Commit | Line | Data |
---|---|---|
658f724e | 1 | #include "imager.h" |
874c55db | 2 | #include "imageri.h" |
658f724e TC |
3 | |
4 | /* | |
5 | * i_scale_mixing() is based on code contained in pnmscale.c, part of | |
6 | * the netpbm distribution. No code was copied from pnmscale but | |
7 | * the algorthm was and for this I thank the netpbm crew. | |
8 | * | |
9 | * Tony | |
10 | */ | |
11 | ||
12 | /* pnmscale.c - read a portable anymap and scale it | |
13 | ** | |
14 | ** Copyright (C) 1989, 1991 by Jef Poskanzer. | |
15 | ** | |
16 | ** Permission to use, copy, modify, and distribute this software and its | |
17 | ** documentation for any purpose and without fee is hereby granted, provided | |
18 | ** that the above copyright notice appear in all copies and that both that | |
19 | ** copyright notice and this permission notice appear in supporting | |
20 | ** documentation. This software is provided "as is" without express or | |
21 | ** implied warranty. | |
22 | ** | |
23 | */ | |
24 | ||
25 | ||
26 | static void | |
8d14daab | 27 | zero_row(i_fcolor *row, i_img_dim width, int channels); |
a10945af TC |
28 | |
29 | #code | |
658f724e | 30 | static void |
a10945af | 31 | IM_SUFFIX(accum_output_row)(i_fcolor *accum, double fraction, IM_COLOR const *in, |
8d14daab | 32 | i_img_dim width, int channels); |
658f724e | 33 | static void |
8d14daab TC |
34 | IM_SUFFIX(horizontal_scale)(IM_COLOR *out, i_img_dim out_width, |
35 | i_fcolor const *in, i_img_dim in_width, | |
a10945af TC |
36 | int channels); |
37 | #/code | |
658f724e TC |
38 | |
39 | /* | |
40 | =item i_scale_mixing | |
41 | ||
42 | Returns a new image scaled to the given size. | |
43 | ||
44 | Unlike i_scale_axis() this does a simple coverage of pixels from | |
45 | source to target and doesn't resample. | |
46 | ||
47 | Adapted from pnmscale. | |
48 | ||
49 | =cut | |
50 | */ | |
51 | i_img * | |
8d14daab | 52 | i_scale_mixing(i_img *src, i_img_dim x_out, i_img_dim y_out) { |
6494c395 | 53 | i_img *result = NULL; |
658f724e | 54 | i_fcolor *accum_row = NULL; |
8d14daab TC |
55 | i_img_dim x, y; |
56 | int ch; | |
57 | size_t accum_row_bytes; | |
658f724e | 58 | double rowsleft, fracrowtofill; |
8d14daab | 59 | i_img_dim rowsread; |
658f724e TC |
60 | double y_scale; |
61 | ||
8d14daab TC |
62 | mm_log((1, "i_scale_mixing(src %p, out(" i_DFp "))\n", |
63 | src, i_DFcp(x_out, y_out))); | |
658f724e TC |
64 | |
65 | i_clear_error(); | |
66 | ||
67 | if (x_out <= 0) { | |
8d14daab | 68 | i_push_errorf(0, "output width %" i_DF " invalid", i_DFc(x_out)); |
658f724e TC |
69 | return NULL; |
70 | } | |
71 | if (y_out <= 0) { | |
8d14daab | 72 | i_push_errorf(0, "output height %" i_DF " invalid", i_DFc(y_out)); |
658f724e TC |
73 | return NULL; |
74 | } | |
75 | ||
658f724e TC |
76 | if (x_out == src->xsize && y_out == src->ysize) { |
77 | return i_copy(src); | |
78 | } | |
79 | ||
80 | y_scale = y_out / (double)src->ysize; | |
81 | ||
a10945af TC |
82 | accum_row_bytes = sizeof(i_fcolor) * src->xsize; |
83 | if (accum_row_bytes / sizeof(i_fcolor) != src->xsize) { | |
84 | i_push_error(0, "integer overflow allocating accumulator row buffer"); | |
85 | return NULL; | |
86 | } | |
87 | ||
6494c395 TC |
88 | result = i_sametype_chans(src, x_out, y_out, src->channels); |
