6 #define IMTRUNC(x) ((int)((x)*16))
8 #define coarse(x) ((x)/16)
9 #define fine(x) ((x)%16)
28 int updown; /* -1 means down, 0 vertical, 1 up */
42 int *line; /* temporary buffer for scanline */
43 int linelen; /* length of scanline */
44 ss_pair *ss_list; /* list of start stop linepairs */
45 int ssnext; /* index of the next pair to use */
46 int sslen; /* maximum number of start stop pairs */
58 p_compy(const p_point *p1, const p_point *p2) {
59 if (p1->y > p2->y) return 1;
60 if (p1->y < p2->y) return -1;
66 p_compx(const p_slice *p1, const p_slice *p2) {
67 if (p1->x > p2->x) return 1;
68 if (p1->x < p2->x) return -1;
72 /* Change this to int? and round right goddamn it! */
76 p_eval_aty(p_line *l, pcord y) {
79 if (t) return ( (y-l->y1)*l->x2 + (l->y2-y)*l->x1 )/t;
80 return (l->x1+l->x2)/2.0;
85 p_eval_atx(p_line *l, pcord x) {
88 if (t) return ( (x-l->x1)*l->y2 + (l->x2-x)*l->y1 )/t;
89 return (l->y1+l->y2)/2.0;
94 line_set_new(double *x, double *y, int l) {
96 p_line *lset = mymalloc(sizeof(p_line) * l);
100 lset[i].x1 = IMTRUNC(x[i]);
101 lset[i].y1 = IMTRUNC(y[i]);
102 lset[i].x2 = IMTRUNC(x[(i+1)%l]);
103 lset[i].y2 = IMTRUNC(y[(i+1)%l]);
104 lset[i].miny=min(lset[i].y1,lset[i].y2);
105 lset[i].maxy=max(lset[i].y1,lset[i].y2);
106 lset[i].minx=min(lset[i].x1,lset[i].x2);
107 lset[i].maxx=max(lset[i].x1,lset[i].x2);
114 point_set_new(double *x, double *y, int l) {
116 p_point *pset = mymalloc(sizeof(p_point) * l);
120 pset[i].x=IMTRUNC(x[i]);
121 pset[i].y=IMTRUNC(y[i]);
128 p_line_dump(p_line *l) {
129 printf("%d (%d,%d)->(%d,%d) [%d-%d,%d-%d]\n", l->n, l->x1, l->y1, l->x2, l->y2,
130 l->minx, l->maxx, l->miny, l->maxy);
136 ss_scanline_reset(ss_scanline *ss) {
138 memset(ss->line, 0, sizeof(int) * ss->linelen);
143 ss_scanline_init(ss_scanline *ss, int linelen, int linepairs) {
144 ss->line = mymalloc( sizeof(int) * linelen );
145 ss->linelen = linelen;
146 ss->ss_list = mymalloc( sizeof(ss_pair) * linepairs );
147 ss->sslen = linepairs;
148 ss_scanline_reset(ss);
153 ss_scanline_exorcise(ss_scanline *ss) {
161 /* returns the number of matches */
165 lines_in_interval(p_line *lset, int l, p_slice *tllist, pcord minc, pcord maxc) {
169 if (lset[k].maxy > minc && lset[k].miny < maxc) {
170 if (lset[k].miny == lset[k].maxy) {
171 POLY_DEB( printf(" HORIZONTAL - skipped\n") );
173 tllist[count].x=p_eval_aty(&lset[k],(minc+maxc)/2.0 );
184 lines_in_interval_old(p_line *lset, int l, p_slice *tllist, pcord cc) {
188 if (cc >= lset[k].miny && cc <= lset[k].maxy) {
189 if (lset[k].miny == lset[k].maxy) {
190 POLY_DEB( printf(" HORIZONTAL - skipped\n") );
193 tllist[count].x=p_eval_aty(&lset[k],cc);
202 /* marks the up variable for all lines in a slice */
206 mark_updown_slices(p_line *lset, p_slice *tllist, int count) {
209 for(k=0; k<count; k+=2) {
210 l = lset + tllist[k].n;
212 if (l->y1 == l->y2) {
213 mm_log((1, "mark_updown_slices: horizontal line being marked: internal error!\n"));
217 l->updown = (l->x1 == l->x2) ?
221 (l->y1 > l->y2) ? -1 : 1
223 (l->y1 > l->y2) ? 1 : -1;
225 POLY_DEB( printf("marking left line %d as %s(%d)\n", l->n,
226 l->updown ? l->updown == 1 ? "up" : "down" : "vert", l->updown, l->updown)
230 mm_log((1, "Invalid polygon spec, odd number of line crossings.\n"));
234 r = lset + tllist[k+1].n;
235 if (r->y1 == r->y2) {
236 mm_log((1, "mark_updown_slices: horizontal line being marked: internal error!\n"));
240 r->updown = (r->x1 == r->x2) ?
