for (r = 0; r < 256; r+=0x33)
for (g = 0; g < 256; g+=0x33)
for (b = 0; b < 256; b += 0x33)
- setcol(quant->mc_colors+i++, r, g, b, 0);
+ setcol(quant->mc_colors+i++, r, g, b, 255);
quant->mc_count = i;
}
break;
*/
i_palidx *quant_translate(i_quantize *quant, i_img *img) {
i_palidx *result;
+ int bytes;
+
mm_log((1, "quant_translate(quant %p, img %p)\n", quant, img));
- result = mymalloc(img->xsize * img->ysize);
+ /* there must be at least one color in the paletted (though even that
+ isn't very useful */
+ if (quant->mc_count == 0) {
+ i_push_error(0, "no colors available for translation");
+ return NULL;
+ }
+
+ bytes = img->xsize * img->ysize;
+ if (bytes / img->ysize != img->xsize) {
+ i_push_error(0, "integer overflow calculating memory allocation");
+ return NULL;
+ }
+ result = mymalloc(bytes);
switch (quant->translate) {
case pt_closest:
return result;
}
-#ifdef HAVE_LIBGIF
-#include "gif_lib.h"
-
-#define GET_RGB(im, x, y, ri, gi, bi, col) \
- i_gpix((im),(x),(y),&(col)); (ri)=(col).rgb.r; \
- if((im)->channels==3) { (bi)=(col).rgb.b; (gi)=(col).rgb.g; }
-
-static int
-quant_replicate(i_img *im, i_palidx *output, i_quantize *quant);
-
-/* Use the gif_lib quantization functions to quantize the image */
-static void translate_giflib(i_quantize *quant, i_img *img, i_palidx *out) {
- int x,y,ColorMapSize,colours_in;
- unsigned long Size;
- int i;
-
- GifByteType *RedBuffer = NULL, *GreenBuffer = NULL, *BlueBuffer = NULL;
- GifByteType *RedP, *GreenP, *BlueP;
- ColorMapObject *OutputColorMap = NULL;
-
- i_color col;
-
- mm_log((1,"translate_giflib(quant %p, img %p, out %p)\n", quant, img, out));
-
- /*if (!(im->channels==1 || im->channels==3)) { fprintf(stderr,"Unable to write gif, improper colorspace.\n"); exit(3); }*/
-
- ColorMapSize = quant->mc_size;
-
- Size = ((long) img->xsize) * img->ysize * sizeof(GifByteType);
-
-
- if ((OutputColorMap = MakeMapObject(ColorMapSize, NULL)) == NULL)
- m_fatal(0,"Failed to allocate memory for Output colormap.");
- /* if ((OutputBuffer = (GifByteType *) mymalloc(im->xsize * im->ysize * sizeof(GifByteType))) == NULL)
- m_fatal(0,"Failed to allocate memory for output buffer.");*/
-
- /* ******************************************************* */
- /* count the number of colours in the image */
- colours_in=i_count_colors(img, OutputColorMap->ColorCount);
-
- if(colours_in != -1) { /* less then the number wanted */
- /* so we copy them over as-is */
- mm_log((2,"image has %d colours, which fits in %d. Copying\n",
- colours_in,ColorMapSize));
- quant_replicate(img, out, quant);
- /* saves the colors, so don't fall through */
- return;
- } else {
-
- mm_log((2,"image has %d colours, more then %d. Quantizing\n",colours_in,ColorMapSize));
-
- if (img->channels >= 3) {
- if ((RedBuffer = (GifByteType *) mymalloc((unsigned int) Size)) == NULL) {
- m_fatal(0,"Failed to allocate memory required, aborted.");
- return;
- }
- if ((GreenBuffer = (GifByteType *) mymalloc((unsigned int) Size)) == NULL) {
