-#include "image.h"
-#include "imagei.h"
-#include "io.h"
+#include "imager.h"
+#include "imageri.h"
/*
=head1 NAME
#define minmax(a,b,i) ( ((a>=i)?a: ( (b<=i)?b:i )) )
/* Hack around an obscure linker bug on solaris - probably due to builtin gcc thingies */
-void fake(void) { ceil(1); }
+static void fake(void) { ceil(1); }
-static int i_ppix_d(i_img *im, int x, int y, i_color *val);
+static int i_ppix_d(i_img *im, int x, int y, const i_color *val);
static int i_gpix_d(i_img *im, int x, int y, i_color *val);
static int i_glin_d(i_img *im, int l, int r, int y, i_color *vals);
-static int i_plin_d(i_img *im, int l, int r, int y, i_color *vals);
-static int i_ppixf_d(i_img *im, int x, int y, i_fcolor *val);
+static int i_plin_d(i_img *im, int l, int r, int y, const i_color *vals);
+static int i_ppixf_d(i_img *im, int x, int y, const i_fcolor *val);
static int i_gpixf_d(i_img *im, int x, int y, i_fcolor *val);
static int i_glinf_d(i_img *im, int l, int r, int y, i_fcolor *vals);
-static int i_plinf_d(i_img *im, int l, int r, int y, i_fcolor *vals);
-static int i_gsamp_d(i_img *im, int l, int r, int y, i_sample_t *samps, int *chans, int chan_count);
-static int i_gsampf_d(i_img *im, int l, int r, int y, i_fsample_t *samps, int *chans, int chan_count);
-static int i_psamp_d(i_img *im, int l, int r, int y, i_sample_t *samps, int *chans, int chan_count);
-static int i_psampf_d(i_img *im, int l, int r, int y, i_fsample_t *samps, int *chans, int chan_count);
+static int i_plinf_d(i_img *im, int l, int r, int y, const i_fcolor *vals);
+static int i_gsamp_d(i_img *im, int l, int r, int y, i_sample_t *samps, const int *chans, int chan_count);
+static int i_gsampf_d(i_img *im, int l, int r, int y, i_fsample_t *samps, const int *chans, int chan_count);
+
+/*
+=item i_img_alloc()
+=category Image Implementation
+
+Allocates a new i_img structure.
+
+When implementing a new image type perform the following steps in your
+image object creation function:
+
+=over
+
+=item 1.
+
+allocate the image with i_img_alloc().
+
+=item 2.
+
+initialize any function pointers or other data as needed, you can
+overwrite the whole block if you need to.
+
+=item 3.
+
+initialize Imager's internal data by calling i_img_init() on the image
+object.
+
+=back
+
+=cut
+*/
+
+i_img *
+i_img_alloc(void) {
+ return mymalloc(sizeof(i_img));
+}
+
+/*
+=item i_img_init(img)
+=category Image Implementation
+
+Imager interal initialization of images.
+
+Currently this does very little, in the future it may be used to
+support threads, or color profiles.
+
+=cut
+*/
+
+void
+i_img_init(i_img *img) {
+ img->im_data = NULL;
+}
/*
=item ICL_new_internal(r, g, b, a)
mm_log((1,"ICL_new_internal(r %d,g %d,b %d,a %d)\n", r, g, b, a));
- if ( (cl=mymalloc(sizeof(i_color))) == NULL) m_fatal(2,"malloc() error\n");
+ if ( (cl=mymalloc(sizeof(i_color))) == NULL) i_fatal(2,"malloc() error\n");
cl->rgba.r = r;
cl->rgba.g = g;
cl->rgba.b = b;
mm_log((1,"ICL_set_internal(cl* %p,r %d,g %d,b %d,a %d)\n",cl,r,g,b,a));
if (cl == NULL)
if ( (cl=mymalloc(sizeof(i_color))) == NULL)
- m_fatal(2,"malloc() error\n");
+ i_fatal(2,"malloc() error\n");
cl->rgba.r=r;
cl->rgba.g=g;
cl->rgba.b=b;
*/
void
-ICL_info(i_color *cl) {
+ICL_info(i_color const *cl) {
mm_log((1,"i_color_info(cl* %p)\n",cl));
mm_log((1,"i_color_info: (%d,%d,%d,%d)\n",cl->rgba.r,cl->rgba.g,cl->rgba.b,cl->rgba.a));
}
mm_log((1,"i_fcolor_new(r %g,g %g,b %g,a %g)\n", r, g, b, a));
- if ( (cl=mymalloc(sizeof(i_fcolor))) == NULL) m_fatal(2,"malloc() error\n");
+ if ( (cl=mymalloc(sizeof(i_fcolor))) == NULL) i_fatal(2,"malloc() error\n");
cl->rgba.r = r;
cl->rgba.g = g;
cl->rgba.b = b;
NULL, /* i_f_setcolors */
NULL, /* i_f_destroy */
+
+ i_gsamp_bits_fb,
+ NULL, /* i_f_psamp_bits */
};
/*static void set_8bit_direct(i_img *im) {
/*
=item IIM_new(x, y, ch)
-Creates a new image object I<x> pixels wide, and I<y> pixels high with I<ch> channels.