89 | if (!result) | |
90 | return NULL; | |
91 | ||
a10945af TC |
92 | accum_row = mymalloc(accum_row_bytes); |
93 | ||
94 | #code src->bits <= 8 | |
95 | IM_COLOR *in_row = NULL; | |
96 | IM_COLOR *xscale_row = NULL; | |
8d14daab | 97 | size_t in_row_bytes, out_row_bytes; |
a10945af TC |
98 | |
99 | in_row_bytes = sizeof(IM_COLOR) * src->xsize; | |
100 | if (in_row_bytes / sizeof(IM_COLOR) != src->xsize) { | |
6494c395 TC |
101 | myfree(accum_row); |
102 | i_img_destroy(result); | |
a10945af TC |
103 | i_push_error(0, "integer overflow allocating input row buffer"); |
104 | return NULL; | |
105 | } | |
106 | out_row_bytes = sizeof(IM_COLOR) * x_out; | |
107 | if (out_row_bytes / sizeof(IM_COLOR) != x_out) { | |
6494c395 TC |
108 | myfree(accum_row); |
109 | i_img_destroy(result); | |
a10945af TC |
110 | i_push_error(0, "integer overflow allocating output row buffer"); |
111 | return NULL; | |
112 | } | |
113 | ||
658f724e | 114 | in_row = mymalloc(in_row_bytes); |
658f724e TC |
115 | xscale_row = mymalloc(out_row_bytes); |
116 | ||
117 | rowsread = 0; | |
118 | rowsleft = 0.0; | |
119 | for (y = 0; y < y_out; ++y) { | |
120 | if (y_out == src->ysize) { | |
a10945af | 121 | /* no vertical scaling, just load it */ |
a10945af | 122 | #ifdef IM_EIGHT_BIT |
8d14daab TC |
123 | i_img_dim x; |
124 | int ch; | |
a10945af TC |
125 | /* load and convert to doubles */ |
126 | IM_GLIN(src, 0, src->xsize, y, in_row); | |
127 | for (x = 0; x < src->xsize; ++x) { | |
128 | for (ch = 0; ch < src->channels; ++ch) { | |
129 | accum_row[x].channel[ch] = in_row[x].channel[ch]; | |
130 | } | |
131 | } | |
132 | #else | |
133 | IM_GLIN(src, 0, src->xsize, y, accum_row); | |
134 | #endif | |
874c55db TC |
135 | /* alpha adjust if needed */ |
136 | if (src->channels == 2 || src->channels == 4) { | |
137 | for (x = 0; x < src->xsize; ++x) { | |
138 | for (ch = 0; ch < src->channels-1; ++ch) { | |
139 | accum_row[x].channel[ch] *= | |
140 | accum_row[x].channel[src->channels-1] / IM_SAMPLE_MAX; | |
141 | } | |
142 | } | |
143 | } | |
658f724e TC |
144 | } |
145 | else { | |
146 | fracrowtofill = 1.0; | |
147 | zero_row(accum_row, src->xsize, src->channels); | |
148 | while (fracrowtofill > 0) { | |
149 | if (rowsleft <= 0) { | |
150 | if (rowsread < src->ysize) { | |
a10945af | 151 | IM_GLIN(src, 0, src->xsize, rowsread, in_row); |
658f724e TC |
152 | ++rowsread; |
153 | } | |
154 | /* else just use the last row read */ | |
155 | ||
156 | rowsleft = y_scale; | |
157 | } | |
158 | if (rowsleft < fracrowtofill) { | |
a10945af TC |
159 | IM_SUFFIX(accum_output_row)(accum_row, rowsleft, in_row, |
160 | src->xsize, src->channels); | |
658f724e TC |
161 | fracrowtofill -= rowsleft; |
162 | rowsleft = 0; | |
163 | } | |
164 | else { | |
a10945af TC |
165 | IM_SUFFIX(accum_output_row)(accum_row, fracrowtofill, in_row, |
166 | src->xsize, src->channels); | |
658f724e TC |
167 | rowsleft -= fracrowtofill; |
168 | fracrowtofill = 0; | |
169 | } | |
170 | } | |
a10945af TC |
171 | } |
172 | /* we've accumulated a vertically scaled row */ | |
173 | if (x_out == src->xsize) { | |
a10945af | 174 | #if IM_EIGHT_BIT |
8d14daab TC |
175 | i_img_dim x; |
176 | int ch; | |
a10945af | 177 | /* no need to scale, but we need to convert it */ |
874c55db TC |
