/* Render utilities */ #include "imager.h" #define RENDER_MAGIC 0x765AE typedef void (*render_color_f)(i_render *, i_img_dim, i_img_dim, i_img_dim, unsigned char const *src, i_color const *color); #define i_has_alpha(channels) ((channels) == 2 || (channels) == 4) #define i_color_channels(channels) (i_has_alpha(channels) ? (channels)-1 : (channels)) #code static void IM_SUFFIX(render_color_alpha)(i_render *r, i_img_dim x, i_img_dim y, i_img_dim width, unsigned char const *src, i_color const *color); static void IM_SUFFIX(render_color_13)(i_render *r, i_img_dim x, i_img_dim y, i_img_dim width, unsigned char const *src, i_color const *color); static render_color_f IM_SUFFIX(render_color_tab)[] = { NULL, IM_SUFFIX(render_color_13), IM_SUFFIX(render_color_alpha), IM_SUFFIX(render_color_13), IM_SUFFIX(render_color_alpha), }; static void IM_SUFFIX(combine_line_noalpha)(IM_COLOR *out, IM_COLOR const *in, int channels, i_img_dim count); static void IM_SUFFIX(combine_line_alpha)(IM_COLOR *out, IM_COLOR const *in, int channels, i_img_dim count); /* the copy variant copies the source alpha to the the output alpha channel */ static void IM_SUFFIX(combine_line_alpha_na)(IM_COLOR *out, IM_COLOR const *in, int channels, i_img_dim count); static void IM_SUFFIX(combine_line)(IM_COLOR *out, IM_COLOR const *in, int channels, i_img_dim count); static void IM_SUFFIX(combine_line_na)(IM_COLOR *out, IM_COLOR const *in, int channels, i_img_dim count); #/code /* =item i_render_new(im, width) =category Blit tools Allocate a new C object and initialize it. =cut */ i_render * i_render_new(i_img *im, i_img_dim width) { i_render *r = mymalloc(sizeof(i_render)); i_render_init(r, im, width); return r; } /* =item i_render_delete(r) =category Blit tools Release an C object. =cut */ void i_render_delete(i_render *r) { i_render_done(r); myfree(r); } void i_render_init(i_render *r, i_img *im, i_img_dim width) { r->magic = RENDER_MAGIC; r->im = im; r->line_width = width; r->line_8 = NULL; r->line_double = NULL; r->fill_width = width; r->fill_line_8 = NULL; r->fill_line_double = NULL; } void i_render_done(i_render *r) { if (r->line_8) myfree(r->line_8); if (r->line_double) myfree(r->line_double); if (r->fill_line_8) myfree(r->fill_line_8); if (r->fill_line_double) myfree(r->fill_line_double); r->magic = 0; } static void alloc_line(i_render *r, i_img_dim width, i_img_dim eight_bit) { if (width > r->line_width) { i_img_dim new_width = r->line_width * 2; if (new_width < width) new_width = width; if (eight_bit) { if (r->line_8) r->line_8 = myrealloc(r->line_8, sizeof(i_color) * new_width); else r->line_8 = mymalloc(sizeof(i_color) * new_width); if (r->line_double) { myfree(r->line_double); r->line_double = NULL; } } else { if (r->line_double) r->line_double = myrealloc(r->line_double, sizeof(i_fcolor) * new_width); else r->line_double = mymalloc(sizeof(i_fcolor) * new_width); if (r->line_8) { myfree(r->line_8); r->line_double = NULL; } } r->line_width = new_width; } else { if (eight_bit) { if (!r->line_8) r->line_8 = mymalloc(sizeof(i_color) * r->line_width); if (r->line_double) { myfree(r->line_double); r->line_double = NULL; } } else { if (!r->line_double) r->line_double = mymalloc(sizeof(i_fcolor) * r->line_width); if (r->line_8) { myfree(r->line_8); r->line_8 = NULL; } } } } static void alloc_fill_line(i_render *r, i_img_dim width, int eight_bit) { if (width > r->fill_width) { i_img_dim new_width = r->fill_width * 2; if (new_width < width) new_width = width; if (eight_bit) { if (r->line_8) r->fill_line_8 = myrealloc(r->fill_line_8, sizeof(i_color) * new_width); else r->fill_line_8 = mymalloc(sizeof(i_color) * new_width); if (r->fill_line_double) { myfree(r->fill_line_double); r->fill_line_double = NULL; } } else { if (r->fill_line_double) r->fill_line_double = myrealloc(r->fill_line_double, sizeof(i_fcolor) * new_width); else r->fill_line_double = mymalloc(sizeof(i_fcolor) * new_width); if (r->fill_line_8) { myfree(r->fill_line_8); r->fill_line_double = NULL; } } r->fill_width = new_width; } else { if (eight_bit) { if (!r->fill_line_8) r->fill_line_8 = mymalloc(sizeof(i_color) * r->fill_width); if (r->fill_line_double) { myfree(r->fill_line_double); r->fill_line_double = NULL; } } else { if (!r->fill_line_double) r->fill_line_double = mymalloc(sizeof(i_fcolor) * r->fill_width); if (r->fill_line_8) { myfree(r->fill_line_8); r->fill_line_8 = NULL; } } } } /* =item i_render_color(r, x, y, width, source, color) =category Blit tools Render the given color with the coverage specified by C to C. Renders in normal combine mode. =cut */ void i_render_color(i_render *r, i_img_dim x, i_img_dim y, i_img_dim width, unsigned char const *src, i_color const *color) { i_img *im = r->im; if (y < 0 || y >= im->ysize) return; if (x < 0) { width += x; src -= x; x = 0; } if (x + width > im->xsize) { width = im->xsize - x; } if (x >= im->xsize || x + width <= 0 || width <= 0) return; /* avoid as much work as we can */ while (width > 0 && *src == 0) { --width; ++src; ++x; } while (width > 0 && src[width-1] == 0) { --width; } if (!width) return; alloc_line(r, width, r->im->bits <= 8); #code r->im->bits <= 8 /*if (r->IM_SUFFIX(line) == NULL) r->IM_SUFFIX(line) = mymalloc(sizeof(IM_COLOR) * r->width);*/ (IM_SUFFIX(render_color_tab)[im->channels])(r, x, y, width, src, color); #/code } /* =item i_render_fill(r, x, y, width, source, fill) =category Blit tools Render the given fill with the coverage in C through C. =cut */ void i_render_fill(i_render *r, i_img_dim x, i_img_dim y, i_img_dim width, unsigned char const *src, i_fill_t *fill) { i_img *im = r->im; int fill_channels = im->channels; if (fill_channels == 1 || fill_channels == 3) ++fill_channels; if (y < 0 || y >= im->ysize) return; if (x < 0) { width += x; src -= x; x = 0; } if (x + width > im->xsize) { width = im->xsize - x; } if (x >= im->xsize || x + width <= 0 || width <= 0) return; if (src) { /* avoid as much work as we can */ while (width > 0 && *src == 0) { --width; ++src; ++x; } while (width > 0 && src[width-1] == 0) { --width; } } if (!width) return; alloc_line(r, width, r->im->bits <= 8 && fill->f_fill_with_color != NULL); alloc_fill_line(r, width, r->im->bits <= 8 && fill->f_fill_with_color != NULL); #code r->im->bits <= 8 && fill->f_fill_with_color if (IM_FILL_COMBINE(fill)) { IM_COLOR *srcc = r->IM_SUFFIX(fill_line); IM_COLOR *destc = r->IM_SUFFIX(line); IM_FILL_FILLER(fill)(fill, x, y, width, fill_channels, r->IM_SUFFIX(fill_line)); if (src) { unsigned char const *srcc = src; IM_COLOR *fillc = r->IM_SUFFIX(fill_line); i_img_dim work_width = width; while (work_width) { if (*srcc == 0) { fillc->channel[fill_channels-1] = 0; } else if (*srcc != 255) { fillc->channel[fill_channels-1] = fillc->channel[fill_channels-1] * *srcc / 255; } --work_width; ++srcc; ++fillc; } } IM_GLIN(r->im, x, x+width, y, r->IM_SUFFIX(line)); IM_FILL_COMBINE(fill)(destc, srcc, r->im->channels, width); } else { if (src) { i_img_dim work_width = width; IM_COLOR *srcc = r->IM_SUFFIX(fill_line); IM_COLOR *destc = r->IM_SUFFIX(line); int ch; IM_FILL_FILLER(fill)(fill, x, y, width, fill_channels, r->IM_SUFFIX(fill_line)); IM_GLIN(r->im, x, x+width, y, r->IM_SUFFIX(line)); while (work_width) { if (*src == 255) { /* just replace it */ *destc = *srcc; } else if (*src) { for (ch = 0; ch < im->channels; ++ch) { IM_WORK_T work = (destc->channel[ch] * (255 - *src) + srcc->channel[ch] * *src) / 