+=item i_img_8_new(x, y, ch)
+
+=category Image creation/destruction
+
+=synopsis i_img *img = i_img_8_new(width, height, channels);
+
+Creates a new image object I<x> pixels wide, and I<y> pixels high with
+I<ch> channels.
=cut
*/
/* myfree(cl); */
}
-
-
/*
=item i_img_new()
i_img *im;
mm_log((1,"i_img_struct()\n"));
- if ( (im=mymalloc(sizeof(i_img))) == NULL)
- m_fatal(2,"malloc() error\n");
+
+ im = i_img_alloc();
*im = IIM_base_8bit_direct;
im->xsize=0;
im->ch_mask=MAXINT;
im->bytes=0;
im->idata=NULL;
+
+ i_img_init(im);
mm_log((1,"(%p) <- i_img_struct\n",im));
return im;
i_img *
i_img_empty_ch(i_img *im,int x,int y,int ch) {
+ int bytes;
+
mm_log((1,"i_img_empty_ch(*im %p, x %d, y %d, ch %d)\n", im, x, y, ch));
+
+ if (x < 1 || y < 1) {
+ i_push_error(0, "Image sizes must be positive");
+ return NULL;
+ }
+ if (ch < 1 || ch > MAXCHANNELS) {
+ i_push_errorf(0, "channels must be between 1 and %d", MAXCHANNELS);
+ return NULL;
+ }
+ /* check this multiplication doesn't overflow */
+ bytes = x*y*ch;
+ if (bytes / y / ch != x) {
+ i_push_errorf(0, "integer overflow calculating image allocation");
+ return NULL;
+ }
+
if (im == NULL)
- if ( (im=mymalloc(sizeof(i_img))) == NULL)
- m_fatal(2,"malloc() error\n");
+ im = i_img_alloc();
memcpy(im, &IIM_base_8bit_direct, sizeof(i_img));
i_tags_new(&im->tags);
im->ysize = y;
im->channels = ch;
im->ch_mask = MAXINT;
- im->bytes=x*y*im->channels;
- if ( (im->idata=mymalloc(im->bytes)) == NULL) m_fatal(2,"malloc() error\n");
+ im->bytes=bytes;
+ if ( (im->idata=mymalloc(im->bytes)) == NULL)
+ i_fatal(2,"malloc() error\n");
memset(im->idata,0,(size_t)im->bytes);
im->ext_data = NULL;
+
+ i_img_init(im);
mm_log((1,"(%p) <- i_img_empty_ch\n",im));
return im;
}
/*
-=item i_img_destroy(im)
+=item i_img_destroy(img)
-Destroy image and free data via exorcise.
+=category Image creation/destruction
+=synopsis i_img_destroy(img)
- im - Image pointer
+Destroy an image object
=cut
*/
/*
=item i_img_info(im, info)
+=category Image
+
Return image information
im - Image pointer
/*
=item i_img_setmask(im, ch_mask)
+=synopsis // only channel 0 writeable
+=synopsis i_img_setmask(img, 0x01);
+
Set the image channel mask for I<im> to I<ch_mask>.
=cut
/*
=item i_img_getmask(im)
+=synopsis mask = i_img_getmask(img);
+
Get the image channel mask for I<im>.
=cut
/*
=item i_img_getchannels(im)
+=synopsis channels = i_img_getchannels(img);
+
Get the number of channels in I<im>.
=cut
int
i_img_getchannels(i_img *im) { return im->channels; }
+/*
+=item i_img_get_width(im)
+
+=synopsis width = i_img_get_width(im);
+
+Returns the width in pixels of the image.
+=cut
+*/
+i_img_dim
+i_img_get_width(i_img *im) {
+ return im->xsize;
+}
+
+/*
+=item i_img_get_height(im)
+
+=synopsis height = i_img_get_height(im);
+
+Returns the height in pixels of the image.
+
+=cut
+*/
+i_img_dim
+i_img_get_height(i_img *im) {
+ return im->ysize;
+}
/*
=item i_copyto_trans(im, src, x1, y1, x2, y2, tx, ty, trans)
+=category Image
+
(x1,y1) (x2,y2) specifies the region to copy (in the source coordinates)
(tx,ty) specifies the upper left corner for the target image.
pass NULL in trans for non transparent i_colors.
*/
void
-i_copyto_trans(i_img *im,i_img *src,int x1,int y1,int x2,int y2,int tx,int ty,i_color *trans) {
+i_copyto_trans(i_img *im,i_img *src,int x1,int y1,int x2,int y2,int tx,int ty,const i_color *trans) {
i_color pv;
int x,y,t,ttx,tty,tt,ch;
}
/*
-=item i_copyto(dest, src, x1, y1, x2, y2, tx, ty)
+=item i_copy(src)
-Copies image data from the area (x1,y1)-[x2,y2] in the source image to
-a rectangle the same size with it's top-left corner at (tx,ty) in the
-destination image.
+=category Image
-If x1 > x2 or y1 > y2 then the corresponding co-ordinates are swapped.
