#include "image.h"
+#include "imagei.h"
#include <stdlib.h>
#include <math.h>
i_contrast(im, 0.8);
i_hardinvert(im);
+ i_unsharp_mask(im, 2.0, 1.0);
// and more
=head1 DESCRIPTION
Some of these functions are internal.
-=over 4
+=over
=cut
*/
+/*
+=item saturate(in)
+
+Clamps the input value between 0 and 255. (internal)
+
+ in - input integer
+
+=cut
+*/
+
+static
+unsigned char
+saturate(int in) {
+ if (in>255) { return 255; }
+ else if (in>0) return in;
+ return 0;
+}
mm_log((1, "i_bumpmap: channel = %d while bump image only has %d channels\n", channel, bump->channels));
return;
}
-
+
mx = (bump->xsize <= im->xsize) ? bump->xsize : im->xsize;
my = (bump->ysize <= im->ysize) ? bump->ysize : im->ysize;
i_img_empty_ch(&new_im, im->xsize, im->ysize, im->channels);
-
+
aX = (light_x > (mx >> 1)) ? light_x : mx - light_x;
aY = (light_y > (my >> 1)) ? light_y : my - light_y;
+
+typedef struct {
+ float x,y,z;
+} fvec;
+
+
+static
+float
+dotp(fvec *a, fvec *b) {
+ return a->x*b->x+a->y*b->y+a->z*b->z;
+}
+
+static
+void
+normalize(fvec *a) {
+ double d = sqrt(dotp(a,a));
+ a->x /= d;
+ a->y /= d;
+ a->z /= d;
+}
+
+
+/*
+ positive directions:
+
+ x - right,
+ y - down
+ z - out of the plane
+
+ I = Ia + Ip*( cd*Scol(N.L) + cs*(R.V)^n )
+
+ Here, the variables are:
+
+ * Ia - ambient colour
+ * Ip - intensity of the point light source
+ * cd - diffuse coefficient
+ * Scol - surface colour
+ * cs - specular coefficient
+ * n - objects shinyness
+ * N - normal vector
+ * L - lighting vector
+ * R - reflection vector
+ * V - vision vector
+
+ static void fvec_dump(fvec *x) {
+ printf("(%.2f %.2f %.2f)", x->x, x->y, x->z);
+ }
+*/
+
+/* XXX: Should these return a code for success? */
+
+
+
+
+/*
+=item i_bumpmap_complex(im, bump, channel, tx, ty, Lx, Ly, Lz, Ip, cd, cs, n, Ia, Il, Is)
+
+Makes a bumpmap on image im using the bump image as the elevation map.
+
+ im - target image
+ bump - image that contains the elevation info
+ channel - to take the elevation information from
+ tx - shift in x direction of where to start applying bumpmap
+ ty - shift in y direction of where to start applying bumpmap
+ Lx - x position/direction of light
+ Ly - y position/direction of light
+ Lz - z position/direction of light
+ Ip - light intensity
+ cd - diffuse coefficient
+ cs - specular coefficient
+ n - surface shinyness
+ Ia - ambient colour
+ Il - light colour
+ Is - specular colour
+
+if z<0 then the L is taken to be the direction the light is shining in. Otherwise
+the L is taken to be the position of the Light, Relative to the image.
