Commit | Line | Data |
---|---|---|
02d1d628 AMH |
1 | #include "image.h" |
2 | #include <stdlib.h> | |
3 | #include <math.h> | |
4 | ||
5 | ||
6 | /* | |
7 | =head1 NAME | |
8 | ||
9 | filters.c - implements filters that operate on images | |
10 | ||
11 | =head1 SYNOPSIS | |
12 | ||
13 | ||
14 | i_contrast(im, 0.8); | |
15 | i_hardinvert(im); | |
16 | // and more | |
17 | ||
18 | =head1 DESCRIPTION | |
19 | ||
20 | filters.c implements basic filters for Imager. These filters | |
21 | should be accessible from the filter interface as defined in | |
22 | the pod for Imager. | |
23 | ||
24 | =head1 FUNCTION REFERENCE | |
25 | ||
26 | Some of these functions are internal. | |
27 | ||
28 | =over 4 | |
29 | ||
30 | =cut | |
31 | */ | |
32 | ||
33 | ||
34 | ||
35 | ||
36 | ||
37 | ||
38 | ||
39 | /* | |
40 | =item i_contrast(im, intensity) | |
41 | ||
42 | Scales the pixel values by the amount specified. | |
43 | ||
44 | im - image object | |
45 | intensity - scalefactor | |
46 | ||
47 | =cut | |
48 | */ | |
49 | ||
50 | void | |
51 | i_contrast(i_img *im, float intensity) { | |
52 | int x, y; | |
53 | unsigned char ch; | |
54 | unsigned int new_color; | |
55 | i_color rcolor; | |
56 | ||
57 | mm_log((1,"i_contrast(im %p, intensity %f)\n", im, intensity)); | |
58 | ||
59 | if(intensity < 0) return; | |
60 | ||
61 | for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) { | |
62 | i_gpix(im, x, y, &rcolor); | |
63 | ||
64 | for(ch = 0; ch < im->channels; ch++) { | |
65 | new_color = (unsigned int) rcolor.channel[ch]; | |
66 | new_color *= intensity; | |
67 | ||
68 | if(new_color > 255) { | |
69 | new_color = 255; | |
70 | } | |
71 | rcolor.channel[ch] = (unsigned char) new_color; | |
72 | } | |
73 | i_ppix(im, x, y, &rcolor); | |
74 | } | |
75 | } | |
76 | ||
77 | ||
78 | /* | |
79 | =item i_hardinvert(im) | |
80 | ||
81 | Inverts the pixel values of the input image. | |
82 | ||
83 | im - image object | |
84 | ||
85 | =cut | |
86 | */ | |
87 | ||
88 | void | |
89 | i_hardinvert(i_img *im) { | |
90 | int x, y; | |
91 | unsigned char ch; | |
92 | ||
93 | i_color rcolor; | |
94 | ||
95 | mm_log((1,"i_hardinvert(im %p)\n", im)); | |
96 | ||
97 | for(y = 0; y < im->ysize; y++) { | |
98 | for(x = 0; x < im->xsize; x++) { | |
99 | i_gpix(im, x, y, &rcolor); | |
100 | ||
101 | for(ch = 0; ch < im->channels; ch++) { | |
102 | rcolor.channel[ch] = 255 - rcolor.channel[ch]; | |
103 | } | |
104 | ||
105 | i_ppix(im, x, y, &rcolor); | |
106 | } | |
107 | } | |
108 | } | |
109 | ||
110 | ||
111 | ||
112 | /* | |
113 | =item i_noise(im, amount, type) | |
114 | ||
115 | Inverts the pixel values by the amount specified. | |
116 | ||
117 | im - image object | |
118 | amount - deviation in pixel values | |
119 | type - noise individual for each channel if true | |
120 | ||
121 | =cut | |
122 | */ | |
123 | ||
124 | #ifdef _MSC_VER | |
125 | /* random() is non-ASCII, even if it is better than rand() */ | |
126 | #define random() rand() | |