-
-=cut
-*/
-
-void
-i_copyto(i_img *im, i_img *src, int x1, int y1, int x2, int y2, int tx, int ty) {
- int x, y, t, ttx, tty;
-
- if (x2<x1) { t=x1; x1=x2; x2=t; }
- if (y2<y1) { t=y1; y1=y2; y2=t; }
-
- mm_log((1,"i_copyto(im* %p, src %p, x1 %d, y1 %d, x2 %d, y2 %d, tx %d, ty %d)\n",
- im, src, x1, y1, x2, y2, tx, ty));
-
- if (im->bits == i_8_bits) {
- i_color pv;
- tty = ty;
- for(y=y1; y<y2; y++) {
- ttx = tx;
- for(x=x1; x<x2; x++) {
- i_gpix(src, x, y, &pv);
- i_ppix(im, ttx, tty, &pv);
- ttx++;
- }
- tty++;
- }
- }
- else {
- i_fcolor pv;
- tty = ty;
- for(y=y1; y<y2; y++) {
- ttx = tx;
- for(x=x1; x<x2; x++) {
- i_gpixf(src, x, y, &pv);
- i_ppixf(im, ttx, tty, &pv);
- ttx++;
- }
- tty++;
- }
- }
-}
+Creates a new image that is a copy of src.
-/*
-=item i_copy(im, src)
+Tags are not copied, only the image data.
-Copies the contents of the image I<src> over the image I<im>.
+Returns: i_img *
=cut
*/
-void
-i_copy(i_img *im, i_img *src) {
+i_img *
+i_copy(i_img *src) {
int y, y1, x1;
+ i_img *im = i_sametype(src, src->xsize, src->ysize);
+
+ mm_log((1,"i_copy(src %p)\n", src));
- mm_log((1,"i_copy(im* %p,src %p)\n", im, src));
+ if (!im)
+ return NULL;
x1 = src->xsize;
y1 = src->ysize;
if (src->type == i_direct_type) {
if (src->bits == i_8_bits) {
i_color *pv;
- i_img_empty_ch(im, x1, y1, src->channels);
pv = mymalloc(sizeof(i_color) * x1);
for (y = 0; y < y1; ++y) {
}
else {
i_fcolor *pv;
- if (src->bits == i_16_bits)
- i_img_16_new_low(im, x1, y1, src->channels);
- else if (src->bits == i_double_bits)
- i_img_double_new_low(im, x1, y1, src->channels);
- else {
- fprintf(stderr, "i_copy(): Unknown image bit size %d\n", src->bits);
- return; /* I dunno */
- }
pv = mymalloc(sizeof(i_fcolor) * x1);
for (y = 0; y < y1; ++y) {
}
}
else {
- i_color temp;
- int index;
- int count;
i_palidx *vals;
- /* paletted image */
- i_img_pal_new_low(im, x1, y1, src->channels, i_maxcolors(src));
- /* copy across the palette */
- count = i_colorcount(src);
- for (index = 0; index < count; ++index) {
- i_getcolors(src, index, &temp, 1);
- i_addcolors(im, &temp, 1);
- }
-
vals = mymalloc(sizeof(i_palidx) * x1);
for (y = 0; y < y1; ++y) {
i_gpal(src, 0, x1, y, vals);
}
myfree(vals);
}
-}
-
-
-/*
-=item i_rubthru(im, src, tx, ty)
-
-Takes the image I<src> and applies it at an original (I<tx>,I<ty>) in I<im>.
-
-The alpha channel of each pixel in I<src> is used to control how much
-the existing colour in I<im> is replaced, if it is 255 then the colour
-is completely replaced, if it is 0 then the original colour is left
-unmodified.
-
-=cut
-*/
-
-int
-i_rubthru(i_img *im,i_img *src,int tx,int ty) {
- int x, y, ttx, tty;
- int chancount;
- int chans[3];
- int alphachan;
- int ch;
-
- mm_log((1,"i_rubthru(im %p, src %p, tx %d, ty %d)\n", im, src, tx, ty));
- i_clear_error();
-
- if (im->channels == 3 && src->channels == 4) {
- chancount = 3;
- chans[0] = 0; chans[1] = 1; chans[2] = 2;
- alphachan = 3;
- }
- else if (im->channels == 3 && src->channels == 2) {
- chancount = 3;
- chans[0] = chans[1] = chans[2] = 0;
- alphachan = 1;
- }
- else if (im->channels == 1 && src->channels == 2) {
- chancount = 1;
- chans[0] = 0;
- alphachan = 1;
- }
- else {
- i_push_error(0, "rubthru can only work where (dest, src) channels are (3,4), (3,2) or (1,2)");
- return 0;
- }
-
- if (im->bits <= 8) {
- /* if you change this code, please make sure the else branch is
- changed in a similar fashion - TC */
- int alpha;
- i_color pv, orig, dest;
- ttx = tx;
- for(x=0; x<src->xsize; x++) {
- tty=ty;
- for(y=0;y<src->ysize;y++) {
- /* fprintf(stderr,"reading (%d,%d) writing (%d,%d).\n",x,y,ttx,tty); */
- i_gpix(src, x, y, &pv);
- i_gpix(im, ttx, tty, &orig);
- alpha = pv.channel[alphachan];
- for (ch = 0; ch < chancount; ++ch) {
- dest.channel[ch] = (alpha * pv.channel[chans[ch]]
- + (255 - alpha) * orig.channel[ch])/255;
- }
- i_ppix(im, ttx, tty, &dest);
