=head1 DESCRIPTION
-=head2 transform
+=head2 transform()
The C<transform()> function can be used to generate spatial warps and
rotations and such effects. It only operates on a single image and
C<transform()> needs expressions (or opcodes) that determine the
source pixel for each target pixel. Source expressions are infix
expressions using any of the +, -, *, / or ** binary operators, the -
-unary operator, ( and ) for grouping and the sin() and cos()
+unary operator, ( and ) for grouping and the C<sin()> and C<cos()>
functions. The target pixel is input as the variables x and y.
-You specify the x and y expressions as xexpr and yexpr respectively.
+You specify the x and y expressions as C<xexpr> and C<yexpr> respectively.
You can also specify opcodes directly, but that's magic deep enough
that you can look at the source code.
function is just as fast and is more likely to be enhanced and
maintained.
+ $new_img=$img->transform(xexpr=>'x',yexpr=>'y+10*sin((x+y)/10)')
+ $new_img=$img->transform(xexpr=>'x+0.1*y+5*sin(y/10.0+1.57)',
+ yexpr=>'y+10*sin((x+y-0.785)/10)')
-=head2 transform2
+=head2 transform2()
Imager also supports a C<transform2()> class method which allows you
perform a more general set of operations, rather than just specifying
a spatial transformation as with the transform() method, you can also
-perform colour transformations, image synthesis and image
+perform color transformations, image synthesis and image
combinations from multiple source images.
C<transform2()> takes an reference to an options hash, and a list of
constants - a reference to hash of constants to define for the
expression engine. Some extra constants are defined by Imager
-=back
+=item *
-The tranformation function is specified using either the expr or
-rpnexpr member of the options.
+channels - the number of channels in the output image. If this isn't
+supplied a 3 channel image will be created.
-=over
+=back
+
+The transformation function is specified using either the C<expr> or
+C<rpnexpr> member of the options.
-=item Infix expressions
+=head3 Infix expressions
-You can supply infix expressions to transform 2 with the expr keyword.
+You can supply infix expressions to transform 2 with the C<expr> keyword.
-$opts{expr} = 'return getp1(w-x, h-y)'
+ $opts{expr} = 'return getp1(w-x, h-y)'
The 'expression' supplied follows this general grammar:
A more complex example might be:
-$opts{expr} = 'pix = getp1(x,y); return if(value(pix)>0.8,pix*0.8,pix)'
+ $opts{expr} = 'pix = getp1(x,y); return if(value(pix)>0.8,pix*0.8,pix)'
-Currently to use infix expressions you must have the Parse::RecDescent
+Currently to use infix expressions you must have the L<Parse::RecDescent>
module installed (available from CPAN). There is also what might be a
significant delay the first time you run the infix expression parser
due to the compilation of the expression grammar.
-=item Postfix expressions
+=head3 Postfix expressions
You can supply postfix or reverse-polish notation expressions to
-transform2() through the rpnexpr keyword.
+transform2() through the C<rpnexpr> keyword.
-The parser for rpnexpr emulates a stack machine, so operators will
+The parser for C<rpnexpr> emulates a stack machine, so operators will
expect to see their parameters on top of the stack. A stack machine
isn't actually used during the image transformation itself.
You can store the value at the top of the stack in a variable called
-foo using !foo and retrieve that value again using @foo. The !foo
+C<foo> using C<!foo> and retrieve that value again using @foo. The !foo
notation will pop the value from the stack.
An example equivalent to the infix expression above:
$opts{rpnexpr} = 'x y getp1 !pix @pix value 0.8 gt @pix 0.8 * @pix ifp'
-=back
+At the end of the expression there should be a single pixel value left
+on the stack, which is used as the output pixel.
+
+=head3 Operators
transform2() has a fairly rich range of operators.
+Each entry below includes the usage with C<rpnexpr>, formatted as:
+
+=over
+
+I<operand> I<operand> ... B<I<operator>> -- I<result>
+
+=back
+
+If the operand or result begins with "N" it is a numeric value, if it
+begins with "C" it is a color or pixel value.