244 (r->y1 > r->y2) ? -1 : 1
246 (r->y1 > r->y2) ? 1 : -1;
248 POLY_DEB( printf("marking right line %d as %s(%d)\n", r->n,
249 r->updown ? r->updown == 1 ? "up" : "down" : "vert", r->updown, r->updown)
259 if (in>255) { return 255; }
260 else if (in>0) return in;
265 /* This function must be modified later to do proper blending */
268 scanline_flush(i_img *im, ss_scanline *ss, int y, i_color *val) {
271 for(x=0; x<im->xsize; x++) {
272 tv = saturate(ss->line[x]);
273 i_gpix(im, x, y, &t);
274 for(ch=0; ch<im->channels; ch++)
275 t.channel[ch] = tv/255.0 * val->channel[ch] + (1.0-tv/255.0) * t.channel[ch];
276 i_ppix(im, x, y, &t);
284 trap_square(pcord xlen, pcord ylen, double xl, double yl) {
285 POLY_DEB( printf("trap_square: %d %d %.2f %.2f\n", xlen, ylen, xl, yl) );
286 return xlen*ylen-(xl*yl)/2.0;
291 pixel_coverage calculates the 'left side' pixel coverage of a pixel that is
292 within the min/max ranges. The shape always corresponds to a square with some
293 sort of a triangle cut from it (which can also yield a triangle).
299 pixel_coverage(p_line *line, pcord minx, pcord maxx, pcord miny, pcord maxy) {
300 double lycross, rycross;
308 lycross = p_eval_atx(line, minx);
309 rycross = p_eval_atx(line, maxx);
310 l = lycross <= maxy && lycross >= miny; /* true if it enters through left side */
311 r = rycross <= maxy && rycross >= miny; /* true if it enters through left side */
314 printf("%4s(%+d): ", line->updown ? line->updown == 1 ? "up" : "down" : "vert", line->updown);
315 printf("(%2d,%2d) [%3d-%3d, %3d-%3d] lycross=%.2f rycross=%.2f", coarse(minx), coarse(miny), minx, maxx, miny, maxy, lycross, rycross);
316 printf(" l=%d r=%d\n", l, r)
320 return line->updown == 1 ?
321 (double)(maxx-minx) * (2.0*maxy-lycross-rycross)/2.0 /* up case */
323 (double)(maxx-minx) * (lycross+rycross-2*miny)/2.0; /* down case */
325 if (!l && !r) return (maxy-miny)*(maxx*2-p_eval_aty(line, miny)-p_eval_aty(line, maxy))/2.0;
328 return line->updown == 1 ?
329 trap_square(maxx-minx, maxy-miny, p_eval_aty(line, miny)-minx, p_eval_atx(line, minx)-miny) :
330 trap_square(maxx-minx, maxy-miny, p_eval_aty(line, maxy)-minx, maxy-p_eval_atx(line, minx));
334 int r = line->updown == 1 ?
335 (maxx-p_eval_aty(line, maxy))*(maxy-p_eval_atx(line, maxx))/2.0 :
336 (maxx-p_eval_aty(line, miny))*(p_eval_atx(line, maxx)-miny)/2.0;
346 handle the scanline slice in three steps
348 1. Where only the left edge is inside a pixel
349 2a. Where both left and right edge are inside a pixel
350 2b. Where neither left or right edge are inside a pixel
351 3. Where only the right edge is inside a pixel
356 render_slice_scanline(ss_scanline *ss, int y, p_line *l, p_line *r) {
358 pcord miny, maxy; /* y bounds in fine coordinates */
359 pcord lminx, lmaxx; /* left line min/max within y bounds in fine coords */
360 pcord rminx, rmaxx; /* right line min/max within y bounds in fine coords */
361 int cpix; /* x-coordinate of current pixel */
362 int thin; /* boolean for thin/thick segment */
363 int startpix; /* temporary variable for "start of this interval" */
364 int stoppix; /* temporary variable for "end of this interval" */
365 int step2end; /* temporary variable to mark where step2 ends */
367 /* Find the y bounds of scanline_slice */
369 maxy = min( l->maxy, r->maxy );
370 miny = max( l->miny, r->miny );
372 maxy = min( maxy, (y+1)*16 );
373 miny = max( miny, y*16 );
375 lminx = min( p_eval_aty(l, maxy), p_eval_aty(l, miny) );
376 lmaxx = max( p_eval_aty(l, maxy), p_eval_aty(l, miny) );
378 rminx = min( p_eval_aty(r, maxy), p_eval_aty(r, miny) );
379 rmaxx = max( p_eval_aty(r, maxy), p_eval_aty(r, miny) );
