| 1 | #define IMAGER_NO_CONTEXT |
| 2 | #include "imager.h" |
| 3 | #include <math.h> |
| 4 | |
| 5 | static double |
| 6 | gauss(int x, double std) { |
| 7 | return 1.0/(sqrt(2.0*PI)*std)*exp(-(double)(x)*(double)(x)/(2*std*std)); |
| 8 | } |
| 9 | |
| 10 | /* Counters are as follows |
| 11 | l: lines |
| 12 | i: columns |
| 13 | c: filter coeffs |
| 14 | ch: channels |
| 15 | pc: coeff equalization |
| 16 | */ |
| 17 | |
| 18 | |
| 19 | |
| 20 | int |
| 21 | i_gaussian(i_img *im, double stddev) { |
| 22 | return i_gaussian2( im, stddev, stddev ); |
| 23 | } |
| 24 | |
| 25 | typedef struct s_gauss_coeff { |
| 26 | int diameter; |
| 27 | int radius; |
| 28 | double *coeff; |
| 29 | } t_gauss_coeff; |
| 30 | |
| 31 | |
| 32 | static t_gauss_coeff *build_coeff( i_img *im, double stddev ) { |
| 33 | double *coeff = NULL; |
| 34 | double pc; |
| 35 | int radius, diameter, i; |
| 36 | t_gauss_coeff *ret = mymalloc(sizeof(struct s_gauss_coeff)); |
| 37 | ret->coeff = NULL; |
| 38 | |
| 39 | if (im->bits <= 8) |
| 40 | radius = ceil(2 * stddev); |
| 41 | else |
| 42 | radius = ceil(3 * stddev); |
| 43 | |
| 44 | diameter = 1 + radius * 2; |
| 45 | |
| 46 | coeff = mymalloc(sizeof(double) * diameter); |
| 47 | |
| 48 | for(i=0;i <= radius;i++) |
| 49 | coeff[radius + i]=coeff[radius - i]=gauss(i, stddev); |
| 50 | pc=0.0; |
| 51 | for(i=0; i < diameter; i++) |
| 52 | pc+=coeff[i]; |
| 53 | for(i=0;i < diameter;i++) { |
| 54 | coeff[i] /= pc; |
| 55 | // im_log((aIMCTX, 1, "i_gaussian2 Y i=%i coeff=%.2f\n", i, coeff[i] )); |
| 56 | } |
| 57 | |
| 58 | ret->diameter = diameter; |
| 59 | ret->radius = radius; |
| 60 | ret->coeff = coeff; |
| 61 | return ret; |
| 62 | } |
| 63 | |
| 64 | static void free_coeff(t_gauss_coeff *co ) { |
| 65 | |
| 66 | if( co->coeff != NULL ) |
| 67 | myfree( co->coeff ); |
| 68 | myfree( co ); |
| 69 | } |
| 70 | |
| 71 | #define img_copy(dest, src) i_copyto( (dest), (src), 0,0, (src)->xsize,(src)->ysize, 0,0); |
| 72 | |
| 73 | |
| 74 | |
| 75 | int |
| 76 | i_gaussian2(i_img *im, double stddevX, double stddevY) { |
| 77 | int c, ch; |
| 78 | i_img_dim x, y; |
| 79 | double pc; |
| 80 | t_gauss_coeff *co = NULL; |
| 81 | double res[MAXCHANNELS]; |
| 82 | i_img *timg; |
| 83 | dIMCTXim(im); |
| 84 | |
| 85 | im_log((aIMCTX, 1,"i_gaussian2(im %p, stddev %.2f,%.2f)\n",im,stddevX,stddevY)); |
| 86 | i_clear_error(); |
| 87 | |
| 88 | if (stddevX < 0) { |
| 89 | i_push_error(0, "stddevX must be positive"); |
| 90 | return 0; |
| 91 | } |
| 92 | if (stddevY < 0) { |
| 93 | i_push_error(0, "stddevY must be positive"); |
| 94 | return 0; |
| 95 | } |
| 96 | |
| 97 | if( stddevX == stddevY && stddevY == 0 ) { |
| 98 | i_push_error(0, "stddevX or stddevY must be positive"); |
| 99 | return 0; |
| 100 | } |
| 101 | |
| 102 | |
| 103 | /* totally silly cutoff */ |
| 104 | if (stddevX > 1000) { |
| 105 | stddevX = 1000; |
| 106 | } |
| 107 | if (stddevY > 1000) { |
| 108 | stddevY = 1000; |
| 109 | } |
| 110 | |
| 111 | timg = i_sametype(im, im->xsize, im->ysize); |
| 112 | |
| 113 | if( stddevX > 0 ) { |
| 114 | /* Build Y coefficient matrix */ |
| 115 | co = build_coeff( im, stddevX ); |
| 116 | im_log((aIMCTX, 1, "i_gaussian2 X coeff radius=%i diamter=%i coeff=%p\n", co->radius, co->diameter, co->coeff)); |
| 117 | } |
| 118 | else { |
| 119 | im_log((aIMCTX, 1, "i_gaussian2 X coeff is unity\n")); |