+
+=cut
+*/
+
+
+void
+i_bumpmap_complex(i_img *im,
+ i_img *bump,
+ int channel,
+ int tx,
+ int ty,
+ float Lx,
+ float Ly,
+ float Lz,
+ float cd,
+ float cs,
+ float n,
+ i_color *Ia,
+ i_color *Il,
+ i_color *Is) {
+ i_img new_im;
+
+ int inflight;
+ int x, y, ch;
+ int mx, Mx, my, My;
+
+ float cdc[MAXCHANNELS];
+ float csc[MAXCHANNELS];
+
+ i_color x1_color, y1_color, x2_color, y2_color;
+
+ i_color Scol; /* Surface colour */
+
+ fvec L; /* Light vector */
+ fvec N; /* surface normal */
+ fvec R; /* Reflection vector */
+ fvec V; /* Vision vector */
+
+ mm_log((1, "i_bumpmap_complex(im %p, bump %p, channel %d, tx %d, ty %d, Lx %.2f, Ly %.2f, Lz %.2f, cd %.2f, cs %.2f, n %.2f, Ia %p, Il %p, Is %p)\n",
+ im, bump, channel, tx, ty, Lx, Ly, Lz, cd, cs, n, Ia, Il, Is));
+
+ if (channel >= bump->channels) {
+ mm_log((1, "i_bumpmap_complex: channel = %d while bump image only has %d channels\n", channel, bump->channels));
+ return;
+ }
+
+ for(ch=0; ch<im->channels; ch++) {
+ cdc[ch] = (float)Il->channel[ch]*cd/255.f;
+ csc[ch] = (float)Is->channel[ch]*cs/255.f;
+ }
+
+ mx = 1;
+ my = 1;
+ Mx = bump->xsize-1;
+ My = bump->ysize-1;
+
+ V.x = 0;
+ V.y = 0;
+ V.z = 1;
+
+ if (Lz < 0) { /* Light specifies a direction vector, reverse it to get the vector from surface to light */
+ L.x = -Lx;
+ L.y = -Ly;
+ L.z = -Lz;
+ normalize(&L);
+ } else { /* Light is the position of the light source */
+ inflight = 0;
+ L.x = -0.2;
+ L.y = -0.4;
+ L.z = 1;
+ normalize(&L);
+ }
+
+ i_img_empty_ch(&new_im, im->xsize, im->ysize, im->channels);
+
+ for(y = 0; y < im->ysize; y++) {
+ for(x = 0; x < im->xsize; x++) {
+ double dp1, dp2;
+ double dx = 0, dy = 0;
+
+ /* Calculate surface normal */
+ if (mx<x && x<Mx && my<y && y<My) {
+ i_gpix(bump, x + 1, y, &x1_color);
+ i_gpix(bump, x - 1, y, &x2_color);
+ i_gpix(bump, x, y + 1, &y1_color);
+ i_gpix(bump, x, y - 1, &y2_color);
+ dx = x2_color.channel[channel] - x1_color.channel[channel];
+ dy = y2_color.channel[channel] - y1_color.channel[channel];
+ } else {
+ dx = 0;
+ dy = 0;
+ }
+ N.x = -dx * 0.015;
+ N.y = -dy * 0.015;
+ N.z = 1;
+ normalize(&N);
+
+ /* Calculate Light vector if needed */
+ if (Lz>=0) {
+ L.x = Lx - x;
+ L.y = Ly - y;
+ L.z = Lz;
+ normalize(&L);
+ }
+
+ dp1 = dotp(&L,&N);
+ R.x = -L.x + 2*dp1*N.x;
+ R.y = -L.y + 2*dp1*N.y;
+ R.z = -L.z + 2*dp1*N.z;
+
+ dp2 = dotp(&R,&V);
+
+ dp1 = dp1<0 ?0 : dp1;
+ dp2 = pow(dp2<0 ?0 : dp2,n);
+
+ i_gpix(im, x, y, &Scol);
+
+ for(ch = 0; ch < im->channels; ch++)
+ Scol.channel[ch] =
+ saturate( Ia->channel[ch] + cdc[ch]*Scol.channel[ch]*dp1 + csc[ch]*dp2 );
+
+ i_ppix(&new_im, x, y, &Scol);
+ }
+ }
+
+ i_copyto(im, &new_im, 0, 0, (int)im->xsize, (int)im->ysize, 0, 0);
+ i_img_exorcise(&new_im);
+}
+
+
/*
=item i_postlevels(im, levels)
}
}
-/*
-=item saturate(in)
-
-Clamps the input value between 0 and 255. (internal)
-
- in - input integer
-
-=cut
-*/
-
-static
-unsigned char
-saturate(int in) {
- if (in>255) { return 255; }
- else if (in>0) return in;
- return 0;
-}
-
/*
=item i_watermark(im, wmark, tx, ty, pixdiff)
int vx, vy, ch;
i_color val, wval;
- for(vx=0;vx<128;vx++) for(vy=0;vy<110;vy++) {
+ int mx = wmark->xsize;
+ int my = wmark->ysize;
+
+ for(vx=0;vx<mx;vx++) for(vy=0;vy<my;vy++) {
i_gpix(im, tx+vx, ty+vy,&val );
i_gpix(wmark, vx, vy, &wval);
fdist[p] = xd*xd + yd*yd; /* euclidean distance */
break;
case 2: /* euclidean squared */
- fdist[p] = max(xd*xd, yd*yd); /* manhattan distance */