381 thin = coarse(lmaxx) >= coarse(rminx);
383 startpix = max( coarse(lminx), 0 );
384 stoppix = min( coarse(rmaxx-1), ss->linelen-1 );
386 for(cpix=startpix; cpix<=stoppix; cpix++) {
387 int lt = coarse(lmaxx-1) >= cpix;
388 int rt = coarse(rminx) <= cpix;
392 POLY_DEB( printf("(%d,%d) lt=%d rt=%d\n", cpix, y, lt, rt) );
394 A = lt ? pixel_coverage(l, cpix*16, cpix*16+16, miny, maxy) : 0;
395 B = lt ? 0 : 16*(maxy-miny);
396 C = rt ? pixel_coverage(r, cpix*16, cpix*16+16, miny, maxy) : 0;
398 POLY_DEB( printf("A=%d B=%d C=%d\n", A, B, C) );
400 ss->line[cpix] += A+B-C;
410 render_slice_scanline_old(ss_scanline *ss, int y, p_line *l, p_line *r) {
412 pcord miny, maxy; /* y bounds in fine coordinates */
413 pcord lminx, lmaxx; /* left line min/max within y bounds in fine coords */
414 pcord rminx, rmaxx; /* right line min/max within y bounds in fine coords */
415 int cpix; /* x-coordinate of current pixel */
416 int thin; /* boolean for thin/thick segment */
417 int startpix; /* temporary variable for "start of this interval" */
418 int stoppix; /* temporary variable for "end of this interval" */
419 int step2end; /* temporary variable to mark where step2 ends */
421 /* Find the y bounds of scanline_slice */
423 maxy = min( l->maxy, r->maxy );
424 miny = max( l->miny, r->miny );
426 maxy = min( maxy, (y+1)*16 );
427 miny = max( miny, y*16 );
429 lminx = min( p_eval_aty(l, maxy), p_eval_aty(l, miny) );
430 lmaxx = max( p_eval_aty(l, maxy), p_eval_aty(l, miny) );
432 rminx = min( p_eval_aty(r, maxy), p_eval_aty(r, miny) );
433 rmaxx = max( p_eval_aty(r, maxy), p_eval_aty(r, miny) );
435 thin = coarse(lmaxx) >= coarse(rminx);
439 startpix = coarse(lminx); /* includes tricky starting pixel */
440 stoppix = min(coarse(lmaxx), coarse(rminx) ); /* last pixel is tricky */
442 /* handle start pixel */
445 if (cpix < stoppix) {
446 ss->line[cpix] += pixel_coverage(l, cpix*16, cpix*16+16, miny, maxy);
447 printf("%2d: step1 - start pixel\n", cpix);
450 for(cpix=startpix+1; cpix<stoppix; cpix++) {
451 printf("%2d: step1 pixel\n", cpix);
452 ss->line[cpix] += l->updown == 1 ?
453 8.0 * (2*maxy-p_eval_atx(l, 16*cpix)-p_eval_atx(l, 16*cpix+16)) /* up case */
455 8.0 * (p_eval_atx(l, 16*cpix)+p_eval_atx(l, 16*cpix+16)-2*miny); /* down case */
459 /* handle stop pixel */
461 if (thin) { /* step 2a */
462 startpix = coarse(rminx);
463 stoppix = coarse(lmaxx+15); /* one more than needed */
465 for(cpix=startpix; cpix<stoppix; cpix++) {
466 printf("%2d: step2a pixel\n", cpix);
468 pixel_coverage(l, cpix*16, cpix*16+16, miny, maxy)
469 +(cpix*16+16-min(cpix*16+16, l->maxx))*(maxy-miny)
470 -pixel_coverage(r, cpix*16, cpix*16+16, miny, maxy);
472 } else { /* step 2b */
473 stoppix = coarse(rminx);
474 for(/* cpix already correct */; cpix<stoppix; cpix++) {
475 printf("%2d: step2b pixel\n", cpix);
476 ss->line[cpix] += 16.0*(maxy-miny);
482 cpix = max(coarse(rminx), coarse(lmaxx+15));
483 stoppix = coarse(rmaxx-15);
485 printf("step3 from %d to %d\n", cpix, stoppix);
487 for(; cpix<stoppix; cpix++) {
488 printf("%2d: step3 pixel\n", cpix);
491 8.0 * (2*maxy-p_eval_atx(r, 16*cpix)-p_eval_atx(r, 16*cpix+16)) /* up case */
493 8.0 * (p_eval_atx(r, 16*cpix)+p_eval_atx(r, 16*cpix+16)-2*miny)); /* down case */
496 ss->line[cpix] += (16.0)*(maxy-miny) - pixel_coverage(r, cpix*16, cpix*16+16, miny, maxy);
504 /* Antialiasing polygon algorithm
506 1. only nice polygons - no crossovers
507 2. 1/16 pixel resolution
508 3. full antialiasing ( complete spectrum of blends )
509 4. uses hardly any memory
510 5. no subsampling phase
514 1. Split into vertical intervals.
