rc == 18) && - tga_header_verify(head)) return "tga"; - return match; -} +If not present, C is set to black. +Returns 1 if the C tag was found and valid. +=cut +*/ + +int +i_get_file_backgroundf(i_img *im, i_fcolor *fbg) { + i_color bg; + int result = i_get_file_background(im, &bg); + fbg->rgba.r = Sample8ToF(bg.rgba.r); + fbg->rgba.g = Sample8ToF(bg.rgba.g); + fbg->rgba.b = Sample8ToF(bg.rgba.b); + fbg->rgba.a = 1.0; + return result; +} /* =back @@ -2145,7 +1816,7 @@ i_test_format_probe(io_glue *data, int length) { Arnar M. Hrafnkelsson -Tony Cook +Tony Cook =head1 SEE ALSO