+ fdist[p] = i_max(xd*xd, yd*yd); /* manhattan distance */
break;
default:
m_fatal(3,"i_gradgen: Unknown distance measure\n");
}
i_ppix(im, x, y, &val);
}
+ myfree(fdist);
}
mindist = xd*xd + yd*yd; /* euclidean distance */
break;
case 2: /* euclidean squared */
- mindist = max(xd*xd, yd*yd); /* manhattan distance */
+ mindist = i_max(xd*xd, yd*yd); /* manhattan distance */
break;
default:
m_fatal(3,"i_nearest_color: Unknown distance measure\n");
curdist = xd*xd + yd*yd; /* euclidean distance */
break;
case 2: /* euclidean squared */
- curdist = max(xd*xd, yd*yd); /* manhattan distance */
+ curdist = i_max(xd*xd, yd*yd); /* manhattan distance */
break;
default:
m_fatal(3,"i_nearest_color: Unknown distance measure\n");
mindist = xd*xd + yd*yd; /* euclidean distance */
break;
case 2: /* euclidean squared */
- mindist = max(xd*xd, yd*yd); /* manhattan distance */
+ mindist = i_max(xd*xd, yd*yd); /* manhattan distance */
break;
default:
m_fatal(3,"i_nearest_color: Unknown distance measure\n");
curdist = xd*xd + yd*yd; /* euclidean distance */
break;
case 2: /* euclidean squared */
- curdist = max(xd*xd, yd*yd); /* manhattan distance */
+ curdist = i_max(xd*xd, yd*yd); /* manhattan distance */
break;
default:
m_fatal(3,"i_nearest_color: Unknown distance measure\n");
}
/*
- Keep state information used by each type of fountain fill
+=item i_unsharp_mask(im, stddev, scale)
+
+Perform an usharp mask, which is defined as subtracting the blurred
+image from double the original.
+
+=cut
*/
-struct fount_state {
- /* precalculated for the equation of the line perpendicular to the line AB */
- double lA, lB, lC;
- double AB;
- double sqrtA2B2;
- double mult;
- double cos;
- double sin;
- double theta;
- int xa, ya;
- void *ssample_data;
-};
+void i_unsharp_mask(i_img *im, double stddev, double scale) {
+ i_img copy;
+ int x, y, ch;
+
+ if (scale < 0)
+ return;
+ /* it really shouldn't ever be more than 1.0, but maybe ... */
+ if (scale > 100)
+ scale = 100;
+
+ i_copy(©, im);
+ i_gaussian(©, stddev);
+ if (im->bits == i_8_bits) {
+ i_color *blur = mymalloc(im->xsize * sizeof(i_color) * 2);
+ i_color *out = blur + im->xsize;
+
+ for (y = 0; y < im->ysize; ++y) {
+ i_glin(©, 0, copy.xsize, y, blur);
+ i_glin(im, 0, im->xsize, y, out);
+ for (x = 0; x < im->xsize; ++x) {
+ for (ch = 0; ch < im->channels; ++ch) {
+ /*int temp = out[x].channel[ch] +
+ scale * (out[x].channel[ch] - blur[x].channel[ch]);*/
+ int temp = out[x].channel[ch] * 2 - blur[x].channel[ch];
+ if (temp < 0)
+ temp = 0;
+ else if (temp > 255)
+ temp = 255;
+ out[x].channel[ch] = temp;
+ }
+ }
+ i_plin(im, 0, im->xsize, y, out);
+ }
+
+ myfree(blur);
+ }
+ else {
+ i_fcolor *blur = mymalloc(im->xsize * sizeof(i_fcolor) * 2);
+ i_fcolor *out = blur + im->xsize;
+
+ for (y = 0; y < im->ysize; ++y) {
+ i_glinf(©, 0, copy.xsize, y, blur);
+ i_glinf(im, 0, im->xsize, y, out);
+ for (x = 0; x < im->xsize; ++x) {
+ for (ch = 0; ch < im->channels; ++ch) {
+ double temp = out[x].channel[ch] +
+ scale * (out[x].channel[ch] - blur[x].channel[ch]);
+ if (temp < 0)
+ temp = 0;
+ else if (temp > 1.0)
+ temp = 1.0;
+ out[x].channel[ch] = temp;
+ }
+ }
+ i_plinf(im, 0, im->xsize, y, out);
+ }
+
+ myfree(blur);
+ }
+ i_img_exorcise(©);
+}
+
+/*
+=item i_diff_image(im1, im2, mindiff)
+
+Creates a new image that is transparent, except where the pixel in im2
+is different from im1, where it is the pixel from im2.