| 120 | } |
| 121 | |
| 122 | #code im->bits <= 8 |
| 123 | IM_COLOR rcolor; |
| 124 | i_img *yin; |
| 125 | i_img *yout; |
| 126 | |
| 127 | if( stddevX > 0 ) { |
| 128 | /******************/ |
| 129 | /* Process X blur */ |
| 130 | im_log((aIMCTX, 1, "i_gaussian2 X blur from im=%p to timg=%p\n", im, timg)); |
| 131 | |
| 132 | for(y = 0; y < im->ysize; y++) { |
| 133 | for(x = 0; x < im->xsize; x++) { |
| 134 | pc=0.0; |
| 135 | for(ch=0;ch<im->channels;ch++) |
| 136 | res[ch]=0; |
| 137 | for(c = 0;c < co->diameter; c++) |
| 138 | if (IM_GPIX(im,x+c-co->radius,y,&rcolor)!=-1) { |
| 139 | for(ch=0;ch<im->channels;ch++) |
| 140 | res[ch]+= rcolor.channel[ch] * co->coeff[c]; |
| 141 | pc+=co->coeff[c]; |
| 142 | } |
| 143 | for(ch=0;ch<im->channels;ch++) { |
| 144 | double value = res[ch] / pc; |
| 145 | rcolor.channel[ch] = value > IM_SAMPLE_MAX ? IM_SAMPLE_MAX : IM_ROUND(value); |
| 146 | } |
| 147 | IM_PPIX(timg, x, y, &rcolor); |
| 148 | } |
| 149 | } |
| 150 | /* processing is im -> timg=yin -> im=yout */ |
| 151 | yin = timg; |
| 152 | yout = im; |
| 153 | } |
| 154 | else { |
| 155 | /* processing is im=yin -> timg=yout -> im */ |
| 156 | yin = im; |
| 157 | yout = timg; |
| 158 | } |
| 159 | |
| 160 | if( stddevY > 0 ) { |
| 161 | if( stddevX != stddevY ) { |
| 162 | if( co != NULL ) { |
| 163 | free_coeff(co); |
| 164 | co = NULL; |
| 165 | } |
| 166 | |
| 167 | /* Build Y coefficient matrix */ |
| 168 | co = build_coeff( im, stddevY ); |
| 169 | im_log((aIMCTX, 1, "i_gaussian2 Y coeff radius=%i diamter=%i coeff=%p\n", co->radius, co->diameter, co->coeff)); |
| 170 | } |
| 171 | |
| 172 | /******************/ |
| 173 | /* Process Y blur */ |
| 174 | im_log((aIMCTX, 1, "i_gaussian2 Y blur from yin=%p to yout=%p\n", yin, yout)); |
| 175 | for(x = 0;x < im->xsize; x++) { |
| 176 | for(y = 0; y < im->ysize; y++) { |
| 177 | pc=0.0; |
| 178 | for(ch=0; ch<im->channels; ch++) |
| 179 | res[ch]=0; |
| 180 | for(c=0; c < co->diameter; c++) |
| 181 | if (IM_GPIX(yin, x, y+c-co->radius, &rcolor)!=-1) { |
| 182 | for(ch=0;ch<yin->channels;ch++) |
| 183 | res[ch]+= rcolor.channel[ch] * co->coeff[c]; |
| 184 | pc+=co->coeff[c]; |
| 185 | } |
| 186 | for(ch=0;ch<yin->channels;ch++) { |
| 187 | double value = res[ch]/pc; |
| 188 | rcolor.channel[ch] = value > IM_SAMPLE_MAX ? IM_SAMPLE_MAX : IM_ROUND(value); |
| 189 | } |
| 190 | IM_PPIX(yout, x, y, &rcolor); |
| 191 | } |
| 192 | } |
| 193 | if( im != yout ) { |
| 194 | im_log((aIMCTX, 1, "i_gaussian2 copying yout=%p to im=%p\n", yout, im)); |
| 195 | img_copy( im, yout ); |
| 196 | } |
| 197 | } |
| 198 | else { |
| 199 | im_log((aIMCTX, 1, "i_gaussian2 Y coeff is unity\n")); |
| 200 | if( yin==timg ) { |
| 201 | im_log((aIMCTX, 1, "i_gaussian2 copying timg=%p to im=%p\n", timg, im)); |
| 202 | img_copy( im, timg ); |
| 203 | } |
| 204 | } |
| 205 | |
| 206 | im_log((aIMCTX, 1, "i_gaussian2 im=%p\n", im)); |
| 207 | im_log((aIMCTX, 1, "i_gaussian2 timg=%p\n", timg)); |
| 208 | im_log((aIMCTX, 1, "i_gaussian2 yin=%p\n", yin)); |
| 209 | im_log((aIMCTX, 1, "i_gaussian2 yout=%p\n", yout)); |
| 210 | |
| 211 | |
| 212 | |
| 213 | #/code |
| 214 | if( co != NULL ) |
| 215 | free_coeff(co); |
| 216 | |
| 217 | i_img_destroy(timg); |
| 218 | |
| 219 | return 1; |
| 220 | } |
| 221 | |
| 222 | |
| 223 | |
| 224 | |
| 225 | |
| 226 | |
| 227 | |