- m_fatal(0,"Failed to allocate memory required, aborted.");
- myfree(RedBuffer);
- return;
- }
-
- if ((BlueBuffer = (GifByteType *) mymalloc((unsigned int) Size)) == NULL) {
- m_fatal(0,"Failed to allocate memory required, aborted.");
- myfree(RedBuffer);
- myfree(GreenBuffer);
- return;
- }
-
- RedP = RedBuffer;
- GreenP = GreenBuffer;
- BlueP = BlueBuffer;
-
- for (y=0; y< img->ysize; y++) for (x=0; x < img->xsize; x++) {
- i_gpix(img,x,y,&col);
- *RedP++ = col.rgb.r;
- *GreenP++ = col.rgb.g;
- *BlueP++ = col.rgb.b;
- }
-
- } else {
-
- if ((RedBuffer = (GifByteType *) mymalloc((unsigned int) Size))==NULL) {
- m_fatal(0,"Failed to allocate memory required, aborted.");
- return;
- }
-
- GreenBuffer=BlueBuffer=RedBuffer;
- RedP = RedBuffer;
- for (y=0; y< img->ysize; y++) for (x=0; x < img->xsize; x++) {
- i_gpix(img,x,y,&col);
- *RedP++ = col.rgb.r;
- }
- }
-
- if (QuantizeBuffer(img->xsize, img->ysize, &ColorMapSize, RedBuffer, GreenBuffer, BlueBuffer,
- out, OutputColorMap->Colors) == GIF_ERROR) {
- mm_log((1,"Error in QuantizeBuffer, unable to write image.\n"));
- }
- }
-
- myfree(RedBuffer);
- if (img->channels == 3) { myfree(GreenBuffer); myfree(BlueBuffer); }
-
- /* copy over the color map */
- for (i = 0; i < ColorMapSize; ++i) {
- quant->mc_colors[i].rgb.r = OutputColorMap->Colors[i].Red;
- quant->mc_colors[i].rgb.g = OutputColorMap->Colors[i].Green;
- quant->mc_colors[i].rgb.b = OutputColorMap->Colors[i].Blue;
- }
- quant->mc_count = ColorMapSize;
-}
-
-static
-int
-quant_replicate(i_img *im, GifByteType *output, i_quantize *quant) {
- int x, y, alloced, r, g=0, b=0, idx ;
- i_color col;
-
- alloced=0;
- for(y=0; y<im->ysize; y++) {
- for(x=0; x<im->xsize; x++) {
-
- GET_RGB(im, x,y, r,g,b, col);
-
- for(idx=0; idx<alloced; idx++) { /* linear search for an index */
- if(quant->mc_colors[idx].rgb.r==r &&
- quant->mc_colors[idx].rgb.g==g &&
- quant->mc_colors[idx].rgb.b==b) {
- break;
- }
- }
-
- if(idx >= alloced) { /* if we haven't already, we */
- idx=alloced++; /* add the colour to the map */
- if(quant->mc_size < alloced) {
- mm_log((1,"Tried to allocate more then %d colours.\n",
- quant->mc_size));
- return 0;
- }
- quant->mc_colors[idx].rgb.r=r;
- quant->mc_colors[idx].rgb.g=g;
- quant->mc_colors[idx].rgb.b=b;
- }
- *output=idx; /* fill output buffer */
- output++; /* with colour indexes */
- }
- }
- quant->mc_count = alloced;
- return 1;
-}
-
-#endif
-
static void translate_closest(i_quantize *quant, i_img *img, i_palidx *out) {
quant->perturb = 0;
translate_addi(quant, img, out);
int pdc;
} pbox;
-static void prescan(i_img **im,int count, int cnum, cvec *clr);
+static void prescan(i_img **im,int count, int cnum, cvec *clr, i_sample_t *line);
static void reorder(pbox prescan[512]);
static int pboxcmp(const pbox *a,const pbox *b);
static void boxcenter(int box,cvec *cv);
static int
pixbox(i_color *ic) { return ((ic->channel[0] & 224)<<1)+ ((ic->channel[1]&224)>>2) + ((ic->channel[2] &224) >> 5); }
+static int
+pixbox_ch(i_sample_t *chans) { return ((chans[0] & 224)<<1)+ ((chans[1]&224)>>2) + ((chans[2] &224) >> 5); }