+
+The samples must differ by at least mindiff to be considered different.
+=cut
+*/
+
+i_img *
+i_diff_image(i_img *im1, i_img *im2, int mindiff) {
+ i_img *out;
+ int outchans, diffchans;
+ int xsize, ysize;
+ i_img temp;
+
+ i_clear_error();
+ if (im1->channels != im2->channels) {
+ i_push_error(0, "different number of channels");
+ return NULL;
+ }
+
+ outchans = diffchans = im1->channels;
+ if (outchans == 1 || outchans == 3)
+ ++outchans;
+
+ xsize = i_min(im1->xsize, im2->xsize);
+ ysize = i_min(im1->ysize, im2->ysize);
+
+ out = i_sametype_chans(im1, xsize, ysize, outchans);
+
+ if (im1->bits == i_8_bits && im2->bits == i_8_bits) {
+ i_color *line1 = mymalloc(2 * xsize * sizeof(*line1));
+ i_color *line2 = line1 + xsize;
+ i_color empty;
+ int x, y, ch;
+
+ for (ch = 0; ch < MAXCHANNELS; ++ch)
+ empty.channel[ch] = 0;
+
+ for (y = 0; y < ysize; ++y) {
+ i_glin(im1, 0, xsize, y, line1);
+ i_glin(im2, 0, xsize, y, line2);
+ if (outchans != diffchans) {
+ /* give the output an alpha channel since it doesn't have one */
+ for (x = 0; x < xsize; ++x)
+ line2[x].channel[diffchans] = 255;
+ }
+ for (x = 0; x < xsize; ++x) {
+ int diff = 0;
+ for (ch = 0; ch < diffchans; ++ch) {
+ if (line1[x].channel[ch] != line2[x].channel[ch]
+ && abs(line1[x].channel[ch] - line2[x].channel[ch]) > mindiff) {
+ diff = 1;
+ break;
+ }
+ }
+ if (!diff)
+ line2[x] = empty;
+ }
+ i_plin(out, 0, xsize, y, line2);
+ }
+ myfree(line1);
+ }
+ else {
+ i_fcolor *line1 = mymalloc(2 * xsize * sizeof(*line1));
+ i_fcolor *line2 = line1 + xsize;
+ i_fcolor empty;
+ int x, y, ch;
+ double dist = mindiff / 255;
+
+ for (ch = 0; ch < MAXCHANNELS; ++ch)
+ empty.channel[ch] = 0;
+
+ for (y = 0; y < ysize; ++y) {
+ i_glinf(im1, 0, xsize, y, line1);
+ i_glinf(im2, 0, xsize, y, line2);
+ if (outchans != diffchans) {
+ /* give the output an alpha channel since it doesn't have one */
+ for (x = 0; x < xsize; ++x)
+ line2[x].channel[diffchans] = 1.0;
+ }
+ for (x = 0; x < xsize; ++x) {
+ int diff = 0;
+ for (ch = 0; ch < diffchans; ++ch) {
+ if (line1[x].channel[ch] != line2[x].channel[ch]
+ && abs(line1[x].channel[ch] - line2[x].channel[ch]) > dist) {
+ diff = 1;
+ break;
+ }
+ }
+ if (!diff)
+ line2[x] = empty;
+ }
+ i_plinf(out, 0, xsize, y, line2);
+ }
+ myfree(line1);
+ }
+
+ return out;
+}
+
+struct fount_state;
static double linear_fount_f(double x, double y, struct fount_state *state);
static double bilinear_fount_f(double x, double y, struct fount_state *state);
static double radial_fount_f(double x, double y, struct fount_state *state);
fount_r_tri_both,
};
-static int simple_ssample(i_fcolor *out, double parm, double x, double y,
- struct fount_state *state,
- fount_func ffunc, fount_repeat rpfunc,
- i_fountain_seg *segs, int count);
-static int random_ssample(i_fcolor *out, double parm, double x, double y,
- struct fount_state *state,
- fount_func ffunc, fount_repeat rpfunc,
- i_fountain_seg *segs, int count);
-static int circle_ssample(i_fcolor *out, double parm, double x, double y,
- struct fount_state *state,
- fount_func ffunc, fount_repeat rpfunc,
- i_fountain_seg *segs, int count);
-typedef int (*fount_ssample)(i_fcolor *out, double parm, double x, double y,