515 2. handle each interval
517 For each interval we must:
518 1. find which lines are in it
519 2. order the lines from in increasing x order.
520 since we are assuming no crossovers it is sufficent
521 to check a single point on each line.
527 1. Interval: A vertical segment in which no lines cross nor end.
528 2. Scanline: A physical line, contains 16 subpixels in the horizontal direction
529 3. Slice: A start stop line pair.
535 i_poly_aa(i_img *im, int l, double *x, double *y, i_color *val) {
536 int i ,k; /* Index variables */
537 int clc; /* Lines inside current interval */
538 pcord miny ,maxy; /* Min and max values of the current slice in the subcord system */
540 int cscl; /* Current scanline */
542 ss_scanline templine; /* scanline accumulator */
543 p_point *pset; /* List of points in polygon */
544 p_line *lset; /* List of lines in polygon */
545 p_slice *tllist; /* List of slices */
547 mm_log((1, "i_poly_aa(im %p, l %d, x %p, y %p, val %p)\n", im, l, x, y, val));
550 mm_log((2, "(%.2f, %.2f)\n", x[i], y[i]));
556 setbuf(stdout, NULL);
559 tllist = mymalloc(sizeof(p_slice)*l);
561 ss_scanline_init(&templine, im->xsize, l);
563 pset = point_set_new(x, y, l);
564 lset = line_set_new(x, y, l);
567 qsort(pset, l, sizeof(p_point), (int(*)(const void *,const void *))p_compy);
571 printf("%d [ %d ] (%d , %d) -> (%d , %d) yspan ( %d , %d )\n",
572 i, lset[i].n, lset[i].x1, lset[i].y1, lset[i].x2, lset[i].y2, lset[i].miny, lset[i].maxy);
574 printf("MAIN LOOP\n\n");
578 /* loop on intervals */
579 for(i=0; i<l-1; i++) {
580 int startscan = max( coarse(pset[i].y), 0);
581 int stopscan = min( coarse(pset[i+1].y+15), im->ysize);
582 pcord cc = (pset[i].y + pset[i+1].y)/2;
584 if (pset[i].y == pset[i+1].y) {
585 POLY_DEB( printf("current slice thickness = 0 => skipping\n") );
590 printf("current slice is %d: %d to %d ( cpoint %d ) scanlines %d to %d\n",
591 i, pset[i].y, pset[i+1].y, cc, startscan, stopscan)
595 clc = lines_in_interval(lset, l, tllist, pset[i].y, pset[i+1].y);
596 qsort(tllist, clc, sizeof(p_slice), (int(*)(const void *,const void *))p_compx);
598 mark_updown_slices(lset, tllist, clc);
600 POLY_DEB( printf("Interval contains %d lines\n", clc) );
602 for(k=0; k<clc; k++) {
603 int lno = tllist[k].n;
604 p_line *ln = lset+lno;
606 printf("%d: line #%2d: (%2d, %2d)->(%2d, %2d) (%2d/%2d, %2d/%2d) -> (%2d/%2d, %2d/%2d) alignment=%s\n",
607 k, lno, ln->x1, ln->y1, ln->x2, ln->y2,
608 coarse(ln->x1), fine(ln->x1),
609 coarse(ln->y1), fine(ln->y1),
610 coarse(ln->x2), fine(ln->x2),
611 coarse(ln->y2), fine(ln->y2),
612 ln->updown == 0 ? "vert" : ln->updown == 1 ? "up" : "down")
615 for(cscl=startscan; cscl<stopscan; cscl++) {
616 tempy = min(cscl*16+16, pset[i+1].y);
617 POLY_DEB( printf("evaluating scan line %d \n", cscl) );
618 for(k=0; k<clc-1; k+=2) {
619 POLY_DEB( printf("evaluating slice %d\n", k) );
620 render_slice_scanline(&templine, cscl, lset+tllist[k].n, lset+tllist[k+1].n);
622 if (16*coarse(tempy) == tempy) {
623 POLY_DEB( printf("flushing scan line %d\n", cscl) );
624 scanline_flush(im, &templine, cscl, val);
625 ss_scanline_reset(&templine);
629 scanline_flush(im, &templine, cscl, val);
630 ss_scanline_reset(&templine);
636 if (16*coarse(tempy) != tempy)
637 scanline_flush(im, &templine, cscl-1, val);
639 ss_scanline_exorcise(&templine);