- tty++;
- }
- ttx++;
- }
- }
- else {
- double alpha;
- i_fcolor pv, orig, dest;
- ttx = tx;
- for(x=0; x<src->xsize; x++) {
- tty=ty;
- for(y=0;y<src->ysize;y++) {
- /* fprintf(stderr,"reading (%d,%d) writing (%d,%d).\n",x,y,ttx,tty); */
- i_gpixf(src, x, y, &pv);
- i_gpixf(im, ttx, tty, &orig);
- alpha = pv.channel[alphachan];
- for (ch = 0; ch < chancount; ++ch) {
- dest.channel[ch] = alpha * pv.channel[chans[ch]]
- + (1 - alpha) * orig.channel[ch];
- }
- i_ppixf(im, ttx, tty, &dest);
- tty++;
- }
- ttx++;
- }
- }
-
- return 1;
+ return im;
}
else return(sin(PIx) / PIx * sin(PIx2) / PIx2);
}
+
/*
=item i_scaleaxis(im, value, axis)
i_color val,val1,val2;
i_img *new_img;
+ i_clear_error();
mm_log((1,"i_scaleaxis(im %p,Value %.2f,Axis %d)\n",im,Value,Axis));
+
if (Axis == XAXIS) {
hsize = (int)(0.5 + im->xsize * Value);
+ if (hsize < 1) {
+ hsize = 1;
+ Value = 1.0 / im->xsize;
+ }
vsize = im->ysize;
jEnd = hsize;
hsize = im->xsize;
vsize = (int)(0.5 + im->ysize * Value);
+ if (vsize < 1) {
+ vsize = 1;
+ Value = 1.0 / im->ysize;
+ }
+
jEnd = vsize;
iEnd = hsize;
}
new_img = i_img_empty_ch(NULL, hsize, vsize, im->channels);
+ if (!new_img) {
+ i_push_error(0, "cannot create output image");
+ return NULL;
+ }
/* 1.4 is a magic number, setting it to 2 will cause rather blurred images */
LanczosWidthFactor = (Value >= 1) ? 1 : (int) (1.4/Value);
mm_log((1,"i_scale_nn(im 0x%x,scx %.2f,scy %.2f)\n",im,scx,scy));
nxsize = (int) ((float) im->xsize * scx);
+ if (nxsize < 1) {
+ nxsize = 1;
+ scx = 1 / im->xsize;
+ }
nysize = (int) ((float) im->ysize * scy);
+ if (nysize < 1) {
+ nysize = 1;
+ scy = 1 / im->ysize;
+ }
new_img=i_img_empty_ch(NULL,nxsize,nysize,im->channels);
/*
=item i_sametype(i_img *im, int xsize, int ysize)
+=category Image creation/destruction
+=synopsis i_img *img = i_sametype(src, width, height);
+
Returns an image of the same type (sample size, channels, paletted/direct).
For paletted images the palette is copied from the source.
}
}
+/*
+=item i_sametype_chans(i_img *im, int xsize, int ysize, int channels)
+
+=category Image creation/destruction
+=synopsis i_img *img = i_sametype_chans(src, width, height, channels);
+
+Returns an image of the same type (sample size).
+
+For paletted images the equivalent direct type is returned.
+
+=cut
+*/
+
+i_img *i_sametype_chans(i_img *src, int xsize, int ysize, int channels) {
+ if (src->bits == 8) {
+ return i_img_empty_ch(NULL, xsize, ysize, channels);
+ }
+ else if (src->bits == i_16_bits) {
+ return i_img_16_new(xsize, ysize, channels);
+ }
+ else if (src->bits == i_double_bits) {
+ return i_img_double_new(xsize, ysize, channels);
+ }
+ else {
+ i_push_error(0, "Unknown image bits");
+ return NULL;
+ }
+}
+
/*
=item i_transform(im, opx, opxl, opy, opyl, parm, parmlen)
parm[1]=(double)ny;
/* fprintf(stderr,"(%d,%d) ->",nx,ny); */
- rx=op_run(opx,opxl,parm,parmlen);
- ry=op_run(opy,opyl,parm,parmlen);
+ rx=i_op_run(opx,opxl,parm,parmlen);
+ ry=i_op_run(opy,opyl,parm,parmlen);
/* fprintf(stderr,"(%f,%f)\n",rx,ry); */
i_gpix(im,rx,ry,&val);
i_ppix(new_img,nx,ny,&val);
=cut
*/
+/* This function has been changed and is now faster. It's using
+ * i_gsamp instead of i_gpix */
int
i_count_colors(i_img *im,int maxc) {
struct octt *ct;
int x,y;
- int xsize,ysize;
- i_color val;
int colorcnt;
+ int channels[3];
+ int *samp_chans;
+ i_sample_t * samp;
+ int xsize = im->xsize;
+ int ysize = im->ysize;
+ int samp_cnt = 3 * xsize;
+
+ if (im->channels >= 3) {
+ samp_chans = NULL;
+ }
+ else {
+ channels[0] = channels[1] = channels[2] = 0;
+ samp_chans = channels;
+ }
+
+ ct = octt_new();
- mm_log((1,"i_count_colors(im 0x%08X,maxc %d)\n"));
+ samp = (i_sample_t *) mymalloc( xsize * 3 * sizeof(i_sample_t));
- xsize=im->xsize;
- ysize=im->ysize;
- ct=octt_new();
-
- colorcnt=0;
- for(y=0;y<ysize;y++) for(x=0;x<xsize;x++) {
- i_gpix(im,x,y,&val);