127 | #endif | |
128 | ||
129 | void | |
130 | i_noise(i_img *im, float amount, unsigned char type) { | |
131 | int x, y; | |
132 | unsigned char ch; | |
133 | int new_color; | |
134 | float damount = amount * 2; | |
135 | i_color rcolor; | |
136 | int color_inc = 0; | |
137 | ||
138 | mm_log((1,"i_noise(im %p, intensity %.2f\n", im, amount)); | |
139 | ||
140 | if(amount < 0) return; | |
141 | ||
142 | for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) { | |
143 | i_gpix(im, x, y, &rcolor); | |
144 | ||
145 | if(type == 0) { | |
146 | color_inc = (amount - (damount * ((float)random() / RAND_MAX))); | |
147 | } | |
148 | ||
149 | for(ch = 0; ch < im->channels; ch++) { | |
150 | new_color = (int) rcolor.channel[ch]; | |
151 | ||
152 | if(type != 0) { | |
153 | new_color += (amount - (damount * ((float)random() / RAND_MAX))); | |
154 | } else { | |
155 | new_color += color_inc; | |
156 | } | |
157 | ||
158 | if(new_color < 0) { | |
159 | new_color = 0; | |
160 | } | |
161 | if(new_color > 255) { | |
162 | new_color = 255; | |
163 | } | |
164 | ||
165 | rcolor.channel[ch] = (unsigned char) new_color; | |
166 | } | |
167 | ||
168 | i_ppix(im, x, y, &rcolor); | |
169 | } | |
170 | } | |
171 | ||
172 | ||
173 | /* | |
174 | =item i_noise(im, amount, type) | |
175 | ||
176 | Inverts the pixel values by the amount specified. | |
177 | ||
178 | im - image object | |
179 | amount - deviation in pixel values | |
180 | type - noise individual for each channel if true | |
181 | ||
182 | =cut | |
183 | */ | |
184 | ||
185 | ||
186 | /* | |
187 | =item i_applyimage(im, add_im, mode) | |
188 | ||
189 | Apply's an image to another image | |
190 | ||
191 | im - target image | |
192 | add_im - image that is applied to target | |
193 | mode - what method is used in applying: | |
194 | ||
195 | 0 Normal | |
196 | 1 Multiply | |
197 | 2 Screen | |
198 | 3 Overlay | |
199 | 4 Soft Light | |
200 | 5 Hard Light | |
201 | 6 Color dodge | |
202 | 7 Color Burn | |
203 | 8 Darker | |
204 | 9 Lighter | |
205 | 10 Add | |
206 | 11 Subtract | |
207 | 12 Difference | |
208 | 13 Exclusion | |
209 | ||
210 | =cut | |
211 | */ | |
212 | ||
213 | void i_applyimage(i_img *im, i_img *add_im, unsigned char mode) { | |
214 | int x, y; | |
215 | int mx, my; | |
216 | ||
217 | mm_log((1, "i_applyimage(im %p, add_im %p, mode %d", im, add_im, mode)); | |
218 | ||
219 | mx = (add_im->xsize <= im->xsize) ? add_im->xsize : add_im->xsize; | |
220 | my = (add_im->ysize <= im->ysize) ? add_im->ysize : add_im->ysize; | |
221 | ||
222 | for(x = 0; x < mx; x++) { | |
223 | for(y = 0; y < my; y++) { | |
224 | } | |
225 | } | |
226 | } | |
227 | ||
228 | ||
229 | /* | |
230 | =item i_bumpmap(im, bump, channel, light_x, light_y, st) | |
231 | ||
232 | Makes a bumpmap on image im using the bump image as the elevation map. | |
233 | ||
234 | im - target image | |
235 | bump - image that contains the elevation info | |
236 | channel - to take the elevation information from | |