+
static unsigned char
g_sat(int in) {
if (in>255) { return 255; }
int
eucl_d(cvec* cv,i_color *cl) { return PWR2(cv->r-cl->channel[0])+PWR2(cv->g-cl->channel[1])+PWR2(cv->b-cl->channel[2]); }
+static
+int
+eucl_d_ch(cvec* cv,i_sample_t *chans) {
+ return PWR2(cv->r - chans[0]) + PWR2(cv->g - chans[1])
+ + PWR2(cv->b - chans[2]);
+}
+
static
int
ceucl_d(i_color *c1, i_color *c2) { return PWR2(c1->channel[0]-c2->channel[0])+PWR2(c1->channel[1]-c2->channel[1])+PWR2(c1->channel[2]-c2->channel[2]); }
+static const int
+gray_samples[] = { 0, 0, 0 };
+
/*
This quantization algorithm and implementation routines are by Arnar
makemap_addi(i_quantize *quant, i_img **imgs, int count) {
cvec *clr;
int cnum, i, x, y, bst_idx=0, ld, cd, iter, currhb, img_num;
- i_color val;
+ i_sample_t *val;
float dlt, accerr;
hashbox *hb;
+ i_mempool mp;
+ int maxwidth = 0;
+ i_sample_t *line;
+ const int *sample_indices;
+
+ mm_log((1, "makemap_addi(quant %p { mc_count=%d, mc_colors=%p }, imgs %p, count %d)\n",
+ quant, quant->mc_count, quant->mc_colors, imgs, count));
+
+ i_mempool_init(&mp);
- clr = (cvec *)mymalloc(sizeof(cvec) * quant->mc_size);
- hb = mymalloc(sizeof(hashbox) * 512);
+ clr = i_mempool_alloc(&mp, sizeof(cvec) * quant->mc_size);
+ hb = i_mempool_alloc(&mp, sizeof(hashbox) * 512);
for (i=0; i < quant->mc_count; ++i) {
clr[i].r = quant->mc_colors[i].rgb.r;
clr[i].g = quant->mc_colors[i].rgb.g;
}
/* mymalloc doesn't clear memory, so I think we need this */
for (; i < quant->mc_size; ++i) {
+ /*clr[i].r = clr[i].g = clr[i].b = 0;*/
+ clr[i].dr = 0;
+ clr[i].dg = 0;
+ clr[i].db = 0;
clr[i].fixed = 0;
clr[i].mcount = 0;
}
cnum = quant->mc_size;
dlt = 1;
- prescan(imgs, count, cnum, clr);
+ for (img_num = 0; img_num < count; ++img_num) {
+ if (imgs[img_num]->xsize > maxwidth)
+ maxwidth = imgs[img_num]->xsize;
+ }
+ line = i_mempool_alloc(&mp, 3 * maxwidth * sizeof(*line));
+
+ prescan(imgs, count, cnum, clr, line);
cr_hashindex(clr, cnum, hb);
for(iter=0;iter<3;iter++) {
for (img_num = 0; img_num < count; ++img_num) {
i_img *im = imgs[img_num];
- for(y=0;y<im->ysize;y++) for(x=0;x<im->xsize;x++) {
- ld=196608;
- i_gpix(im,x,y,&val);
- currhb=pixbox(&val);
- /* printf("box = %d \n",currhb); */
- for(i=0;i<hb[currhb].cnt;i++) {
- /* printf("comparing: pix (%d,%d,%d) vec (%d,%d,%d)\n",val.channel[0],val.channel[1],val.channel[2],clr[hb[currhb].vec[i]].r,clr[hb[currhb].vec[i]].g,clr[hb[currhb].vec[i]].b); */
-
- cd=eucl_d(&clr[hb[currhb].vec[i]],&val);
- if (cd<ld) {
- ld=cd; /* shortest distance yet */
- bst_idx=hb[currhb].vec[i]; /* index of closest vector yet */
- }
- }
-
- clr[bst_idx].mcount++;
- accerr+=(ld);
- clr[bst_idx].dr+=val.channel[0];
- clr[bst_idx].dg+=val.channel[1];
- clr[bst_idx].db+=val.channel[2];
+ sample_indices = im->channels >= 3 ? NULL : gray_samples;
+ for(y=0;y<im->ysize;y++) {
+ i_gsamp(im, 0, im->xsize, y, line, sample_indices, 3);
+ val = line;
+ for(x=0;x<im->xsize;x++) {
+ ld=196608;