255.0; destc->channel[ch] = IM_LIMIT(work); } } ++srcc; ++destc; ++src; --work_width; } } else { /* if (src) */ IM_FILL_FILLER(fill)(fill, x, y, width, fill_channels, r->IM_SUFFIX(line)); } } IM_PLIN(im, x, x+width, y, r->IM_SUFFIX(line)); #/code } #if 0 /* for debuggin */ static void dump_src(const char *note, unsigned char const *src, i_img_dim width) { i_img_dim i; printf("%s - %p/%" i_DF "\n", note, src, i_DFc(width)); for (i = 0; i < width; ++i) { printf("%02x ", src[i]); } putchar('\n'); } #endif #code /* =item i_render_line(r, x, y, width, source, fill) =category Blit tools Render the given fill with the coverage in C through C. =cut =item i_render_linef(r, x, y, width, source, fill) =category Blit tools Render the given fill with the coverage in C through C. =cut */ void IM_RENDER_LINE(i_render *r, i_img_dim x, i_img_dim y, i_img_dim width, const IM_SAMPLE_T *src, IM_COLOR *line, IM_FILL_COMBINE_F combine) { i_img *im = r->im; int src_chans = im->channels; /* src must always have an alpha channel */ if (src_chans == 1 || src_chans == 3) ++src_chans; if (y < 0 || y >= im->ysize) return; if (x < 0) { src -= x; line -= x; width += x; x = 0; } if (x + width > im->xsize) width = r->im->xsize - x; #ifdef IM_EIGHT_BIT alloc_line(r, width, 1); #else alloc_line(r, width, 0); #endif if (combine) { if (src) { i_img_dim work_width = width; IM_COLOR *linep = line; const IM_SAMPLE_T *srcp = src; int alpha_chan = src_chans - 1; while (work_width) { if (*srcp) { if (*srcp != IM_SAMPLE_MAX) linep->channel[alpha_chan] = linep->channel[alpha_chan] * *srcp / IM_SAMPLE_MAX; } else { linep->channel[alpha_chan] = 0; } --work_width; ++srcp; ++linep; } } IM_GLIN(im, x, x+width, y, r->IM_SUFFIX(line)); combine(r->IM_SUFFIX(line), line, im->channels, width); IM_PLIN(im, x, x+width, y, r->IM_SUFFIX(line)); } else { if (src) { i_img_dim work_width = width; IM_COLOR *srcc = line; IM_COLOR *destc = r->IM_SUFFIX(line); IM_GLIN(im, x, x+width, y, r->IM_SUFFIX(line)); while (work_width) { if (*src == 255) { /* just replace it */ *destc = *srcc; } else if (*src) { int ch; for (ch = 0; ch < im->channels; ++ch) { IM_WORK_T work = (destc->channel[ch] * (IM_SAMPLE_MAX - *src) + srcc->channel[ch] * *src) / IM_SAMPLE_MAX; destc->channel[ch] = IM_LIMIT(work); } } ++srcc; ++destc; ++src; --work_width; } IM_PLIN(im, x, x+width, y, r->IM_SUFFIX(line)); } else { IM_PLIN(im, x, x+width, y, line); } } } static void IM_SUFFIX(render_color_13)(i_render *r, i_img_dim x, i_img_dim y, i_img_dim width, unsigned char const *src, i_color const *color) { i_img *im = r->im; IM_COLOR *linep = r->IM_SUFFIX(line); int ch, channels = im->channels; i_img_dim fetch_offset; int color_alpha = color->channel[im->channels]; #undef STORE_COLOR #ifdef IM_EIGHT_BIT #define STORE_COLOR (*color) #else i_fcolor fcolor; for (ch = 0; ch < channels; ++ch) { fcolor.channel[ch] = color->channel[ch] / 255.0; } #define STORE_COLOR fcolor #endif fetch_offset = 0; if (color_alpha == 0xFF) { while (fetch_offset < width && *src == 0xFF) { *linep++ = STORE_COLOR; ++src; ++fetch_offset; } } IM_GLIN(im, x+fetch_offset, x+width, y, linep); while (fetch_offset < width) { #ifdef IM_EIGHT_BIT IM_WORK_T alpha = *src++ * color_alpha / 255; #else IM_WORK_T alpha = *src++ * color_alpha / (255.0 * 255.0); #endif if (alpha == IM_SAMPLE_MAX) *linep = STORE_COLOR; else if (alpha) { for (ch = 0; ch < channels; ++ch) { linep->channel[ch] = (linep->channel[ch] * (IM_SAMPLE_MAX - alpha) + STORE_COLOR.channel[ch] * alpha) / IM_SAMPLE_MAX; } } ++linep; ++fetch_offset; } IM_PLIN(im, x, x+width, y, r->IM_SUFFIX(line)); } static void IM_SUFFIX(render_color_alpha)(i_render *r, i_img_dim x, i_img_dim y, i_img_dim width, unsigned char const *src, i_color const *color) { IM_COLOR *linep = r->IM_SUFFIX(line); int ch; int alpha_channel = r->im->channels - 1; i_img_dim fetch_offset; int color_alpha = color->channel[alpha_channel]; #undef STORE_COLOR #ifdef IM_EIGHT_BIT #define STORE_COLOR (*color) #else i_fcolor fcolor; for (ch = 0; ch < r->im->channels; ++ch) { fcolor.channel[ch] = color->channel[ch] / 255.0; } #define STORE_COLOR fcolor #endif fetch_offset = 0; if (color->channel[alpha_channel] == 0xFF) { while (fetch_offset < width && *src == 0xFF) { *linep++ = STORE_COLOR; ++src; ++fetch_offset; } } IM_GLIN(r->im, x+fetch_offset, x+width, y, linep); while (fetch_offset < width) { #ifdef IM_EIGHT_BIT IM_WORK_T src_alpha = *src++ * color_alpha / 255; #else IM_WORK_T src_alpha = *src++ * color_alpha / (255.0 * 255.0); #endif if (src_alpha == IM_SAMPLE_MAX) *linep = STORE_COLOR; else if (src_alpha) { IM_WORK_T remains = IM_SAMPLE_MAX - src_alpha; IM_WORK_T orig_alpha = linep->channel[alpha_channel]; IM_WORK_T dest_alpha = src_alpha + (remains * orig_alpha) / IM_SAMPLE_MAX; for (ch = 0; ch < alpha_channel; ++ch) { linep->channel[ch] = ( src_alpha * STORE_COLOR.channel[ch] + remains * linep->channel[ch] * orig_alpha / IM_SAMPLE_MAX ) / dest_alpha; } linep->channel[alpha_channel] = dest_alpha; } ++linep; ++fetch_offset; } IM_PLIN(r->im, x, x+width, y, r->IM_SUFFIX(line)); #undef STORE_COLOR } /* combine a line of image data with an output line, both the input and output lines include an alpha channel. Both input and output lines have I of data, channels should be either 2 or 4. */ static void IM_SUFFIX(combine_line_alpha)(IM_COLOR *out, IM_COLOR const *in, int channels, i_img_dim count) { int ch; int alpha_channel = channels - 1; while (count) { IM_WORK_T src_alpha = in->channel[alpha_channel]; if (src_alpha == IM_SAMPLE_MAX) *out = *in; else if (src_alpha) { IM_WORK_T remains = IM_SAMPLE_MAX - src_alpha; IM_WORK_T orig_alpha = out->channel[alpha_channel]; IM_WORK_T dest_alpha = src_alpha + (remains * orig_alpha) / IM_SAMPLE_MAX; for (ch = 0; ch < alpha_channel; ++ch) { out->channel[ch] = ( src_alpha * in->channel[ch] + remains * out->channel[ch] * orig_alpha / IM_SAMPLE_MAX ) / dest_alpha; } out->channel[alpha_channel] = dest_alpha; } ++out; ++in; --count; } } /* combine a line of image data with an output line. The input line includes an alpha channel, the output line has no alpha channel. The input line has I+1 of color data. The output line has I of color data. */ static void IM_SUFFIX(combine_line_noalpha) (IM_COLOR *out, IM_COLOR const *in, int channels, i_img_dim count) { int ch; while (count) { IM_WORK_T src_alpha = in->channel[channels]; if (src_alpha == IM_SAMPLE_MAX) *out = *in; else if (src_alpha) { IM_WORK_T remains; remains = IM_SAMPLE_MAX - src_alpha; for (ch = 0; ch < channels; ++ch) { out->channel[ch] = ( in->channel[ch] * src_alpha + out->channel[ch] * remains) / IM_SAMPLE_MAX; } } ++out; ++in; --count; } } /* combine a line of image data with an output line, both the input and output lines include an alpha channel. Both input and output lines have I of data, channels should be either 2 or 4. This variant does not modify the output alpha channel. */ static void IM_SUFFIX(combine_line_alpha_na)(IM_COLOR *out, IM_COLOR const *in, int channels, i_img_dim count) { int ch; int alpha_channel = channels - 1; while (count) { IM_WORK_T src_alpha = in->channel[alpha_channel]; if (src_alpha == IM_SAMPLE_MAX) *out = *in; else if (src_alpha) { IM_WORK_T remains = IM_SAMPLE_MAX - src_alpha; IM_WORK_T orig_alpha = out->channel[alpha_channel]; IM_WORK_T dest_alpha = src_alpha + (remains * orig_alpha) / IM_SAMPLE_MAX; for (ch = 0; ch < alpha_channel; ++ch) { out->channel[ch] = ( src_alpha * in->channel[ch] + remains * out->channel[ch] * orig_alpha / IM_SAMPLE_MAX ) / dest_alpha; } } ++out; ++in; --count; } } static void IM_SUFFIX(combine_line)(IM_COLOR *out, IM_COLOR const *in, int channels, i_img_dim count) { if (channels == 2 || channels == 4) IM_SUFFIX(combine_line_alpha)(out, in, channels, count); else IM_SUFFIX(combine_line_noalpha)(out, in, channels, count); } static void IM_SUFFIX(combine_line_na)(IM_COLOR *out, IM_COLOR const *in, int channels, i_img_dim count) { if (channels == 2 || channels == 4) IM_SUFFIX(combine_line_alpha_na)(out, in, channels, count); else IM_SUFFIX(combine_line_noalpha)(out, in, channels, count); } static void IM_SUFFIX(combine_alphablend)(IM_COLOR *, IM_COLOR *, int, i_img_dim); static void IM_SUFFIX(combine_mult)(IM_COLOR *, IM_COLOR *, int, i_img_dim); static void IM_SUFFIX(combine_dissolve)(IM_COLOR *, IM_COLOR *, int, i_img_dim); static void IM_SUFFIX(combine_add)(IM_COLOR *, IM_COLOR *, int, i_img_dim); static void IM_SUFFIX(combine_subtract)(IM_COLOR *, IM_COLOR *, int, i_img_dim); static void IM_SUFFIX(combine_diff)(IM_COLOR *, IM_COLOR *, int, i_img_dim); static void IM_SUFFIX(combine_darken)(IM_COLOR *, IM_COLOR *, int, i_img_dim); static void IM_SUFFIX(combine_lighten)(IM_COLOR *, IM_COLOR *, int, i_img_dim); static void IM_SUFFIX(combine_hue)(IM_COLOR *, IM_COLOR *, int, i_img_dim); static void IM_SUFFIX(combine_sat)(IM_COLOR *, IM_COLOR *, int, i_img_dim); static void IM_SUFFIX(combine_value)(IM_COLOR *, IM_COLOR *, int, i_img_dim); static void IM_SUFFIX(combine_color)(IM_COLOR *, IM_COLOR *, int, i_img_dim); static const IM_FILL_COMBINE_F IM_SUFFIX(combines)[] = { NULL, IM_SUFFIX(combine_alphablend), IM_SUFFIX(combine_mult), IM_SUFFIX(combine_dissolve), IM_SUFFIX(combine_add), IM_SUFFIX(combine_subtract), IM_SUFFIX(combine_diff), IM_SUFFIX(combine_lighten), IM_SUFFIX(combine_darken), IM_SUFFIX(combine_hue), IM_SUFFIX(combine_sat), IM_SUFFIX(combine_value), IM_SUFFIX(combine_color) }; #/code /* =item i_get_combine(combine, color_func, fcolor_func) =cut */ void i_get_combine(int combine, i_fill_combine_f *color_func, i_fill_combinef_f *fcolor_func) { if (combine < 0 || combine >= sizeof(combines_8) / sizeof(*combines_8)) combine = 0; *color_func = combines_8[combine]; *fcolor_func = combines_double[combine]; } #code /* Three good references for implementing combining modes: http://www.w3.org/TR/2004/WD-SVG12-20041027/rendering.html referenced as [svg1.2] http://gimp-savvy.com/BOOK/index.html?node55.html ("The Blending Modes", if it changes) referenced as [savvy] http://www.pegtop.net/delphi/articles/blendmodes/ referenced as [pegtop] Where differences exist, I follow the SVG practice, the gimp practice, and lastly pegtop. */ static void IM_SUFFIX(combine_alphablend)(IM_COLOR *out, IM_COLOR *in, int channels, i_img_dim count) { IM_SUFFIX(combine_line)(out, in, channels, count); } /* Dca' = Sca.Dca + Sca.(1 - Da) + Dca.(1 - Sa) Da' = Sa.Da + Sa.(1 - Da) + Da.(1 - Sa) = Sa + Da - Sa.Da When Da=1 Dc' = Sc.Sa.Dc + Dc.(1 - Sa) */ static void IM_SUFFIX(combine_mult)(IM_COLOR *out, IM_COLOR *in, int channels, i_img_dim count) { int ch; IM_COLOR *inp = in; IM_COLOR *outp = out; i_img_dim work_count = count; int color_channels = i_color_channels(channels); if (i_has_alpha(channels)) { while (work_count--) { IM_WORK_T orig_alpha = outp->channel[color_channels]; IM_WORK_T src_alpha = inp->channel[color_channels]; if (src_alpha) { IM_WORK_T dest_alpha = src_alpha + orig_alpha - (src_alpha * orig_alpha) / IM_SAMPLE_MAX; for (ch = 0; ch < color_channels; ++ch) { outp->channel[ch] = (inp->channel[ch] * src_alpha * outp->channel[ch] / IM_SAMPLE_MAX * orig_alpha + inp->channel[ch] * src_alpha * (IM_SAMPLE_MAX - orig_alpha) + outp->channel[ch] * orig_alpha * (IM_SAMPLE_MAX - src_alpha)) / IM_SAMPLE_MAX / dest_alpha; } outp->channel[color_channels] = dest_alpha; } ++outp; ++inp; } } else { while (work_count--) { IM_WORK_T src_alpha = inp->channel[color_channels]; IM_WORK_T remains = IM_SAMPLE_MAX - src_alpha; if (src_alpha) { for (ch = 0; ch < color_channels; ++ch) { outp->channel[ch] = (src_alpha * inp->channel[ch] * outp->channel[ch] / IM_SAMPLE_MAX + outp->channel[ch] * remains) / IM_SAMPLE_MAX; } } ++outp; ++inp; } } } static void IM_SUFFIX(combine_dissolve)(IM_COLOR *out, IM_COLOR *in, int channels, i_img_dim count) { int color_channels = i_color_channels(channels); int ch; if (i_has_alpha(channels)) { while (count--) { if (in->channel[channels-1] > rand() * ((double)IM_SAMPLE_MAX / RAND_MAX)) { for (ch = 0; ch < color_channels; ++ch) { out->channel[ch] = in->channel[ch]; } out->channel[color_channels] = IM_SAMPLE_MAX; } ++out; ++in; } } else { while (count--) { if (in->channel[channels] > rand() * ((double)IM_SAMPLE_MAX / RAND_MAX)) { for (ch = 0; ch < color_channels; ++ch) { out->channel[ch] = in->channel[ch]; } } ++out; ++in; } } } /* Dca' = Sca.Da + Dca.Sa + Sca.(1 - Da) + Dca.(1 - Sa) = Sca + Dca Da' = Sa.Da + Da.Sa + Sa.(1 - Da) + Da.(1 - Sa) = Sa + Da */ static void IM_SUFFIX(combine_add)(IM_COLOR *out, IM_COLOR *in, int channels, i_img_dim count) { int ch; int color_channels = i_color_channels(channels); i_img_dim work_count = count; IM_COLOR *inp = in; IM_COLOR *outp = out; if (i_has_alpha(channels)) { while (work_count--) { IM_WORK_T src_alpha = inp->channel[color_channels]; if (src_alpha) { IM_WORK_T orig_alpha = outp->channel[color_channels]; IM_WORK_T dest_alpha = src_alpha + orig_alpha; if (dest_alpha > IM_SAMPLE_MAX) dest_alpha = IM_SAMPLE_MAX; for (ch = 0; ch < color_channels; ++ch) { IM_WORK_T total = (outp->channel[ch] * orig_alpha + inp->channel[ch] * src_alpha) / dest_alpha; if (total > IM_SAMPLE_MAX) total = IM_SAMPLE_MAX; outp->channel[ch] = total; } outp->channel[color_channels] = dest_alpha; } ++outp; ++inp; } } else { while (work_count--) { IM_WORK_T src_alpha = inp->channel[color_channels]; if (src_alpha) { for (ch = 0; ch < color_channels; ++ch) { IM_WORK_T total = outp->channel[ch] + inp->channel[ch] * src_alpha / IM_SAMPLE_MAX; if (total > IM_SAMPLE_MAX) total = IM_SAMPLE_MAX; outp->channel[ch] = total; } } ++outp; ++inp; } } } /* [pegtop] documents this as max(A+B-256, 0) while [savvy] documents it as max(A-B, 0). [svg1.2] doesn't cover it. [savvy] doesn't document how it works with an alpha channel. GIMP actually seems to calculate the final value then use the alpha channel to apply that to the target. */ static void IM_SUFFIX(combine_subtract)(IM_COLOR *out, IM_COLOR *in, int channels, i_img_dim count) { int ch; IM_COLOR const *inp = in; IM_COLOR *outp = out; i_img_dim work_count = count; int color_channels = i_color_channels(channels); if (i_has_alpha(channels)) { while (work_count--) { IM_WORK_T src_alpha = inp->channel[color_channels]; if (src_alpha) { IM_WORK_T orig_alpha = outp->channel[color_channels]; IM_WORK_T dest_alpha = src_alpha + orig_alpha; if (dest_alpha > IM_SAMPLE_MAX) dest_alpha = IM_SAMPLE_MAX; for (ch = 0; ch < color_channels; ++ch) { IM_WORK_T total = (outp->channel[ch] * orig_alpha - inp->channel[ch] * src_alpha) / dest_alpha; if (total < 0) total = 0; outp->channel[ch] = total; } outp->channel[color_channels] = dest_alpha; } ++outp; ++inp; } } else { while (work_count--) { IM_WORK_T src_alpha = inp->channel[color_channels]; if (src_alpha) { for (ch = 0; ch < color_channels; ++ch) { IM_WORK_T total = outp->channel[ch] - inp->channel[ch] * src_alpha / IM_SAMPLE_MAX; if (total < 0) total = 0; outp->channel[ch] = total; } } ++outp; ++inp; } } } #ifdef IM_EIGHT_BIT #define IM_abs(x) abs(x) #else #define IM_abs(x) fabs(x) #endif /* Dca' = abs(Dca.Sa - Sca.Da) + Sca.