237 | light_x - x coordinate of light source | |
238 | light_y - y coordinate of light source | |
239 | st - length of shadow | |
240 | ||
241 | =cut | |
242 | */ | |
243 | ||
244 | void | |
245 | i_bumpmap(i_img *im, i_img *bump, int channel, int light_x, int light_y, int st) { | |
246 | int x, y, ch; | |
247 | int mx, my; | |
248 | i_color x1_color, y1_color, x2_color, y2_color, dst_color; | |
249 | double nX, nY; | |
250 | double tX, tY, tZ; | |
251 | double aX, aY, aL; | |
252 | double fZ; | |
253 | unsigned char px1, px2, py1, py2; | |
254 | ||
255 | i_img new_im; | |
256 | ||
257 | mm_log((1, "i_bumpmap(im %p, add_im %p, channel %d, light_x %d, light_y %d, st %d)\n", | |
258 | im, bump, channel, light_x, light_y, st)); | |
259 | ||
260 | ||
261 | if(channel >= bump->channels) { | |
262 | mm_log((1, "i_bumpmap: channel = %d while bump image only has %d channels\n", channel, bump->channels)); | |
263 | return; | |
264 | } | |
265 | ||
266 | mx = (bump->xsize <= im->xsize) ? bump->xsize : im->xsize; | |
267 | my = (bump->ysize <= im->ysize) ? bump->ysize : im->ysize; | |
268 | ||
269 | i_img_empty_ch(&new_im, im->xsize, im->ysize, im->channels); | |
270 | ||
271 | aX = (light_x > (mx >> 1)) ? light_x : mx - light_x; | |
272 | aY = (light_y > (my >> 1)) ? light_y : my - light_y; | |
273 | ||
274 | aL = sqrt((aX * aX) + (aY * aY)); | |
275 | ||
276 | for(y = 1; y < my - 1; y++) { | |
277 | for(x = 1; x < mx - 1; x++) { | |
278 | i_gpix(bump, x + st, y, &x1_color); | |
279 | i_gpix(bump, x, y + st, &y1_color); | |
280 | i_gpix(bump, x - st, y, &x2_color); | |
281 | i_gpix(bump, x, y - st, &y2_color); | |
282 | ||
283 | i_gpix(im, x, y, &dst_color); | |
284 | ||
285 | px1 = x1_color.channel[channel]; | |
286 | py1 = y1_color.channel[channel]; | |
287 | px2 = x2_color.channel[channel]; | |
288 | py2 = y2_color.channel[channel]; | |
289 | ||
290 | nX = px1 - px2; | |
291 | nY = py1 - py2; | |
292 | ||
293 | nX += 128; | |
294 | nY += 128; | |
295 | ||
296 | fZ = (sqrt((nX * nX) + (nY * nY)) / aL); | |
297 | ||
298 | tX = abs(x - light_x) / aL; | |
299 | tY = abs(y - light_y) / aL; | |
300 | ||
301 | tZ = 1 - (sqrt((tX * tX) + (tY * tY)) * fZ); | |
302 | ||
303 | if(tZ < 0) tZ = 0; | |
304 | if(tZ > 2) tZ = 2; | |
305 | ||
306 | for(ch = 0; ch < im->channels; ch++) | |
307 | dst_color.channel[ch] = (unsigned char) (float)(dst_color.channel[ch] * tZ); | |
308 | ||
309 | i_ppix(&new_im, x, y, &dst_color); | |
310 | } | |
311 | } | |
312 | ||
313 | i_copyto(im, &new_im, 0, 0, (int)im->xsize, (int)im->ysize, 0, 0); | |
314 | ||
315 | i_img_exorcise(&new_im); | |
316 | } | |
317 | ||
318 | ||
319 | ||
320 | /* | |
321 | =item i_postlevels(im, levels) | |
322 | ||
323 | Quantizes Images to fewer levels. | |
324 | ||
325 | im - target image | |
326 | levels - number of levels | |
327 | ||
328 | =cut | |
329 | */ | |
330 | ||
331 | void | |
332 | i_postlevels(i_img *im, int levels) { | |
333 | int x, y, ch; | |
334 | float pv; | |