- struct fount_state *state,
- fount_func ffunc, fount_repeat rpfunc,
- i_fountain_seg *segs, int count);
+static int simple_ssample(i_fcolor *out, double x, double y,
+ struct fount_state *state);
+static int random_ssample(i_fcolor *out, double x, double y,
+ struct fount_state *state);
+static int circle_ssample(i_fcolor *out, double x, double y,
+ struct fount_state *state);
+typedef int (*fount_ssample)(i_fcolor *out, double x, double y,
+ struct fount_state *state);
static fount_ssample fount_ssamples[] =
{
NULL,
};
static int
-fount_getat(i_fcolor *out, double x, double y, fount_func ffunc,
- fount_repeat rpfunc, struct fount_state *state,
- i_fountain_seg *segs, int count);
+fount_getat(i_fcolor *out, double x, double y, struct fount_state *state);
+
+/*
+ Keep state information used by each type of fountain fill
+*/
+struct fount_state {
+ /* precalculated for the equation of the line perpendicular to the line AB */
+ double lA, lB, lC;
+ double AB;
+ double sqrtA2B2;
+ double mult;
+ double cos;
+ double sin;
+ double theta;
+ int xa, ya;
+ void *ssample_data;
+ fount_func ffunc;
+ fount_repeat rpfunc;
+ fount_ssample ssfunc;
+ double parm;
+ i_fountain_seg *segs;
+ int count;
+};
+
+static void
+fount_init_state(struct fount_state *state, double xa, double ya,
+ double xb, double yb, i_fountain_type type,
+ i_fountain_repeat repeat, int combine, int super_sample,
+ double ssample_param, int count, i_fountain_seg *segs);
+
+static void
+fount_finish_state(struct fount_state *state);
#define EPSILON (1e-6)
int combine, int super_sample, double ssample_param,
int count, i_fountain_seg *segs) {
struct fount_state state;
- fount_func ffunc;
- fount_ssample ssfunc;
- fount_repeat rpfunc;
int x, y;
i_fcolor *line = mymalloc(sizeof(i_fcolor) * im->xsize);
+ i_fcolor *work = NULL;
+
+ i_fountain_seg *my_segs;
+ i_fill_combine_f combine_func = NULL;
+ i_fill_combinef_f combinef_func = NULL;
+
+ i_get_combine(combine, &combine_func, &combinef_func);
+ if (combinef_func)
+ work = mymalloc(sizeof(i_fcolor) * im->xsize);
+
+ fount_init_state(&state, xa, ya, xb, yb, type, repeat, combine,
+ super_sample, ssample_param, count, segs);
+ my_segs = state.segs;
+
+ for (y = 0; y < im->ysize; ++y) {
+ i_glinf(im, 0, im->xsize, y, line);
+ for (x = 0; x < im->xsize; ++x) {
+ i_fcolor c;
+ int got_one;
+ if (super_sample == i_fts_none)
+ got_one = fount_getat(&c, x, y, &state);
+ else
+ got_one = state.ssfunc(&c, x, y, &state);
+ if (got_one) {
+ if (combine)
+ work[x] = c;
+ else
+ line[x] = c;
+ }
+ }
+ if (combine)
+ combinef_func(line, work, im->channels, im->xsize);
+ i_plinf(im, 0, im->xsize, y, line);
+ }
+ fount_finish_state(&state);
+ if (work) myfree(work);
+ myfree(line);
+}
+
+typedef struct {
+ i_fill_t base;
+ struct fount_state state;
+} i_fill_fountain_t;
+
+static void
+fill_fountf(i_fill_t *fill, int x, int y, int width, int channels,
+ i_fcolor *data);
+static void
+fount_fill_destroy(i_fill_t *fill);
+
+/*
+=item i_new_fount(xa, ya, xb, yb, type, repeat, combine, super_sample, ssample_param, count, segs)
+
+Creates a new general fill which fills with a fountain fill.