178 | if (result->channels == 2 || result->channels == 4) { |
179 | int alpha_chan = result->channels - 1; | |
180 | for (x = 0; x < x_out; ++x) { | |
181 | double alpha = accum_row[x].channel[alpha_chan] / IM_SAMPLE_MAX; | |
182 | if (alpha) { | |
183 | for (ch = 0; ch < alpha_chan; ++ch) { | |
184 | int val = accum_row[x].channel[ch] / alpha + 0.5; | |
185 | xscale_row[x].channel[ch] = IM_LIMIT(val); | |
186 | } | |
187 | } | |
2757bad0 TC |
188 | else { |
189 | /* rather than leaving any color data as whatever was | |
190 | originally in the buffer, set it to black. This isn't | |
191 | any more correct, but it gives us more compressible | |
192 | image data. | |
193 | RT #32324 | |
194 | */ | |
195 | for (ch = 0; ch < alpha_chan; ++ch) { | |
196 | xscale_row[x].channel[ch] = 0; | |
197 | } | |
198 | } | |
874c55db TC |
199 | xscale_row[x].channel[alpha_chan] = IM_LIMIT(accum_row[x].channel[alpha_chan]+0.5); |
200 | } | |
201 | } | |
202 | else { | |
203 | for (x = 0; x < x_out; ++x) { | |
204 | for (ch = 0; ch < result->channels; ++ch) | |
205 | xscale_row[x].channel[ch] = IM_LIMIT(accum_row[x].channel[ch]+0.5); | |
206 | } | |
658f724e | 207 | } |
a10945af TC |
208 | IM_PLIN(result, 0, x_out, y, xscale_row); |
209 | #else | |
210 | IM_PLIN(result, 0, x_out, y, accum_row); | |
211 | #endif | |
212 | } | |
213 | else { | |
214 | IM_SUFFIX(horizontal_scale)(xscale_row, x_out, accum_row, | |
215 | src->xsize, src->channels); | |
216 | IM_PLIN(result, 0, x_out, y, xscale_row); | |
658f724e TC |
217 | } |
218 | } | |
658f724e | 219 | myfree(in_row); |
658f724e | 220 | myfree(xscale_row); |
a10945af TC |
221 | #/code |
222 | myfree(accum_row); | |
658f724e TC |
223 | |
224 | return result; | |
225 | } | |
226 | ||
227 | static void | |
8d14daab TC |
228 | zero_row(i_fcolor *row, i_img_dim width, int channels) { |
229 | i_img_dim x; | |
658f724e TC |
230 | int ch; |
231 | ||
232 | /* with IEEE floats we could just use memset() but that's not | |
a10945af TC |
233 | safe in general under ANSI C. |
234 | memset() is slightly faster. | |
235 | */ | |
658f724e TC |
236 | for (x = 0; x < width; ++x) { |
237 | for (ch = 0; ch < channels; ++ch) | |
238 | row[x].channel[ch] = 0.0; | |
239 | } | |
240 | } | |
241 | ||
a10945af TC |
242 | #code |
243 | ||
658f724e | 244 | static void |
a10945af | 245 | IM_SUFFIX(accum_output_row)(i_fcolor *accum, double fraction, IM_COLOR const *in, |
8d14daab TC |
246 | i_img_dim width, int channels) { |
247 | i_img_dim x; | |
248 | int ch; | |
658f724e | 249 | |
a10945af TC |
250 | /* it's tempting to change this into a pointer iteration loop but |
251 | modern CPUs do the indexing as part of the instruction */ | |
874c55db TC |
252 | if (channels == 2 || channels == 4) { |
253 | for (x = 0; x < width; ++x) { | |
254 | for (ch = 0; ch < channels-1; ++ch) { | |
255 | accum[x].channel[ch] += in[x].channel[ch] * fraction * in[x].channel[channels-1] / IM_SAMPLE_MAX; | |
256 | } | |
257 | accum[x].channel[channels-1] += in[x].channel[channels-1] * fraction; | |
258 | } | |
259 | } | |
260 | else { | |
261 | for (x = 0; x < width; ++x) { | |
262 | for (ch = 0; ch < channels; ++ch) { | |
263 | accum[x].channel[ch] += in[x].channel[ch] * fraction; | |
264 | } | |
658f724e TC |
265 | } |
266 | } | |
267 | } | |
268 | ||
269 | static void | |