335 | int rv; | |
336 | float av; | |
337 | ||
338 | i_color rcolor; | |
339 | ||
340 | rv = (int) ((float)(256 / levels)); | |
341 | av = (float)levels; | |
342 | ||
343 | for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) { | |
344 | i_gpix(im, x, y, &rcolor); | |
345 | ||
346 | for(ch = 0; ch < im->channels; ch++) { | |
347 | pv = (((float)rcolor.channel[ch] / 255)) * av; | |
348 | pv = (int) ((int)pv * rv); | |
349 | ||
350 | if(pv < 0) pv = 0; | |
351 | else if(pv > 255) pv = 255; | |
352 | ||
353 | rcolor.channel[ch] = (unsigned char) pv; | |
354 | } | |
355 | i_ppix(im, x, y, &rcolor); | |
356 | } | |
357 | } | |
358 | ||
359 | ||
360 | /* | |
361 | =item i_mosaic(im, size) | |
362 | ||
363 | Makes an image looks like a mosaic with tilesize of size | |
364 | ||
365 | im - target image | |
366 | size - size of tiles | |
367 | ||
368 | =cut | |
369 | */ | |
370 | ||
371 | void | |
372 | i_mosaic(i_img *im, int size) { | |
373 | int x, y, ch; | |
374 | int lx, ly, z; | |
375 | long sqrsize; | |
376 | ||
377 | i_color rcolor; | |
378 | long col[256]; | |
379 | ||
380 | sqrsize = size * size; | |
381 | ||
382 | for(y = 0; y < im->ysize; y += size) for(x = 0; x < im->xsize; x += size) { | |
383 | for(z = 0; z < 256; z++) col[z] = 0; | |
384 | ||
385 | for(lx = 0; lx < size; lx++) { | |
386 | for(ly = 0; ly < size; ly++) { | |
387 | i_gpix(im, (x + lx), (y + ly), &rcolor); | |
388 | ||
389 | for(ch = 0; ch < im->channels; ch++) { | |
390 | col[ch] += rcolor.channel[ch]; | |
391 | } | |
392 | } | |
393 | } | |
394 | ||
395 | for(ch = 0; ch < im->channels; ch++) | |
396 | rcolor.channel[ch] = (int) ((float)col[ch] / sqrsize); | |
397 | ||
398 | ||
399 | for(lx = 0; lx < size; lx++) | |
400 | for(ly = 0; ly < size; ly++) | |
401 | i_ppix(im, (x + lx), (y + ly), &rcolor); | |
402 | ||
403 | } | |
404 | } | |
405 | ||
406 | /* | |
407 | =item saturate(in) | |
408 | ||
409 | Clamps the input value between 0 and 255. (internal) | |
410 | ||
411 | in - input integer | |
412 | ||
413 | =cut | |
414 | */ | |
415 | ||
416 | static | |
417 | unsigned char | |
418 | saturate(int in) { | |
419 | if (in>255) { return 255; } | |
420 | else if (in>0) return in; | |
421 | return 0; | |
422 | } | |
423 | ||
424 | ||
425 | /* | |
426 | =item i_watermark(im, wmark, tx, ty, pixdiff) | |
427 | ||
428 | Applies a watermark to the target image | |
429 | ||
430 | im - target image | |
431 | wmark - watermark image | |
432 | tx - x coordinate of where watermark should be applied | |
433 | ty - y coordinate of where watermark should be applied | |
434 | pixdiff - the magnitude of the watermark, controls how visible it is | |
435 | ||
436 | =cut | |
437 | */ | |
438 | ||
439 | void | |
440 | i_watermark(i_img *im, i_img *wmark, int tx, int ty, int pixdiff) { | |
441 | int vx, vy, ch; | |
442 | i_color val, wval; | |
443 | ||
444 | for(vx=0;vx<128;vx++) for(vy=0;vy<110;vy++) { | |
445 | ||
446 | i_gpix(im, tx+vx, ty+vy,&val ); | |
447 | i_gpix(wmark, vx, vy, &wval); | |