- colorcnt+=octt_add(ct,val.rgb.r,val.rgb.g,val.rgb.b);
- if (colorcnt > maxc) { octt_delete(ct); return -1; }
+ colorcnt = 0;
+ for(y = 0; y < ysize; ) {
+ i_gsamp(im, 0, xsize, y++, samp, samp_chans, 3);
+ for(x = 0; x < samp_cnt; ) {
+ colorcnt += octt_add(ct, samp[x], samp[x+1], samp[x+2]);
+ x += 3;
+ if (colorcnt > maxc) {
+ octt_delete(ct);
+ return -1;
+ }
+ }
+ }
+ myfree(samp);
+ octt_delete(ct);
+ return colorcnt;
+}
+
+/* sorts the array ra[0..n-1] into increasing order using heapsort algorithm
+ * (adapted from the Numerical Recipes)
+ */
+/* Needed by get_anonymous_color_histo */
+static void
+hpsort(unsigned int n, unsigned *ra) {
+ unsigned int i,
+ ir,
+ j,
+ l,
+ rra;
+
+ if (n < 2) return;
+ l = n >> 1;
+ ir = n - 1;
+ for(;;) {
+ if (l > 0) {
+ rra = ra[--l];
+ }
+ else {
+ rra = ra[ir];
+ ra[ir] = ra[0];
+ if (--ir == 0) {
+ ra[0] = rra;
+ break;
+ }
+ }
+ i = l;
+ j = 2 * l + 1;
+ while (j <= ir) {
+ if (j < ir && ra[j] < ra[j+1]) j++;
+ if (rra < ra[j]) {
+ ra[i] = ra[j];
+ i = j;
+ j++; j <<= 1; j--;
+ }
+ else break;
+ }
+ ra[i] = rra;
+ }
+}
+
+/* This function constructs an ordered list which represents how much the
+ * different colors are used. So for instance (100, 100, 500) means that one
+ * color is used for 500 pixels, another for 100 pixels and another for 100
+ * pixels. It's tuned for performance. You might not like the way I've hardcoded
+ * the maxc ;-) and you might want to change the name... */
+/* Uses octt_histo */
+int
+i_get_anonymous_color_histo(i_img *im, unsigned int **col_usage, int maxc) {
+ struct octt *ct;
+ int x,y;
+ int colorcnt;
+ unsigned int *col_usage_it;
+ i_sample_t * samp;
+ int channels[3];
+ int *samp_chans;
+
+ int xsize = im->xsize;
+ int ysize = im->ysize;
+ int samp_cnt = 3 * xsize;
+ ct = octt_new();
+
+ samp = (i_sample_t *) mymalloc( xsize * 3 * sizeof(i_sample_t));
+
+ if (im->channels >= 3) {
+ samp_chans = NULL;
+ }
+ else {
+ channels[0] = channels[1] = channels[2] = 0;
+ samp_chans = channels;
+ }
+
+ colorcnt = 0;
+ for(y = 0; y < ysize; ) {
+ i_gsamp(im, 0, xsize, y++, samp, samp_chans, 3);
+ for(x = 0; x < samp_cnt; ) {
+ colorcnt += octt_add(ct, samp[x], samp[x+1], samp[x+2]);
+ x += 3;
+ if (colorcnt > maxc) {
+ octt_delete(ct);
+ return -1;
+ }
+ }
}
+ myfree(samp);
+ /* Now that we know the number of colours... */
+ col_usage_it = *col_usage = (unsigned int *) mymalloc(colorcnt * sizeof(unsigned int));
+ octt_histo(ct, &col_usage_it);
+ hpsort(colorcnt, *col_usage);
octt_delete(ct);
return colorcnt;
}
*/
static
int
-i_ppix_d(i_img *im, int x, int y, i_color *val) {
+i_ppix_d(i_img *im, int x, int y, const i_color *val) {
int ch;
if ( x>-1 && x<im->xsize && y>-1 && y<im->ysize ) {
*/
static
int
-i_plin_d(i_img *im, int l, int r, int y, i_color *vals) {
+i_plin_d(i_img *im, int l, int r, int y, const i_color *vals) {
int ch, count, i;
unsigned char *data;
if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) {
*/
static
int
-i_ppixf_d(i_img *im, int x, int y, i_fcolor *val) {
+i_ppixf_d(i_img *im, int x, int y, const i_fcolor *val) {
int ch;
if ( x>-1 && x<im->xsize && y>-1 && y<im->ysize ) {
*/
static
int
-i_plinf_d(i_img *im, int l, int r, int y, i_fcolor *vals) {
+i_plinf_d(i_img *im, int l, int r, int y, const i_fcolor *vals) {
int ch, count, i;
unsigned char *data;
if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) {
static
int
i_gsamp_d(i_img *im, int l, int r, int y, i_sample_t *samps,
- int *chans, int chan_count) {
+ const int *chans, int chan_count) {
int ch, count, i, w;
unsigned char *data;
}
}
else {
+ if (chan_count <= 0 || chan_count > im->channels) {
+ i_push_errorf(0, "chan_count %d out of range, must be >0, <= channels",
+ chan_count);
+ return 0;
+ }
for (i = 0; i < w; ++i) {
for (ch = 0; ch < chan_count; ++ch) {
*samps++ = data[ch];
static
int
i_gsampf_d(i_img *im, int l, int r, int y, i_fsample_t *samps,