8d14daab TC |
270 | IM_SUFFIX(horizontal_scale)(IM_COLOR *out, i_img_dim out_width, |
271 | i_fcolor const *in, i_img_dim in_width, | |
658f724e TC |
272 | int channels) { |
273 | double frac_col_to_fill, frac_col_left; | |
8d14daab TC |
274 | i_img_dim in_x; |
275 | i_img_dim out_x; | |
658f724e TC |
276 | double x_scale = (double)out_width / in_width; |
277 | int ch; | |
278 | double accum[MAXCHANNELS] = { 0 }; | |
279 | ||
280 | frac_col_to_fill = 1.0; | |
281 | out_x = 0; | |
282 | for (in_x = 0; in_x < in_width; ++in_x) { | |
283 | frac_col_left = x_scale; | |
284 | while (frac_col_left >= frac_col_to_fill) { | |
285 | for (ch = 0; ch < channels; ++ch) | |
286 | accum[ch] += frac_col_to_fill * in[in_x].channel[ch]; | |
287 | ||
874c55db TC |
288 | if (channels == 2 || channels == 4) { |
289 | int alpha_chan = channels - 1; | |
290 | double alpha = accum[alpha_chan] / IM_SAMPLE_MAX; | |
291 | if (alpha) { | |
292 | for (ch = 0; ch < alpha_chan; ++ch) { | |
293 | IM_WORK_T val = IM_ROUND(accum[ch] / alpha); | |
294 | out[out_x].channel[ch] = IM_LIMIT(val); | |
295 | } | |
296 | } | |
2757bad0 TC |
297 | else { |
298 | for (ch = 0; ch < alpha_chan; ++ch) { | |
299 | /* See RT #32324 (and mention above) */ | |
300 | out[out_x].channel[ch] = 0; | |
301 | } | |
302 | } | |
874c55db | 303 | out[out_x].channel[alpha_chan] = IM_LIMIT(IM_ROUND(accum[alpha_chan])); |
658f724e | 304 | } |
874c55db TC |
305 | else { |
306 | for (ch = 0; ch < channels; ++ch) { | |
307 | IM_WORK_T val = IM_ROUND(accum[ch]); | |
308 | out[out_x].channel[ch] = IM_LIMIT(val); | |
309 | } | |
310 | } | |
311 | for (ch = 0; ch < channels; ++ch) | |
312 | accum[ch] = 0; | |
658f724e TC |
313 | frac_col_left -= frac_col_to_fill; |
314 | frac_col_to_fill = 1.0; | |
315 | ++out_x; | |
316 | } | |
317 | ||
318 | if (frac_col_left > 0) { | |
319 | for (ch = 0; ch < channels; ++ch) { | |
320 | accum[ch] += frac_col_left * in[in_x].channel[ch]; | |
321 | } | |
322 | frac_col_to_fill -= frac_col_left; | |
323 | } | |
324 | } | |
325 | ||
326 | if (out_x < out_width-1 || out_x > out_width) { | |
327 | i_fatal(3, "Internal error: out_x %d out of range (width %d)", out_x, out_width); | |
328 | } | |
329 | ||
330 | if (out_x < out_width) { | |
331 | for (ch = 0; ch < channels; ++ch) { | |
332 | accum[ch] += frac_col_to_fill * in[in_width-1].channel[ch]; | |
874c55db TC |
333 | } |
334 | if (channels == 2 || channels == 4) { | |
335 | int alpha_chan = channels - 1; | |
336 | double alpha = accum[alpha_chan] / IM_SAMPLE_MAX; | |
337 | if (alpha) { | |
338 | for (ch = 0; ch < alpha_chan; ++ch) { | |
339 | IM_WORK_T val = IM_ROUND(accum[ch] / alpha); | |
340 | out[out_x].channel[ch] = IM_LIMIT(val); | |
341 | } | |
342 | } | |
2757bad0 TC |
343 | else { |
344 | for (ch = 0; ch < alpha_chan; ++ch) { | |
345 | /* See RT #32324 (and mention above) */ | |
346 | out[out_x].channel[ch] = 0; | |
347 | } | |
348 | } | |
874c55db TC |
349 | out[out_x].channel[alpha_chan] = IM_LIMIT(IM_ROUND(accum[alpha_chan])); |
350 | } | |
351 | else { | |
352 | for (ch = 0; ch < channels; ++ch) { | |
353 | IM_WORK_T val = IM_ROUND(accum[ch]); | |
354 | out[out_x].channel[ch] = IM_LIMIT(val); | |
355 | } | |
658f724e TC |
356 | } |
357 | } | |
358 | } | |
a10945af TC |
359 | |
360 | #/code |