448 | ||
449 | for(ch=0;ch<im->channels;ch++) | |
450 | val.channel[ch] = saturate( val.channel[ch] + (pixdiff* (wval.channel[0]-128) )/128 ); | |
451 | ||
452 | i_ppix(im,tx+vx,ty+vy,&val); | |
453 | } | |
454 | } | |
455 | ||
456 | ||
457 | /* | |
458 | =item i_autolevels(im, lsat, usat, skew) | |
459 | ||
460 | Scales and translates each color such that it fills the range completely. | |
461 | Skew is not implemented yet - purpose is to control the color skew that can | |
462 | occur when changing the contrast. | |
463 | ||
464 | im - target image | |
465 | lsat - fraction of pixels that will be truncated at the lower end of the spectrum | |
466 | usat - fraction of pixels that will be truncated at the higher end of the spectrum | |
467 | skew - not used yet | |
468 | ||
469 | =cut | |
470 | */ | |
471 | ||
472 | void | |
473 | i_autolevels(i_img *im, float lsat, float usat, float skew) { | |
474 | i_color val; | |
475 | int i, x, y, rhist[256], ghist[256], bhist[256]; | |
476 | int rsum, rmin, rmax; | |
477 | int gsum, gmin, gmax; | |
478 | int bsum, bmin, bmax; | |
479 | int rcl, rcu, gcl, gcu, bcl, bcu; | |
480 | ||
481 | mm_log((1,"i_autolevels(im %p, lsat %f,usat %f,skew %f)\n", im, lsat,usat,skew)); | |
482 | ||
483 | rsum=gsum=bsum=0; | |
484 | for(i=0;i<256;i++) rhist[i]=ghist[i]=bhist[i] = 0; | |
485 | /* create histogram for each channel */ | |
486 | for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) { | |
487 | i_gpix(im, x, y, &val); | |
488 | rhist[val.channel[0]]++; | |
489 | ghist[val.channel[1]]++; | |
490 | bhist[val.channel[2]]++; | |
491 | } | |
492 | ||
493 | for(i=0;i<256;i++) { | |
494 | rsum+=rhist[i]; | |
495 | gsum+=ghist[i]; | |
496 | bsum+=bhist[i]; | |
497 | } | |
498 | ||
499 | rmin = gmin = bmin = 0; | |
500 | rmax = gmax = bmax = 255; | |
501 | ||
502 | rcu = rcl = gcu = gcl = bcu = bcl = 0; | |
503 | ||
504 | for(i=0; i<256; i++) { | |
505 | rcl += rhist[i]; if ( (rcl<rsum*lsat) ) rmin=i; | |
506 | rcu += rhist[255-i]; if ( (rcu<rsum*usat) ) rmax=255-i; | |
507 | ||
508 | gcl += ghist[i]; if ( (gcl<gsum*lsat) ) gmin=i; | |
509 | gcu += ghist[255-i]; if ( (gcu<gsum*usat) ) gmax=255-i; | |
510 | ||
511 | bcl += bhist[i]; if ( (bcl<bsum*lsat) ) bmin=i; | |
512 | bcu += bhist[255-i]; if ( (bcu<bsum*usat) ) bmax=255-i; | |
513 | } | |
514 | ||
515 | for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) { | |
516 | i_gpix(im, x, y, &val); | |
517 | val.channel[0]=saturate((val.channel[0]-rmin)*255/(rmax-rmin)); | |
518 | val.channel[1]=saturate((val.channel[1]-gmin)*255/(gmax-gmin)); | |
519 | val.channel[2]=saturate((val.channel[2]-bmin)*255/(bmax-bmin)); | |
520 | i_ppix(im, x, y, &val); | |
521 | } | |
522 | } | |
523 | ||
524 | /* | |
525 | =item Noise(x,y) | |
526 | ||
527 | Pseudo noise utility function used to generate perlin noise. (internal) | |
528 | ||
529 | x - x coordinate | |
530 | y - y coordinate | |
531 | ||
532 | =cut | |
533 | */ | |
534 | ||