+
=over
=item +, *, -, /, %, **
multiplication, addition, subtraction, division, remainder and
exponentiation. Multiplication, addition and subtraction can be used
-on colour values too - though you need to be careful - adding 2 white
-values together and multiplying by 0.5 will give you grey, not white.
+on color values too - though you need to be careful - adding 2 white
+values together and multiplying by 0.5 will give you gray, not white.
Division by zero (or a small number) just results in a large number.
Modulo zero (or a small number) results in zero. % is implemented
using fmod() so you can use this to take a value mod a floating point
value.
+=for stopwords N1 N2 N uminus
+
+C<rpnexpr> usage:
+
+=over
+
+I<N1> I<N2> B<+> -- I<N>
+
+I<N1> I<N2> B<*> -- I<N>
+
+I<N1> I<N2> B<-> -- I<N>
+
+I<N1> I<N2> B</> -- I<N>
+
+I<N1> I<N2> B<**> -- I<N>
+
+I<N1> B<uminus> -- I<N>
+
+=back
+
=item sin(N), cos(N), atan2(y,x)
Some basic trig functions. They work in radians, so you can't just
use the hue values.
+=for stopwords Ny Nx atan2
+
+C<rpnexpr> usage:
+
+=over
+
+I<N> B<sin> -- I<N>
+
+I<N> B<cos> -- I<N>
+
+I<Ny> I<Nx> B<atan2> -- I<N>
+
+=back
+
=item distance(x1, y1, x2, y2)
Find the distance between two points. This is handy (along with
atan2()) for producing circular effects.
+=for stopwords Nx1 Ny1 Nx2 Ny2
+
+C<rpnexpr> usage:
+
+=over
+
+I<Nx1> I<Ny1> I<Nx2> I<Ny2> B<distance> -- I<N>
+
+=back
+
=item sqrt(n)
Find the square root. I haven't had much use for this since adding
the distance() function.
+C<rpnexpr> usage:
+
+=over
+
+I<N> B<sqrt> -- I<N>
+
+=back
+
=item abs(n)
Find the absolute value.
+C<rpnexpr> usage:
+
+=over
+
+I<N> B<abs> -- I<N>
+
+=back
+
=item getp1(x,y), getp2(x,y), getp3(x, y)
Get the pixel at position (x,y) from the first, second or third image
prevents static checking of the instructions against the number of
images actually passed in.
-=item value(c), hue(c), sat(c), hsv(h,s,v)
+=for stopwords getp1 getp2 getp3
+
+C<rpnexpr> usage:
-Separates a colour value into it's value (brightness), hue (colour)
+=over
+
+I<Nx> I<Ny> B<getp1> -- I<C>
+
+I<Nx> I<Ny> B<getp2> -- I<C>
+
+I<Nx> I<Ny> B<getp3> -- I<C>
+
+=back
+
+=item value(c), hue(c), sat(c), hsv(h,s,v), hsva(h,s,v,alpha)
+
+Separates a color value into it's value (brightness), hue (color)
and saturation elements. Use hsv() to put them back together (after
-suitable manipulation).
+suitable manipulation), or hsva() to include a transparency value.
+
+=for stopwords Nh Ns Nv hsv hsva Nr Ng Nb rgb rgba
+
+C<rpnexpr> usage:
+
+=over
+
+I<C> B<value> -- I<N>
+
+I<C> B<hue> -- I<N>
+
+I<C> B<sat> -- I<N>
+
+I<Nh> I<Ns> I<Nv> B<hsv> -- I<C>
+
+I<Nh> I<Ns> I<Nv> I<Na> B<hsva> -- I<C>
+
+=back
+
+=item red(c), green(c), blue(c), rgb(r,g,b), rgba(r,g,b,a)
+
+Separates a color value into it's red, green and blue colors. Use
+rgb(r,g,b) to put it back together, or rgba() to include a
+transparency value.
+
+C<rpnexpr> usage:
+
+=over
+
+I<C> B<red> -- I<N>
+
+I<C> B<green> -- I<N>
+
+I<C> B<blue> -- I<N>
+
+I<Nr> I<Ng> I<Nb> B<rgb> -- I<C>
+
+I<Nr> I<Ng> I<Nb> I<Na> B<rgba> -- I<C>
+
+=back
+
+=item alpha(c)
-=item red(c), green(c), blue(c), rgb(r,g,b)
+Retrieve the alpha value from a color.