(1 - Da) + Dca.(1 - Sa) = Sca + Dca - 2.min(Sca.Da, Dca.Sa) Da' = Sa + Da - Sa.Da */ static void IM_SUFFIX(combine_diff)(IM_COLOR *out, IM_COLOR *in, int channels, i_img_dim count) { int ch; IM_COLOR const *inp = in; IM_COLOR *outp = out; i_img_dim work_count = count; int color_channels = i_color_channels(channels); if (i_has_alpha(channels)) { while (work_count--) { IM_WORK_T src_alpha = inp->channel[color_channels]; if (src_alpha) { IM_WORK_T orig_alpha = outp->channel[color_channels]; IM_WORK_T dest_alpha = src_alpha + orig_alpha - src_alpha * orig_alpha / IM_SAMPLE_MAX; for (ch = 0; ch < color_channels; ++ch) { IM_WORK_T src = inp->channel[ch] * src_alpha; IM_WORK_T orig = outp->channel[ch] * orig_alpha; IM_WORK_T src_da = src * orig_alpha; IM_WORK_T dest_sa = orig * src_alpha; IM_WORK_T diff = src_da < dest_sa ? src_da : dest_sa; outp->channel[ch] = (src + orig - 2 * diff / IM_SAMPLE_MAX) / dest_alpha; } outp->channel[color_channels] = dest_alpha; } ++inp; ++outp; } } else { while (work_count--) { IM_WORK_T src_alpha = inp->channel[color_channels]; if (src_alpha) { for (ch = 0; ch < color_channels; ++ch) { IM_WORK_T src = inp->channel[ch] * src_alpha; IM_WORK_T orig = outp->channel[ch] * IM_SAMPLE_MAX; IM_WORK_T src_da = src * IM_SAMPLE_MAX; IM_WORK_T dest_sa = orig * src_alpha; IM_WORK_T diff = src_da < dest_sa ? src_da : dest_sa; outp->channel[ch] = (src + orig - 2 * diff / IM_SAMPLE_MAX) / IM_SAMPLE_MAX; } } ++inp; ++outp; } } } #undef IM_abs /* Dca' = min(Sca.Da, Dca.Sa) + Sca.(1 - Da) + Dca(1 - Sa) Da' = Sa + Da - Sa.Da To hoist some code: Dca' = min(Sc.Sa.Da, Dc.Da.Sa) + Sca - Sca.Da + Dca - Dca.Sa = Sa.Da.min(Sc, Dc) + Sca - Sca.Da + Dca - Dca.Sa When Da=1: Dca' = min(Sca.1, Dc.1.Sa) + Sca.(1 - 1) + Dc.1(1 - Sa) = min(Sca, Dc.Sa) + Dc(1-Sa) = Sa.min(Sc, Dc) + Dc - Dc.Sa Da' = Sa + 1 - Sa.1 = 1 */ static void IM_SUFFIX(combine_darken)(IM_COLOR *out, IM_COLOR *in, int channels, i_img_dim count) { int ch; IM_COLOR const *inp = in; IM_COLOR *outp = out; i_img_dim work_count = count; int color_channels = i_color_channels(channels); if (i_has_alpha(channels)) { while (work_count--) { IM_WORK_T src_alpha = inp->channel[color_channels]; if (src_alpha) { IM_WORK_T orig_alpha = outp->channel[color_channels]; IM_WORK_T dest_alpha = src_alpha + orig_alpha - src_alpha * orig_alpha / IM_SAMPLE_MAX; for (ch = 0; ch < color_channels; ++ch) { IM_WORK_T Sca = inp->channel[ch] * src_alpha; IM_WORK_T Dca = outp->channel[ch] * orig_alpha; IM_WORK_T ScaDa = Sca * orig_alpha; IM_WORK_T DcaSa = Dca * src_alpha; IM_WORK_T minc = ScaDa < DcaSa ? ScaDa : DcaSa; outp->channel[ch] = ( minc + (Sca + Dca) * IM_SAMPLE_MAX - ScaDa - DcaSa ) / (IM_SAMPLE_MAX * dest_alpha); } outp->channel[color_channels] = dest_alpha; } ++outp; ++inp; } } else { while (work_count--) { IM_WORK_T src_alpha = inp->channel[color_channels]; if (src_alpha) { for (ch = 0; ch < color_channels; ++ch) { IM_WORK_T minc = outp->channel[ch] < inp->channel[ch] ? outp->channel[ch] : inp->channel[ch]; outp->channel[ch] = ( src_alpha * minc + outp->channel[ch] * ( IM_SAMPLE_MAX - src_alpha ) ) / IM_SAMPLE_MAX; } } ++outp; ++inp; } } } static void IM_SUFFIX(combine_lighten)(IM_COLOR *out, IM_COLOR *in, int channels, i_img_dim count) { int ch; IM_COLOR const *inp = in; IM_COLOR *outp = out; i_img_dim work_count = count; int color_channels = i_color_channels(channels); if (i_has_alpha(channels)) { while (work_count--) { IM_WORK_T src_alpha = inp->channel[color_channels]; if (src_alpha) { IM_WORK_T orig_alpha = outp->channel[color_channels]; IM_WORK_T dest_alpha = src_alpha + orig_alpha - src_alpha * orig_alpha / IM_SAMPLE_MAX; for (ch = 0; ch < color_channels; ++ch) { IM_WORK_T Sca = inp->channel[ch] * src_alpha; IM_WORK_T Dca = outp->channel[ch] * orig_alpha; IM_WORK_T ScaDa = Sca * orig_alpha; IM_WORK_T DcaSa = Dca * src_alpha; IM_WORK_T maxc = ScaDa > DcaSa ? ScaDa : DcaSa; outp->channel[ch] = ( maxc + (Sca + Dca) * IM_SAMPLE_MAX - ScaDa - DcaSa ) / (IM_SAMPLE_MAX * dest_alpha); } outp->channel[color_channels] = dest_alpha; } ++outp; ++inp; } } else { while (work_count--) { IM_WORK_T src_alpha = inp->channel[color_channels]; if (src_alpha) { for (ch = 0; ch < color_channels; ++ch) { IM_WORK_T maxc = outp->channel[ch] > inp->channel[ch] ? outp->channel[ch] : inp->channel[ch]; outp->channel[ch] = ( src_alpha * maxc + outp->channel[ch] * ( IM_SAMPLE_MAX - src_alpha ) ) / IM_SAMPLE_MAX; } } ++outp; ++inp; } } } #if IM_EIGHT_BIT #define IM_RGB_TO_HSV i_rgb_to_hsv #define IM_HSV_TO_RGB i_hsv_to_rgb #else #define IM_RGB_TO_HSV i_rgb_to_hsvf #define IM_HSV_TO_RGB i_hsv_to_rgbf #endif static void IM_SUFFIX(combine_hue)(IM_COLOR *out, IM_COLOR *in, int channels, i_img_dim count) { if (channels > 2) { IM_COLOR *inp = in; IM_COLOR const *outp = out; i_img_dim work_count = count; if (i_has_alpha(channels)) { while (work_count--) { IM_COLOR c = *inp; IM_RGB_TO_HSV(&c); /* only transfer hue if there's saturation */ if (c.channel[1] && inp->channel[3] && outp->channel[3]) { *inp = *outp; IM_RGB_TO_HSV(inp); /* and no point in setting the target hue if the target has no sat */ if (inp->channel[1]) { inp->channel[0] = c.channel[0]; IM_HSV_TO_RGB(inp); inp->channel[3] = c.channel[3]; } else { inp->channel[3] = 0; } } else { inp->channel[3] = 0; } ++outp; ++inp; } } else { while (work_count--) { IM_COLOR c = *inp; IM_RGB_TO_HSV(&c); /* only transfer hue if there's saturation */ if (c.channel[1] && inp->channel[3]) { *inp = *outp; IM_RGB_TO_HSV(inp); /* and no point in setting the target hue if the target has no sat */ if (inp->channel[1]) { inp->channel[0] = c.channel[0]; IM_HSV_TO_RGB(inp); inp->channel[3] = c.channel[3]; } } else { inp->channel[3] = 0; } ++outp; ++inp; } } IM_SUFFIX(combine_line_na)(out, in, channels, count); } } static void IM_SUFFIX(combine_sat)(IM_COLOR *out, IM_COLOR *in, int channels, i_img_dim count) { if (channels > 2) { IM_COLOR *inp = in; IM_COLOR const *outp = out; i_img_dim work_count = count; while (work_count--) { IM_COLOR c = *inp; *inp = *outp; IM_RGB_TO_HSV(&c); IM_RGB_TO_HSV(inp); inp->channel[1] = c.channel[1]; IM_HSV_TO_RGB(inp); inp->channel[3] = c.channel[3]; ++outp; ++inp; } IM_SUFFIX(combine_line_na)(out, in, channels, count); } } static void IM_SUFFIX(combine_value)(IM_COLOR *out, IM_COLOR *in, int channels, i_img_dim count) { if (channels > 2) { IM_COLOR *inp = in; IM_COLOR const *outp = out; i_img_dim work_count = count; while (work_count--) { IM_COLOR c = *inp; *inp = *outp; IM_RGB_TO_HSV(&c); IM_RGB_TO_HSV(inp); inp->channel[2] = c.channel[2]; IM_HSV_TO_RGB(inp); inp->channel[3] = c.channel[3]; ++outp; ++inp; } } /* all images have a "value channel" - for greyscale it's the only colour channel */ IM_SUFFIX(combine_line_na)(out, in, channels, count); } static void IM_SUFFIX(combine_color)(IM_COLOR *out, IM_COLOR *in, int channels, i_img_dim count) { if (channels > 2) { IM_COLOR *inp = in; IM_COLOR const *outp = out; i_img_dim work_count = count; while (work_count--) { IM_COLOR c = *inp; *inp = *outp; IM_RGB_TO_HSV(&c); IM_RGB_TO_HSV(inp); inp->channel[0] = c.channel[0]; inp->channel[1] = c.channel[1]; IM_HSV_TO_RGB(inp); inp->channel[3] = c.channel[3]; ++outp; ++inp; } IM_SUFFIX(combine_line_na)(out, in, channels, count); } } #undef IM_RGB_TO_HSV #undef IM_HSV_TO_RGB #/code