535 | static | |
536 | float | |
537 | Noise(int x, int y) { | |
538 | int n = x + y * 57; | |
539 | n = (n<<13) ^ n; | |
540 | return ( 1.0 - ( (n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824.0); | |
541 | } | |
542 | ||
543 | /* | |
544 | =item SmoothedNoise1(x,y) | |
545 | ||
546 | Pseudo noise utility function used to generate perlin noise. (internal) | |
547 | ||
548 | x - x coordinate | |
549 | y - y coordinate | |
550 | ||
551 | =cut | |
552 | */ | |
553 | ||
554 | static | |
555 | float | |
556 | SmoothedNoise1(float x, float y) { | |
557 | float corners = ( Noise(x-1, y-1)+Noise(x+1, y-1)+Noise(x-1, y+1)+Noise(x+1, y+1) ) / 16; | |
558 | float sides = ( Noise(x-1, y) +Noise(x+1, y) +Noise(x, y-1) +Noise(x, y+1) ) / 8; | |
559 | float center = Noise(x, y) / 4; | |
560 | return corners + sides + center; | |
561 | } | |
562 | ||
563 | ||
564 | /* | |
565 | =item G_Interpolate(a, b, x) | |
566 | ||
567 | Utility function used to generate perlin noise. (internal) | |
568 | ||
569 | =cut | |
570 | */ | |
571 | ||
572 | static | |
573 | float C_Interpolate(float a, float b, float x) { | |
574 | /* float ft = x * 3.1415927; */ | |
575 | float ft = x * PI; | |
576 | float f = (1 - cos(ft)) * .5; | |
577 | return a*(1-f) + b*f; | |
578 | } | |
579 | ||
580 | ||
581 | /* | |
582 | =item InterpolatedNoise(x, y) | |
583 | ||
584 | Utility function used to generate perlin noise. (internal) | |
585 | ||
586 | =cut | |
587 | */ | |
588 | ||
589 | static | |
590 | float | |
591 | InterpolatedNoise(float x, float y) { | |
592 | ||
593 | int integer_X = x; | |
594 | float fractional_X = x - integer_X; | |
595 | int integer_Y = y; | |
596 | float fractional_Y = y - integer_Y; | |
597 | ||
598 | float v1 = SmoothedNoise1(integer_X, integer_Y); | |
599 | float v2 = SmoothedNoise1(integer_X + 1, integer_Y); | |
600 | float v3 = SmoothedNoise1(integer_X, integer_Y + 1); | |
601 | float v4 = SmoothedNoise1(integer_X + 1, integer_Y + 1); | |
602 | ||
603 | float i1 = C_Interpolate(v1 , v2 , fractional_X); | |
604 | float i2 = C_Interpolate(v3 , v4 , fractional_X); | |
605 | ||
606 | return C_Interpolate(i1 , i2 , fractional_Y); | |
607 | } | |
608 | ||
609 | ||
610 | ||
611 | /* | |
612 | =item PerlinNoise_2D(x, y) | |
613 | ||
614 | Utility function used to generate perlin noise. (internal) | |
615 | ||
616 | =cut | |
617 | */ | |
618 | ||
619 | static | |
620 | float | |
621 | PerlinNoise_2D(float x, float y) { | |
622 | int i,frequency; | |
623 | float amplitude; | |
624 | float total = 0; | |
625 | int Number_Of_Octaves=6; | |
626 | int n = Number_Of_Octaves - 1; | |
627 | ||
628 | for(i=0;i<n;i++) { | |
629 | frequency = 2*i; | |
630 | amplitude = PI; | |
631 | total = total + InterpolatedNoise(x * frequency, y * frequency) * amplitude; | |
632 | } | |
633 | ||
634 | return total; | |
635 | } | |
636 | ||
637 | ||
638 | /* | |
639 | =item i_radnoise(im, xo, yo, rscale, ascale) | |
640 | ||
641 | Perlin-like radial noise. | |