+
+=cut
+*/
+
+i_fill_t *
+i_new_fill_fount(double xa, double ya, double xb, double yb,
+ i_fountain_type type, i_fountain_repeat repeat,
+ int combine, int super_sample, double ssample_param,
+ int count, i_fountain_seg *segs) {
+ i_fill_fountain_t *fill = mymalloc(sizeof(i_fill_fountain_t));
+
+ fill->base.fill_with_color = NULL;
+ fill->base.fill_with_fcolor = fill_fountf;
+ fill->base.destroy = fount_fill_destroy;
+ if (combine)
+ i_get_combine(combine, &fill->base.combine, &fill->base.combinef);
+ else {
+ fill->base.combine = NULL;
+ fill->base.combinef = NULL;
+ }
+ fount_init_state(&fill->state, xa, ya, xb, yb, type, repeat, combine,
+ super_sample, ssample_param, count, segs);
+
+ return &fill->base;
+}
+
+/*
+=back
+
+=head1 INTERNAL FUNCTIONS
+
+=over
+
+=item fount_init_state(...)
+
+Used by both the fountain fill filter and the fountain fill.
+
+=cut
+*/
+
+static void
+fount_init_state(struct fount_state *state, double xa, double ya,
+ double xb, double yb, i_fountain_type type,
+ i_fountain_repeat repeat, int combine, int super_sample,
+ double ssample_param, int count, i_fountain_seg *segs) {
int i, j;
i_fountain_seg *my_segs = mymalloc(sizeof(i_fountain_seg) * count);
- int have_alpha = im->channels == 2 || im->channels == 4;
- int ch;
-
+ /*int have_alpha = im->channels == 2 || im->channels == 4;*/
+
+ memset(state, 0, sizeof(*state));
/* we keep a local copy that we can adjust for speed */
for (i = 0; i < count; ++i) {
i_fountain_seg *seg = my_segs + i;
*seg = segs[i];
- if (seg->type < 0 || type >= i_ft_end)
- seg->type = i_ft_linear;
+ if (seg->type < 0 || seg->type >= i_fst_end)
+ seg->type = i_fst_linear;
if (seg->color < 0 || seg->color >= i_fc_end)
seg->color = i_fc_direct;
if (seg->color == i_fc_hue_up || seg->color == i_fc_hue_down) {
/* initialize each engine */
/* these are so common ... */
- state.lA = xb - xa;
- state.lB = yb - ya;
- state.AB = sqrt(state.lA * state.lA + state.lB * state.lB);
- state.xa = xa;
- state.ya = ya;
+ state->lA = xb - xa;
+ state->lB = yb - ya;
+ state->AB = sqrt(state->lA * state->lA + state->lB * state->lB);
+ state->xa = xa;
+ state->ya = ya;
switch (type) {
default:
type = i_ft_linear; /* make the invalid value valid */
case i_ft_linear:
case i_ft_bilinear:
- state.lC = ya * ya - ya * yb + xa * xa - xa * xb;
- state.mult = 1;
- state.mult = 1/linear_fount_f(xb, yb, &state);
+ state->lC = ya * ya - ya * yb + xa * xa - xa * xb;
+ state->mult = 1;
+ state->mult = 1/linear_fount_f(xb, yb, state);
break;
case i_ft_radial:
- state.mult = 1.0 / sqrt((double)(xb-xa)*(xb-xa)
- + (double)(yb-ya)*(yb-ya));
+ state->mult = 1.0 / sqrt((double)(xb-xa)*(xb-xa)
+ + (double)(yb-ya)*(yb-ya));
break;
case i_ft_radial_square:
- state.cos = state.lA / state.AB;
- state.sin = state.lB / state.AB;
- state.mult = 1.0 / state.AB;
+ state->cos = state->lA / state->AB;
+ state->sin = state->lB / state->AB;
+ state->mult = 1.0 / state->AB;
break;
case i_ft_revolution:
- state.theta = atan2(yb-ya, xb-xa);
- state.mult = 1.0 / (PI * 2);
+ state->theta = atan2(yb-ya, xb-xa);
+ state->mult = 1.0 / (PI * 2);
break;
case i_ft_conical:
- state.theta = atan2(yb-ya, xb-xa);
- state.mult = 1.0 / PI;
+ state->theta = atan2(yb-ya, xb-xa);
+ state->mult = 1.0 / PI;
break;
}
- ffunc = fount_funcs[type];
+ state->ffunc = fount_funcs[type];
if (super_sample < 0
- || super_sample >= (sizeof(fount_ssamples)/sizeof(*fount_ssamples))) {
+ || super_sample >= (int)(sizeof(fount_ssamples)/sizeof(*fount_ssamples))) {
super_sample = 0;
}
- state.ssample_data = NULL;
+ state->ssample_data = NULL;
switch (super_sample) {
case i_fts_grid:
ssample_param = floor(0.5 + sqrt(ssample_param));
- state.ssample_data = mymalloc(sizeof(i_fcolor) * ssample_param * ssample_param);
+ state->ssample_data = mymalloc(sizeof(i_fcolor) * ssample_param * ssample_param);
break;
case i_fts_random:
case i_fts_circle:
ssample_param = floor(0.5+ssample_param);
- state.ssample_data = mymalloc(sizeof(i_fcolor) * ssample_param);
+ state->ssample_data = mymalloc(sizeof(i_fcolor) * ssample_param);
break;
}
- ssfunc = fount_ssamples[super_sample];
+ state->parm = ssample_param;
+ state->ssfunc = fount_ssamples[super_sample];
if (repeat < 0 || repeat >= (sizeof(fount_repeats)/sizeof(*fount_repeats)))
repeat = 0;
- rpfunc = fount_repeats[repeat];
-
- for (y = 0; y < im->ysize; ++y) {
- i_glinf(im, 0, im->xsize, y, line);
- for (x = 0; x < im->xsize; ++x) {
- i_fcolor c;
- int got_one;
- double v;
- if (super_sample == i_fts_none)
- got_one = fount_getat(&c, x, y, ffunc, rpfunc, &state, my_segs, count);
- else
- got_one = ssfunc(&c, ssample_param, x, y, &state, ffunc, rpfunc,
- my_segs, count);
- if (got_one) {
- i_fountain_seg *seg = my_segs + i;
- if (combine) {
- for (ch = 0; ch < im->channels; ++ch) {
- line[x].channel[ch] = line[x].channel[ch] * (1.0 - c.channel[3])
- + c.channel[ch] * c.channel[3];
- }
- }
- else
- line[x] = c;
- }
- }
- i_plinf(im, 0, im->xsize, y, line);
- }
- myfree(line);
- myfree(my_segs);
- if (state.ssample_data)
- myfree(state.ssample_data);
+ state->rpfunc = fount_repeats[repeat];
+ state->segs = my_segs;
+ state->count = count;
}
-/*
-=back
-
-=head1 INTERNAL FUNCTIONS
+static void
+fount_finish_state(struct fount_state *state) {
+ if (state->ssample_data)
+ myfree(state->ssample_data);
+ myfree(state->segs);
+}
-=over
+/*
=item fount_getat(out, x, y, ffunc, rpfunc, state, segs, count)
Evaluates the fountain fill at the given point.