+ /*i_gpix(im,x,y,&val);*/
+ currhb=pixbox_ch(val);
+ /* printf("box = %d \n",currhb); */
+ for(i=0;i<hb[currhb].cnt;i++) {
+ /* printf("comparing: pix (%d,%d,%d) vec (%d,%d,%d)\n",val.channel[0],val.channel[1],val.channel[2],clr[hb[currhb].vec[i]].r,clr[hb[currhb].vec[i]].g,clr[hb[currhb].vec[i]].b); */
+
+ cd=eucl_d_ch(&clr[hb[currhb].vec[i]],val);
+ if (cd<ld) {
+ ld=cd; /* shortest distance yet */
+ bst_idx=hb[currhb].vec[i]; /* index of closest vector yet */
+ }
+ }
+
+ clr[bst_idx].mcount++;
+ accerr+=(ld);
+ clr[bst_idx].dr+=val[0];
+ clr[bst_idx].dg+=val[1];
+ clr[bst_idx].db+=val[2];
+
+ val += 3; /* next 3 samples (next pixel) */
+ }
}
}
- for(i=0;i<cnum;i++) if (clr[i].mcount) { clr[i].dr/=clr[i].mcount; clr[i].dg/=clr[i].mcount; clr[i].db/=clr[i].mcount; }
-
+
+ for(i=0;i<cnum;i++)
+ if (clr[i].mcount) {
+ clr[i].dr/=clr[i].mcount;
+ clr[i].dg/=clr[i].mcount;
+ clr[i].db/=clr[i].mcount;
+ }
+
/* for(i=0;i<cnum;i++) printf("vec(%d)=(%d,%d,%d) dest=(%d,%d,%d) matchcount=%d\n",
- i,clr[i].r,clr[i].g,clr[i].b,clr[i].dr,clr[i].dg,clr[i].db,clr[i].mcount); */
-
+ i,clr[i].r,clr[i].g,clr[i].b,clr[i].dr,clr[i].dg,clr[i].db,clr[i].mcount); */
+
/* printf("total error: %.2f\n",sqrt(accerr)); */
-
+
for(i=0;i<cnum;i++) {
if (clr[i].fixed) continue; /* skip reserved colors */
-
+
if (clr[i].mcount) {
- clr[i].used = 1;
- clr[i].r=clr[i].r*(1-dlt)+dlt*clr[i].dr;
- clr[i].g=clr[i].g*(1-dlt)+dlt*clr[i].dg;
- clr[i].b=clr[i].b*(1-dlt)+dlt*clr[i].db;
+ clr[i].used = 1;
+ clr[i].r=clr[i].r*(1-dlt)+dlt*clr[i].dr;
+ clr[i].g=clr[i].g*(1-dlt)+dlt*clr[i].dg;
+ clr[i].b=clr[i].b*(1-dlt)+dlt*clr[i].db;
} else {
- /* let's try something else */
- clr[i].used = 0;
- clr[i].r=rand();
- clr[i].g=rand();
- clr[i].b=rand();
+ /* let's try something else */
+ clr[i].used = 0;
+ clr[i].r=rand();
+ clr[i].g=rand();
+ clr[i].b=rand();
}
-
+
clr[i].dr=0;
clr[i].dg=0;
clr[i].db=0;
quant->mc_count = cnum;
#endif
- /* don't want to keep this */
- myfree(hb);
- myfree(clr);
+#if 0
+ mm_log((1, "makemap_addi returns - quant.mc_count = %d\n", quant->mc_count));
+ for (i = 0; i < quant->mc_count; ++i)
+ mm_log((5, " map entry %d: (%d, %d, %d)\n", i, clr[i].r, clr[i].g, clr[i].b));
+#endif
+
+ i_mempool_destroy(&mp);
}
typedef struct {
#define MED_CUT_INDEX(c) ((((c).rgb.r & 0xF8) << 7) | \
(((c).rgb.g & 0xF8) << 2) | (((c).rgb.b & 0xF8) >> 3))
+#define MED_CUT_GRAY_INDEX(c) ((((c).rgb.r & 0xF8) << 7) | \
+ (((c).rgb.r & 0xF8) << 2) | (((c).rgb.r & 0xF8) >> 3))
+
/* scale these to cover the whole range */
#define MED_CUT_RED(index) ((((index) & 0x7C00) >> 10) * 255 / 31)
#define MED_CUT_GREEN(index) ((((index) & 0x3E0) >> 5) * 255 / 31)
medcut_partition *parts;
int part_num;
int in, out;
+ /* number of channels we search for the best channel to partition
+ this isn't terribly efficient, but it should work */
+ int chan_count;
/*printf("images %d pal size %d\n", count, quant->mc_size);*/
/* build the stats */
total_pixels = 0;
+ chan_count = 1; /* assume we just have grayscale */