642 | ||
643 | im - target image | |
644 | xo - x coordinate of center | |
645 | yo - y coordinate of center | |
646 | rscale - radial scale | |
647 | ascale - angular scale | |
648 | ||
649 | =cut | |
650 | */ | |
651 | ||
652 | void | |
653 | i_radnoise(i_img *im, int xo, int yo, float rscale, float ascale) { | |
654 | int x, y, ch; | |
655 | i_color val; | |
656 | unsigned char v; | |
657 | float xc, yc, r; | |
658 | double a; | |
659 | ||
660 | for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) { | |
661 | xc = (float)x-xo+0.5; | |
662 | yc = (float)y-yo+0.5; | |
663 | r = rscale*sqrt(xc*xc+yc*yc)+1.2; | |
664 | a = (PI+atan2(yc,xc))*ascale; | |
665 | v = saturate(128+100*(PerlinNoise_2D(a,r))); | |
666 | /* v=saturate(120+12*PerlinNoise_2D(xo+(float)x/scale,yo+(float)y/scale)); Good soft marble */ | |
667 | for(ch=0; ch<im->channels; ch++) val.channel[ch]=v; | |
668 | i_ppix(im, x, y, &val); | |
669 | } | |
670 | } | |
671 | ||
672 | ||
673 | /* | |
674 | =item i_turbnoise(im, xo, yo, scale) | |
675 | ||
676 | Perlin-like 2d noise noise. | |
677 | ||
678 | im - target image | |
679 | xo - x coordinate translation | |
680 | yo - y coordinate translation | |
681 | scale - scale of noise | |
682 | ||
683 | =cut | |
684 | */ | |
685 | ||
686 | void | |
687 | i_turbnoise(i_img *im, float xo, float yo, float scale) { | |
688 | int x,y,ch; | |
689 | unsigned char v; | |
690 | i_color val; | |
691 | ||
692 | for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) { | |
693 | /* v=saturate(125*(1.0+PerlinNoise_2D(xo+(float)x/scale,yo+(float)y/scale))); */ | |
694 | v = saturate(120*(1.0+sin(xo+(float)x/scale+PerlinNoise_2D(xo+(float)x/scale,yo+(float)y/scale)))); | |
695 | for(ch=0; ch<im->channels; ch++) val.channel[ch] = v; | |
696 | i_ppix(im, x, y, &val); | |
697 | } | |
698 | } | |
699 | ||
700 | ||
701 | ||
702 | /* | |
703 | =item i_gradgen(im, num, xo, yo, ival, dmeasure) | |
704 | ||
705 | Gradient generating function. | |
706 | ||
707 | im - target image | |
708 | num - number of points given | |
709 | xo - array of x coordinates | |
710 | yo - array of y coordinates | |
711 | ival - array of i_color objects | |
712 | dmeasure - distance measure to be used. | |
713 | 0 = Euclidean | |
714 | 1 = Euclidean squared | |
715 | 2 = Manhattan distance | |
716 | ||
717 | =cut | |
718 | */ | |
719 | ||
720 | ||
721 | void | |
722 | i_gradgen(i_img *im, int num, int *xo, int *yo, i_color *ival, int dmeasure) { | |
723 | ||
724 | i_color val; | |
725 | int p, x, y, ch; | |
726 | int channels = im->channels; | |
727 | int xsize = im->xsize; | |
728 | int ysize = im->ysize; | |
729 | ||
730 | float *fdist; | |
731 | ||
732 | mm_log((1,"i_gradgen(im %p, num %d, xo %p, yo %p, ival %p, dmeasure %d)\n", im, num, xo, yo, ival, dmeasure)); | |
733 | ||
734 | for(p = 0; p<num; p++) { | |
735 | mm_log((1,"i_gradgen: (%d, %d)\n", xo[p], yo[p])); | |
736 | ICL_info(&ival[p]); | |
737 | } | |
738 | ||
739 | fdist = mymalloc( sizeof(float) * num ); | |