- int *chans, int chan_count) {
+ const int *chans, int chan_count) {
int ch, count, i, w;
unsigned char *data;
for (ch = 0; ch < chan_count; ++ch) {
}
}
else {
+ if (chan_count <= 0 || chan_count > im->channels) {
+ i_push_errorf(0, "chan_count %d out of range, must be >0, <= channels",
+ chan_count);
+ return 0;
+ }
for (i = 0; i < w; ++i) {
for (ch = 0; ch < chan_count; ++ch) {
*samps++ = Sample8ToF(data[ch]);
=cut
*/
-int i_ppixf_fp(i_img *im, int x, int y, i_fcolor *pix) {
+int i_ppixf_fp(i_img *im, int x, int y, const i_fcolor *pix) {
i_color temp;
int ch;
=cut
*/
-int i_plinf_fp(i_img *im, int l, int r, int y, i_fcolor *pix) {
+int i_plinf_fp(i_img *im, int l, int r, int y, const i_fcolor *pix) {
i_color *work;
if (y >= 0 && y < im->ysize && l < im->xsize && l >= 0) {
=cut
*/
int i_gsampf_fp(i_img *im, int l, int r, int y, i_fsample_t *samp,
- int *chans, int chan_count) {
+ int const *chans, int chan_count) {
i_sample_t *work;
if (y >= 0 && y < im->ysize && l < im->xsize && l >= 0) {
=over
-=item i_addcolors_forward(i_img *im, i_color *colors, int count)
+=item i_addcolors_forward(i_img *im, const i_color *colors, int count)
=cut
*/
-int i_addcolors_forward(i_img *im, i_color *colors, int count) {
+int i_addcolors_forward(i_img *im, const i_color *colors, int count) {
return i_addcolors(*(i_img **)im->ext_data, colors, count);
}
}
/*
-=item i_setcolors_forward(i_img *im, int i, i_color *color, int count)
+=item i_setcolors_forward(i_img *im, int i, const i_color *color, int count)
=cut
*/
-int i_setcolors_forward(i_img *im, int i, i_color *color, int count) {
+int i_setcolors_forward(i_img *im, int i, const i_color *color, int count) {
return i_setcolors(*(i_img **)im->ext_data, i, color, count);
}
}
/*
-=item i_findcolor_forward(i_img *im, i_color *color, i_palidx *entry)
+=item i_findcolor_forward(i_img *im, const i_color *color, i_palidx *entry)
=cut
*/
-int i_findcolor_forward(i_img *im, i_color *color, i_palidx *entry) {
+int i_findcolor_forward(i_img *im, const i_color *color, i_palidx *entry) {
return i_findcolor(*(i_img **)im->ext_data, color, entry);
}
/*
=back
+=head2 Fallback handler
+
+=over
+
+=item i_gsamp_bits_fb
+
+=cut
+*/
+
+int
+i_gsamp_bits_fb(i_img *im, int l, int r, int y, unsigned *samps,
+ const int *chans, int chan_count, int bits) {
+ if (bits < 1 || bits > 32) {
+ i_push_error(0, "Invalid bits, must be 1..32");
+ return -1;
+ }
+
+ if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) {
+ double scale;
+ int ch, count, i, w;
+
+ if (bits == 32)
+ scale = 4294967295.0;
+ else
+ scale = (double)(1 << bits) - 1;
+
+ if (r > im->xsize)
+ r = im->xsize;
+ w = r - l;
+ count = 0;
+
+ if (chans) {
+ /* make sure we have good channel numbers */
+ for (ch = 0; ch < chan_count; ++ch) {
+ if (chans[ch] < 0 || chans[ch] >= im->channels) {
+ i_push_errorf(0, "No channel %d in this image", chans[ch]);
+ return -1;
+ }
+ }
+ for (i = 0; i < w; ++i) {
+ i_fcolor c;
+ i_gpixf(im, l+i, y, &c);
+ for (ch = 0; ch < chan_count; ++ch) {
+ *samps++ = (unsigned)(c.channel[ch] * scale + 0.5);
+ ++count;
+ }
+ }
+ }
+ else {
+ if (chan_count <= 0 || chan_count > im->channels) {
+ i_push_error(0, "Invalid channel count");
+ return -1;
+ }
+ for (i = 0; i < w; ++i) {
+ i_fcolor c;
+ i_gpixf(im, l+i, y, &c);
+ for (ch = 0; ch < chan_count; ++ch) {
+ *samps++ = (unsigned)(c.channel[ch] * scale + 0.5);
+ ++count;
+ }
+ }
+ }
+
+ return count;
+ }
+ else {
+ i_push_error(0, "Image position outside of image");
+ return -1;
+ }
+}
+
+/*
+=back
+
=head2 Stream reading and writing wrapper functions
=over
gci->cpos = 0;
gci->length = did_read;
- copy_size = min(length, gci->length);
+ copy_size = i_min(length, gci->length);
memcpy(buf, gci->buffer, copy_size);
gci->cpos += copy_size;
buf += copy_size;
}
/*
-=item free_gen_read_data(i_gen_read_data *)
+=item i_free_gen_read_data(i_gen_read_data *)
Cleans up.