for (imgn = 0; imgn < count; ++imgn) {
total_pixels += imgs[imgn]->xsize * imgs[imgn]->ysize;
for (y = 0; y < imgs[imgn]->ysize; ++y) {
i_glin(imgs[imgn], 0, imgs[imgn]->xsize, y, line);
- for (x = 0; x < imgs[imgn]->xsize; ++x) {
- ++colors[MED_CUT_INDEX(line[x])].count;
+ if (imgs[imgn]->channels > 2) {
+ chan_count = 3;
+ for (x = 0; x < imgs[imgn]->xsize; ++x) {
+ ++colors[MED_CUT_INDEX(line[x])].count;
+ }
+ }
+ else {
+ /* a gray-scale image, just use the first channel */
+ for (x = 0; x < imgs[imgn]->xsize; ++x) {
+ ++colors[MED_CUT_GRAY_INDEX(line[x])].count;
+ }
}
}
}
one color */
max_size = -1;
for (i = 0; i < color_count; ++i) {
- for (ch = 0; ch < 3; ++ch) {
+ for (ch = 0; ch < chan_count; ++ch) {
if (parts[i].width[ch] > max_size
&& parts[i].size > 1) {
max_index = i;
CF_SETUP;
- if (pixdev) {
- k=0;
- for(y=0;y<img->ysize;y++) for(x=0;x<img->xsize;x++) {
- i_gpix(img,x,y,&val);
- val.channel[0]=g_sat(val.channel[0]+(int)(pixdev*frandn()));
- val.channel[1]=g_sat(val.channel[1]+(int)(pixdev*frandn()));
- val.channel[2]=g_sat(val.channel[2]+(int)(pixdev*frandn()));
- CF_FIND;
- out[k++]=bst_idx;
+ if (img->channels >= 3) {
+ if (pixdev) {
+ k=0;
+ for(y=0;y<img->ysize;y++) for(x=0;x<img->xsize;x++) {
+ i_gpix(img,x,y,&val);
+ val.channel[0]=g_sat(val.channel[0]+(int)(pixdev*frandn()));
+ val.channel[1]=g_sat(val.channel[1]+(int)(pixdev*frandn()));
+ val.channel[2]=g_sat(val.channel[2]+(int)(pixdev*frandn()));
+ CF_FIND;
+ out[k++]=bst_idx;
+ }
+ } else {
+ k=0;
+ for(y=0;y<img->ysize;y++) for(x=0;x<img->xsize;x++) {
+ i_gpix(img,x,y,&val);
+ CF_FIND;
+ out[k++]=bst_idx;
+ }
}
- } else {
- k=0;
- for(y=0;y<img->ysize;y++) for(x=0;x<img->xsize;x++) {
- i_gpix(img,x,y,&val);
- CF_FIND;
- out[k++]=bst_idx;
+ }
+ else {
+ if (pixdev) {
+ k=0;
+ for(y=0;y<img->ysize;y++) for(x=0;x<img->xsize;x++) {
+ i_gpix(img,x,y,&val);
+ val.channel[1] = val.channel[2] =
+ val.channel[0]=g_sat(val.channel[0]+(int)(pixdev*frandn()));
+ CF_FIND;
+ out[k++]=bst_idx;
+ }
+ } else {
+ k=0;
+ for(y=0;y<img->ysize;y++) for(x=0;x<img->xsize;x++) {
+ i_gpix(img,x,y,&val);
+ val.channel[1] = val.channel[2] = val.channel[0];
+ CF_FIND;
+ out[k++]=bst_idx;
+ }
}
}
CF_CLEANUP;
long ld, cd;
errdiff_t perr;
i_gpix(img, x, y, &val);
+ if (img->channels < 3) {
+ val.channel[1] = val.channel[2] = val.channel[0];
+ }
perr = err[x+mapo];
perr.r = perr.r < 0 ? -((-perr.r)/difftotal) : perr.r/difftotal;
perr.g = perr.g < 0 ? -((-perr.g)/difftotal) : perr.g/difftotal;
and that result is used as the initial value for the vectores */
-static void prescan(i_img **imgs,int count, int cnum, cvec *clr) {
+static void prescan(i_img **imgs,int count, int cnum, cvec *clr, i_sample_t *line) {
int i,k,j,x,y;
- i_color val;
+ i_sample_t *val;
+ const int *chans;
pbox prebox[512];
for(i=0;i<512;i++) {
/* process each image */
for (i = 0; i < count; ++i) {
i_img *im = imgs[i];
- for(y=0;y<im->ysize;y++) for(x=0;x<im->xsize;x++) {
- i_gpix(im,x,y,&val);
- prebox[pixbox(&val)].pixcnt++;
+ chans = im->channels >= 3 ? NULL : gray_samples;