*/
static int
-fount_getat(i_fcolor *out, double x, double y, fount_func ffunc,
- fount_repeat rpfunc, struct fount_state *state,
- i_fountain_seg *segs, int count) {
- double v = rpfunc(ffunc(x, y, state));
+fount_getat(i_fcolor *out, double x, double y, struct fount_state *state) {
+ double v = (state->rpfunc)((state->ffunc)(x, y, state));
int i;
i = 0;
- while (i < count && (v < segs[i].start || v > segs[i].end)) {
+ while (i < state->count
+ && (v < state->segs[i].start || v > state->segs[i].end)) {
++i;
}
- if (i < count) {
- v = (fount_interps[segs[i].type])(v, segs+i);
- (fount_cinterps[segs[i].color])(out, v, segs+i);
+ if (i < state->count) {
+ v = (fount_interps[state->segs[i].type])(v, state->segs+i);
+ (fount_cinterps[state->segs[i].color])(out, v, state->segs+i);
return 1;
}
else
=cut
*/
static int
-simple_ssample(i_fcolor *out, double parm, double x, double y,
- struct fount_state *state,
- fount_func ffunc, fount_repeat rpfunc, i_fountain_seg *segs,
- int count) {
+simple_ssample(i_fcolor *out, double x, double y, struct fount_state *state) {
i_fcolor *work = state->ssample_data;
int dx, dy;
- int grid = parm;
+ int grid = state->parm;
double base = -0.5 + 0.5 / grid;
double step = 1.0 / grid;
int ch, i;
for (dx = 0; dx < grid; ++dx) {
for (dy = 0; dy < grid; ++dy) {
if (fount_getat(work+samp_count, x + base + step * dx,
- y + base + step * dy, ffunc, rpfunc, state,
- segs, count)) {
+ y + base + step * dy, state)) {
++samp_count;
}
}
=cut
*/
static int
-random_ssample(i_fcolor *out, double parm, double x, double y,
- struct fount_state *state,
- fount_func ffunc, fount_repeat rpfunc, i_fountain_seg *segs,
- int count) {
+random_ssample(i_fcolor *out, double x, double y,
+ struct fount_state *state) {
i_fcolor *work = state->ssample_data;
int i, ch;
- int maxsamples = parm;
+ int maxsamples = state->parm;
double rand_scale = 1.0 / RAND_MAX;
int samp_count = 0;
for (i = 0; i < maxsamples; ++i) {
if (fount_getat(work+samp_count, x - 0.5 + rand() * rand_scale,
- y - 0.5 + rand() * rand_scale, ffunc, rpfunc, state,
- segs, count)) {
+ y - 0.5 + rand() * rand_scale, state)) {
++samp_count;
}
}
=cut
*/
static int
-circle_ssample(i_fcolor *out, double parm, double x, double y,
- struct fount_state *state,
- fount_func ffunc, fount_repeat rpfunc, i_fountain_seg *segs,
- int count) {
+circle_ssample(i_fcolor *out, double x, double y,
+ struct fount_state *state) {
i_fcolor *work = state->ssample_data;
int i, ch;
- int maxsamples = parm;
+ int maxsamples = state->parm;
double angle = 2 * PI / maxsamples;
double radius = 0.3; /* semi-random */
int samp_count = 0;
for (i = 0; i < maxsamples; ++i) {
if (fount_getat(work+samp_count, x + radius * cos(angle * i),
- y + radius * sin(angle * i), ffunc, rpfunc, state,
- segs, count)) {
+ y + radius * sin(angle * i), state)) {
++samp_count;
}
}
return v > 1.0 ? 2.0 - v : v;
}
+/*
+=item fill_fountf(fill, x, y, width, channels, data)
+
+The fill function for fountain fills.
+
+=cut
+*/
+static void
+fill_fountf(i_fill_t *fill, int x, int y, int width, int channels,
+ i_fcolor *data) {
+ i_fill_fountain_t *f = (i_fill_fountain_t *)fill;
+
+ while (width--) {
+ i_fcolor c;
+ int got_one;
+
+ if (f->state.ssfunc)
+ got_one = f->state.ssfunc(&c, x, y, &f->state);
+ else
+ got_one = fount_getat(&c, x, y, &f->state);
+
+ *data++ = c;
+
+ ++x;
+ }
+}
+
+/*
+=item fount_fill_destroy(fill)
+
+=cut
+*/
+static void
+fount_fill_destroy(i_fill_t *fill) {
+ i_fill_fountain_t *f = (i_fill_fountain_t *)fill;
+ fount_finish_state(&f->state);
+}
+
/*
=back