=cut
*/
-void free_gen_read_data(i_gen_read_data *self) {
+void i_free_gen_read_data(i_gen_read_data *self) {
myfree(self);
}
Allocates and initializes the data structure used by i_gen_writer.
-This should be released with L<image.c/free_gen_write_data>
+This should be released with L<image.c/i_free_gen_write_data>
=cut
*/
i_gen_write_data *self = mymalloc(sizeof(i_gen_write_data));
self->cb = cb;
self->userdata = userdata;
- self->maxlength = min(max_length, sizeof(self->buffer));
+ self->maxlength = i_min(max_length, sizeof(self->buffer));
if (self->maxlength < 0)
self->maxlength = sizeof(self->buffer);
self->filledto = 0;
}
/*
-=item free_gen_write_data(i_gen_write_data *info, int flush)
+=item i_free_gen_write_data(i_gen_write_data *info, int flush)
Cleans up the write buffer.
=cut
*/
-int free_gen_write_data(i_gen_write_data *info, int flush)
+int i_free_gen_write_data(i_gen_write_data *info, int flush)
{
int result = !flush ||
info->filledto == 0 ||
return result;
}
+struct magic_entry {
+ unsigned char *magic;
+ size_t magic_size;
+ char *name;
+ unsigned char *mask;
+};
+
+static int
+test_magic(unsigned char *buffer, size_t length, struct magic_entry const *magic) {
+ if (length < magic->magic_size)
+ return 0;
+ if (magic->mask) {
+ int i;
+ unsigned char *bufp = buffer,
+ *maskp = magic->mask,
+ *magicp = magic->magic;
+
+ for (i = 0; i < magic->magic_size; ++i) {
+ int mask = *maskp == 'x' ? 0xFF : *maskp == ' ' ? 0 : *maskp;
+ ++maskp;
+
+ if ((*bufp++ & mask) != (*magicp++ & mask))
+ return 0;
+ }
+
+ return 1;
+ }
+ else {
+ return !memcmp(magic->magic, buffer, magic->magic_size);
+ }
+}
+
+/*
+=item i_test_format_probe(io_glue *data, int length)
+
+Check the beginning of the supplied file for a 'magic number'
+
+=cut
+*/
+
+#define FORMAT_ENTRY(magic, type) \
+ { (unsigned char *)(magic ""), sizeof(magic)-1, type }
+#define FORMAT_ENTRY2(magic, type, mask) \
+ { (unsigned char *)(magic ""), sizeof(magic)-1, type, (unsigned char *)(mask) }
+
+const char *
+i_test_format_probe(io_glue *data, int length) {
+ static const struct magic_entry formats[] = {
+ FORMAT_ENTRY("\xFF\xD8", "jpeg"),
+ FORMAT_ENTRY("GIF87a", "gif"),
+ FORMAT_ENTRY("GIF89a", "gif"),
+ FORMAT_ENTRY("MM\0*", "tiff"),
+ FORMAT_ENTRY("II*\0", "tiff"),
+ FORMAT_ENTRY("BM", "bmp"),
+ FORMAT_ENTRY("\x89PNG\x0d\x0a\x1a\x0a", "png"),
+ FORMAT_ENTRY("P1", "pnm"),
+ FORMAT_ENTRY("P2", "pnm"),
+ FORMAT_ENTRY("P3", "pnm"),
+ FORMAT_ENTRY("P4", "pnm"),
+ FORMAT_ENTRY("P5", "pnm"),
+ FORMAT_ENTRY("P6", "pnm"),
+ FORMAT_ENTRY("/* XPM", "xpm"),
+ FORMAT_ENTRY("\x8aMNG", "mng"),
+ FORMAT_ENTRY("\x8aJNG", "jng"),
+ /* SGI RGB - with various possible parameters to avoid false positives
+ on similar files
+ values are: 2 byte magic, rle flags (0 or 1), bytes/sample (1 or 2)
+ */
+ FORMAT_ENTRY("\x01\xDA\x00\x01", "sgi"),
+ FORMAT_ENTRY("\x01\xDA\x00\x02", "sgi"),
+ FORMAT_ENTRY("\x01\xDA\x01\x01", "sgi"),
+ FORMAT_ENTRY("\x01\xDA\x01\x02", "sgi"),
+
+ FORMAT_ENTRY2("FORM ILBM", "ilbm", "xxxx xxxx"),
+
+ /* different versions of PCX format
+ http://www.fileformat.info/format/pcx/
+ */
+ FORMAT_ENTRY("\x0A\x00\x01", "pcx"),
+ FORMAT_ENTRY("\x0A\x02\x01", "pcx"),
+ FORMAT_ENTRY("\x0A\x03\x01", "pcx"),
+ FORMAT_ENTRY("\x0A\x04\x01", "pcx"),
+ FORMAT_ENTRY("\x0A\x05\x01", "pcx"),
+
+ /* FITS - http://fits.gsfc.nasa.gov/ */
+ FORMAT_ENTRY("SIMPLE =", "fits"),
+
+ /* PSD - Photoshop */
+ FORMAT_ENTRY("8BPS\x00\x01", "psd"),
+
+ /* EPS - Encapsulated Postscript */
+ /* only reading 18 chars, so we don't include the F in EPSF */
+ FORMAT_ENTRY("%!PS-Adobe-2.0 EPS", "eps"),