-Separates a colour value into it's red, green and blue colours. Use
-rgb(r,g,b) to put it back together.
+C<rpnexpr> usage:
+
+=over
+
+I<C> B<alpha> -- I<N>
+
+=back
=item int(n)
Convert a value to an integer. Uses a C int cast, so it may break on
large values.
+C<rpnexpr> usage:
+
+=over
+
+I<N> B<int> -- I<N>
+
+=back
+
=item if(cond,ntrue,nfalse), if(cond,ctrue,cfalse)
A simple (and inefficient) if function.
+=for stopwords Ncond ifp
+
+C<rpnexpr> usage:
+
+=over
+
+I<Ncond> I<N-true-result> I<N-false-result> B<if> -- I<N>
+
+I<Ncond> I<C-true-result> I<C-false-result> B<if> -- I<C>
+
+I<Ncond> I<C-true-result> I<C-false-result> B<ifp> -- I<C>
+
+=back
+
=item <=,<,==,>=,>,!=
Relational operators (typically used with if()). Since we're working
with floating point values the equalities are 'near equalities' - an
epsilon value is used.
+=over
+
+I<N1> I<N2> B<< <= >> -- I<N>
+
+I<N1> I<N2> B<< < >> -- I<N>
+
+I<N1> I<N2> B<< >= >> -- I<N>
+
+I<N1> I<N2> B<< > >> -- I<N>
+
+I<N1> I<N2> B<< == >> -- I<N>
+
+I<N1> I<N2> B<< != >> -- I<N>
+
+=back
+
=item &&, ||, not(n)
Basic logical operators.
+C<rpnexpr> usage:
+
+=over
+
+I<N1> I<N2> B<and> -- I<N>
+
+I<N1> I<N2> B<or> -- I<N>
+
+I<N> B<not> -- I<N>
+
+=back
+
+=item log(n), exp(n)
+
+Natural logarithm and exponential.
+
+C<rpnexpr> usage:
+
+=over
+
+I<N> B<log> -- I<N>
+
+I<N> B<exp> -- I<N>
+
+=back
+
+=item det(a, b, c, d)
+
+Calculate the determinant of the 2 x 2 matrix;
+
+ a b
+ c d
+
+=for stopwords Na Nv Nc Nd det
+
+C<rpnexpr> usage:
+
+=over
+
+I<Na> I<Nb> I<Nc> I<Nd> B<det> -- I<N>
+
+=back
+
+=back
+
+=head3 Constants
+
+transform2() defines the following constants:
+
+=over
+
+=item C<pi>
+
+The classical constant.
+
+=item C<w>
+
+=item C<h>
+
+The width and height of the output image.
+
+=item C<cx>
+
+=item C<cy>
+
+The center of the output image.
+
+=item C<w>I<image number>
+
+=item C<h>I<image number>
+
+The width and height of each of the input images, C<w1> is the width
+of the first input image and so on.
+
+=item C<cx>I<image number>
+
+=item C<cy>I<image number>
+
+The center of each of the input images, (C<cx1>, C<cy1>) is the center
+of the first input image and so on.
+
=back
A few examples:
=over
-=item rpnexpr=>'x 25 % 15 * y 35 % 10 * getp1 !pat x y getp1 !pix @pix sat 0.7 gt @pat @pix ifp'
+ rpnexpr=>'x 25 % 15 * y 35 % 10 * getp1 !pat x y getp1 !pix @pix sat 0.7 gt @pat @pix ifp'
tiles a smaller version of the input image over itself where the
-colour has a saturation over 0.7.
+color has a saturation over 0.7.
-=item rpnexpr=>'x 25 % 15 * y 35 % 10 * getp1 !pat y 360 / !rat x y getp1 1 @rat - pmult @pat @rat pmult padd'
+ rpnexpr=>'x 25 % 15 * y 35 % 10 * getp1 !pat y 360 / !rat x y getp1 1 @rat - pmult @pat @rat pmult padd'
tiles the input image over itself so that at the top of the image the
full-size image is at full strength and at the bottom the tiling is
most visible.