+ for(y=0;y<im->ysize;y++) {
+ i_gsamp(im, 0, im->xsize, y, line, chans, 3);
+ val = line;
+ for(x=0;x<im->xsize;x++) {
+ prebox[pixbox_ch(val)].pixcnt++;
+ }
}
}
bbox(boxnum,&r0,&r1,&g0,&g1,&b0,&b1);
- mr=max(abs(b-b0),abs(b-b1));
- mg=max(abs(g-g0),abs(g-g1));
- mb=max(abs(r-r0),abs(r-r1));
+ mr=i_max(abs(b-b0),abs(b-b1));
+ mg=i_max(abs(g-g0),abs(g-g1));
+ mb=i_max(abs(r-r0),abs(r-r1));
return PWR2(mr)+PWR2(mg)+PWR2(mb);
}
if (r0<=r && r<=r1 && g0<=g && g<=g1 && b0<=b && b<=b1) return 0;
- mr=min(abs(b-b0),abs(b-b1));
- mg=min(abs(g-g0),abs(g-g1));
- mb=min(abs(r-r0),abs(r-r1));
+ mr=i_min(abs(b-b0),abs(b-b1));
+ mg=i_min(abs(g-g0),abs(g-g1));
+ mb=i_min(abs(r-r0),abs(r-r1));
mr=PWR2(mr);
mg=PWR2(mg);
i_palidx trans_index)
{
int x, y;
+ i_sample_t *line = mymalloc(img->xsize * sizeof(i_sample_t));
+ int trans_chan = img->channels > 2 ? 3 : 1;
for (y = 0; y < img->ysize; ++y) {
+ i_gsamp(img, 0, img->xsize, y, line, &trans_chan, 1);
for (x = 0; x < img->xsize; ++x) {
- i_color val;
- i_gpix(img, x, y, &val);
- if (val.rgba.a < quant->tr_threshold)
+ if (line[x] < quant->tr_threshold)
data[y*img->xsize+x] = trans_index;
}
}
+ myfree(line);
}
static void
int errw, *err, *errp;
int difftotal, out, error;
int x, y, dx, dy, i;
+ i_sample_t *line;
+ int trans_chan = img->channels > 2 ? 3 : 1;
/* no custom map for transparency (yet) */
index = quant->tr_errdiff & ed_mask;
errp = err+mapo;
memset(err, 0, sizeof(*err) * maph * errw);
+ line = mymalloc(img->xsize * sizeof(i_sample_t));
difftotal = 0;
for (i = 0; i < maph * mapw; ++i)
difftotal += map[i];
for (y = 0; y < img->ysize; ++y) {
+ i_gsamp(img, 0, img->xsize, y, line, &trans_chan, 1);
for (x = 0; x < img->xsize; ++x) {
- i_color val;
- i_gpix(img, x, y, &val);
- val.rgba.a = g_sat(val.rgba.a-errp[x]/difftotal);
- if (val.rgba.a < 128) {
+ line[x] = g_sat(line[x]-errp[x]/difftotal);
+ if (line[x] < 128) {
out = 0;
data[y*img->xsize+x] = trans_index;
}
else {
out = 255;
}
- error = out - val.rgba.a;
+ error = out - line[x];
for (dx = 0; dx < mapw; ++dx) {
for (dy = 0; dy < maph; ++dy) {
errp[x+dx-mapo+dy*errw] += error * map[dx+mapw*dy];
memcpy(err+dy*errw, err+(dy+1)*errw, sizeof(*err)*errw);
memset(err+(maph-1)*errw, 0, sizeof(*err)*errw);
}
+ myfree(err);
+ myfree(line);
}
/* builtin ordered dither maps */
-unsigned char orddith_maps[][64] =
+static unsigned char
+orddith_maps[][64] =
{
{ /* random
this is purely random - it's pretty awful
{
unsigned char *spot;
int x, y;
+ i_sample_t *line;
+ int trans_chan = img->channels > 2 ? 3 : 1;
if (quant->tr_orddith == od_custom)
spot = quant->tr_custom;
else
spot = orddith_maps[quant->tr_orddith];
+
+ line = mymalloc(img->xsize * sizeof(i_sample_t));
for (y = 0; y < img->ysize; ++y) {
+ i_gsamp(img, 0, img->xsize, y, line, &trans_chan, 1);
for (x = 0; x < img->xsize; ++x) {
- i_color val;
- i_gpix(img, x, y, &val);
- if (val.rgba.a < spot[(x&7)+(y&7)*8])
+ if (line[x] < spot[(x&7)+(y&7)*8])
data[x+y*img->xsize] = trans_index;
}
}
+ myfree(line);
}
+