+
+ /* Utah RLE */
+ FORMAT_ENTRY("\x52\xCC", "utah"),
+
+ /* GZIP compressed, only matching deflate for now */
+ FORMAT_ENTRY("\x1F\x8B\x08", "gzip"),
+
+ /* bzip2 compressed */
+ FORMAT_ENTRY("BZh", "bzip2"),
+ };
+ static const struct magic_entry more_formats[] = {
+ /* these were originally both listed as ico, but cur files can
+ include hotspot information */
+ FORMAT_ENTRY("\x00\x00\x01\x00", "ico"), /* Windows icon */
+ FORMAT_ENTRY("\x00\x00\x02\x00", "cur"), /* Windows cursor */
+ FORMAT_ENTRY2("\x00\x00\x00\x00\x00\x00\x00\x07",
+ "xwd", " xxxx"), /* X Windows Dump */
+ };
+
+ unsigned int i;
+ unsigned char head[18];
+ ssize_t rc;
+
+ io_glue_commit_types(data);
+ rc = data->readcb(data, head, 18);
+ if (rc == -1) return NULL;
+ data->seekcb(data, -rc, SEEK_CUR);
+
+ for(i=0; i<sizeof(formats)/sizeof(formats[0]); i++) {
+ struct magic_entry const *entry = formats + i;
+
+ if (test_magic(head, rc, entry))
+ return entry->name;
+ }
+
+ if ((rc == 18) &&
+ tga_header_verify(head))
+ return "tga";
+
+ for(i=0; i<sizeof(more_formats)/sizeof(more_formats[0]); i++) {
+ struct magic_entry const *entry = more_formats + i;
+
+ if (test_magic(head, rc, entry))
+ return entry->name;
+ }
+
+ return NULL;
+}
+
+/*
+=item i_img_is_monochrome(img, &zero_is_white)
+
+Tests an image to check it meets our monochrome tests.
+
+The idea is that a file writer can use this to test where it should
+write the image in whatever bi-level format it uses, eg. pbm for pnm.
+
+For performance of encoders we require monochrome images:
+
+=over
+
+=item *
+
+be paletted
+
+=item *
+
+have a palette of two colors, containing only (0,0,0) and
+(255,255,255) in either order.
+
+=back
+
+zero_is_white is set to non-zero iff the first palette entry is white.
+
+=cut
+*/
+
+int
+i_img_is_monochrome(i_img *im, int *zero_is_white) {
+ if (im->type == i_palette_type
+ && i_colorcount(im) == 2) {
+ i_color colors[2];
+ i_getcolors(im, 0, colors, 2);
+ if (im->channels == 3) {
+ if (colors[0].rgb.r == 255 &&
+ colors[0].rgb.g == 255 &&
+ colors[0].rgb.b == 255 &&
+ colors[1].rgb.r == 0 &&
+ colors[1].rgb.g == 0 &&
+ colors[1].rgb.b == 0) {
+ *zero_is_white = 1;
+ return 1;
+ }
+ else if (colors[0].rgb.r == 0 &&
+ colors[0].rgb.g == 0 &&
+ colors[0].rgb.b == 0 &&
+ colors[1].rgb.r == 255 &&
+ colors[1].rgb.g == 255 &&
+ colors[1].rgb.b == 255) {
+ *zero_is_white = 0;
+ return 1;
+ }
+ }
+ else if (im->channels == 1) {
+ if (colors[0].channel[0] == 255 &&
+ colors[1].channel[0] == 0) {
+ *zero_is_white = 1;
+ return 1;
+ }
+ else if (colors[0].channel[0] == 0 &&
+ colors[1].channel[0] == 255) {
+ *zero_is_white = 0;
+ return 1;
+ }
+ }
+ }
+
+ *zero_is_white = 0;
+ return 0;
+}
+
+/*
+=item i_get_file_background(im, &bg)
+
+Retrieve the file write background color tag from the image.
+
+If not present, returns black.
+
+=cut
+*/
+
+void
+i_get_file_background(i_img *im, i_color *bg) {
+ if (!i_tags_get_color(&im->tags, "i_background", 0, bg)) {
+ /* black default */
+ bg->channel[0] = bg->channel[1] = bg->channel[2] = 0;
+ }
+ /* always full alpha */
+ bg->channel[3] = 255;
+}
+
+/*
+=item i_get_file_backgroundf(im, &bg)
+
+Retrieve the file write background color tag from the image as a
+floating point color.
+
+Implemented in terms of i_get_file_background().
+
+If not present, returns black.
+
+=cut
+*/
+
+void
+i_get_file_backgroundf(i_img *im, i_fcolor *fbg) {
+ i_color bg;
+
+ i_get_file_background(im, &bg);
+ fbg->rgba.r = Sample8ToF(bg.rgba.r);
+ fbg->rgba.g = Sample8ToF(bg.rgba.g);
+ fbg->rgba.b = Sample8ToF(bg.rgba.b);
+ fbg->rgba.a = 1.0;
+}
+
/*
=back