-=item rpnexpr=>'x y getp1 !pix @pix value 0.96 gt @pix sat 0.1 lt and 128 128 255 rgb @pix ifp'
+ rpnexpr=>'x y getp1 !pix @pix value 0.96 gt @pix sat 0.1 lt and 128 128 255 rgb @pix ifp'
replace pixels that are white or almost white with a palish blue
-=item rpnexpr=>'x 35 % 10 * y 45 % 8 * getp1 !pat x y getp1 !pix @pix sat 0.2 lt @pix value 0.9 gt and @pix @pat @pix value 2 / 0.5 + pmult ifp'
+ rpnexpr=>'x 35 % 10 * y 45 % 8 * getp1 !pat x y getp1 !pix @pix sat 0.2 lt @pix value 0.9 gt and @pix @pat @pix value 2 / 0.5 + pmult ifp'
-Tiles the input image overitself where the image isn't white or almost
+Tiles the input image over it self where the image isn't white or almost
white.
-=item rpnexpr=>'x y 160 180 distance !d y 180 - x 160 - atan2 !a @d 10 / @a + 3.1416 2 * % !a2 @a2 180 * 3.1416 / 1 @a2 sin 1 + 2 / hsv'
+ rpnexpr=>'x y 160 180 distance !d y 180 - x 160 - atan2 !a @d 10 / @a + 3.1416 2 * % !a2 @a2 180 * 3.1416 / 1 @a2 sin 1 + 2 / hsv'
Produces a spiral.
-=item rpnexpr=>'x y 160 180 distance !d y 180 - x 160 - atan2 !a @d 10 / @a + 3.1416 2 * % !a2 @a 180 * 3.1416 / 1 @a2 sin 1 + 2 / hsv'
+ rpnexpr=>'x y 160 180 distance !d y 180 - x 160 - atan2 !a @d 10 / @a + 3.1416 2 * % !a2 @a 180 * 3.1416 / 1 @a2 sin 1 + 2 / hsv'
-A spiral built on top of a colour wheel.
+A spiral built on top of a color wheel.
=back
For details on expression parsing see L<Imager::Expr>. For details on
the virtual machine used to transform the images, see
-L<Imager::regmach.pod>.
+L<Imager::regmach>.
# generate a colorful spiral
# requires that Parse::RecDescent be installed
EOS
});
+ # replace green portions of an image with another image
+ my $newimg = Imager::transform2({
+ rpnexpr => <<EOS
+ x y getp2 !pat # used to replace green portions
+ x y getp1 !pix # source with "green screen"
+ @pix red 10 lt @pix blue 10 lt && # low blue and red
+ @pix green 254 gt && # and high green
+ @pat @pix ifp
+ EOS
+ }, $source, $background);
+
=head2 Matrix Transformations
+=over
+
+=item matrix_transform()
+
Rather than having to write code in a little language, you can use a
matrix to perform affine transformations, using the matrix_transform()
method:
0, 0, 1 ]);
By default the output image will be the same size as the input image,
-but you can supply the xsize and ysize parameters to change the size.
+but you can supply the C<xsize> and C<ysize> parameters to change the
+size.
Rather than building matrices by hand you can use the Imager::Matrix2d
module to build the matrices. This class has methods to allow you to
co-ordinates within the B<destination> image to the co-ordinates
within the I<source> image. This can be confusing.
-Since Imager has 3 different fairly general ways of transforming an
-image spatially, this method also has a yatf() alias. Yet Another
-Transformation Function.
+You can also supply a C<back> argument which acts as a background
+color for the areas of the image with no samples available (outside
+the rectangle of the source image.) This can be either an
+Imager::Color or Imager::Color::Float object. This is B<not> mixed
+transparent pixels in the middle of the source image, it is B<only>
+used for pixels where there is no corresponding pixel in the source
+image.
+
+=back
+
+=head1 AUTHOR
+
+Tony Cook <tonyc@cpan.org>, Arnar M. Hrafnkelsson
=cut