740 | ||
741 | for(y = 0; y<ysize; y++) for(x = 0; x<xsize; x++) { | |
742 | float cs = 0; | |
743 | float csd = 0; | |
744 | for(p = 0; p<num; p++) { | |
745 | int xd = x-xo[p]; | |
746 | int yd = y-yo[p]; | |
747 | switch (dmeasure) { | |
748 | case 0: /* euclidean */ | |
749 | fdist[p] = sqrt(xd*xd + yd*yd); /* euclidean distance */ | |
750 | break; | |
751 | case 1: /* euclidean squared */ | |
752 | fdist[p] = xd*xd + yd*yd; /* euclidean distance */ | |
753 | break; | |
754 | case 2: /* euclidean squared */ | |
755 | fdist[p] = max(xd*xd, yd*yd); /* manhattan distance */ | |
756 | break; | |
757 | default: | |
758 | m_fatal(3,"i_gradgen: Unknown distance measure\n"); | |
759 | } | |
760 | cs += fdist[p]; | |
761 | } | |
762 | ||
763 | csd = 1/((num-1)*cs); | |
764 | ||
765 | for(p = 0; p<num; p++) fdist[p] = (cs-fdist[p])*csd; | |
766 | ||
767 | for(ch = 0; ch<channels; ch++) { | |
768 | int tres = 0; | |
769 | for(p = 0; p<num; p++) tres += ival[p].channel[ch] * fdist[p]; | |
770 | val.channel[ch] = saturate(tres); | |
771 | } | |
772 | i_ppix(im, x, y, &val); | |
773 | } | |
774 | ||
775 | } | |
776 | ||
02d1d628 AMH |
777 | void |
778 | i_nearest_color_foo(i_img *im, int num, int *xo, int *yo, i_color *ival, int dmeasure) { | |
779 | ||
a743c0a6 | 780 | int p, x, y; |
02d1d628 AMH |
781 | int xsize = im->xsize; |
782 | int ysize = im->ysize; | |
783 | ||
784 | mm_log((1,"i_gradgen(im %p, num %d, xo %p, yo %p, ival %p, dmeasure %d)\n", im, num, xo, yo, ival, dmeasure)); | |
785 | ||
786 | for(p = 0; p<num; p++) { | |
787 | mm_log((1,"i_gradgen: (%d, %d)\n", xo[p], yo[p])); | |
788 | ICL_info(&ival[p]); | |
789 | } | |
790 | ||
791 | for(y = 0; y<ysize; y++) for(x = 0; x<xsize; x++) { | |
792 | int midx = 0; | |
793 | float mindist = 0; | |
794 | float curdist = 0; | |
795 | ||
796 | int xd = x-xo[0]; | |
797 | int yd = y-yo[0]; | |
798 | ||
799 | switch (dmeasure) { | |
800 | case 0: /* euclidean */ | |
801 | mindist = sqrt(xd*xd + yd*yd); /* euclidean distance */ | |
802 | break; | |
803 | case 1: /* euclidean squared */ | |
804 | mindist = xd*xd + yd*yd; /* euclidean distance */ | |
805 | break; | |
806 | case 2: /* euclidean squared */ | |
807 | mindist = max(xd*xd, yd*yd); /* manhattan distance */ | |
808 | break; | |
809 | default: | |
810 | m_fatal(3,"i_nearest_color: Unknown distance measure\n"); | |
811 | } | |
812 | ||
813 | for(p = 1; p<num; p++) { | |
814 | xd = x-xo[p]; | |
815 | yd = y-yo[p]; | |
816 | switch (dmeasure) { | |
817 | case 0: /* euclidean */ | |
818 | curdist = sqrt(xd*xd + yd*yd); /* euclidean distance */ | |
819 | break; | |
820 | case 1: /* euclidean squared */ | |
821 | curdist = xd*xd + yd*yd; /* euclidean distance */ | |
822 | break; | |
823 | case 2: /* euclidean squared */ | |
824 | curdist = max(xd*xd, yd*yd); /* manhattan distance */ | |
825 | break; | |
826 | default: | |
827 | m_fatal(3,"i_nearest_color: Unknown distance measure\n"); | |
828 | } | |
829 | if (curdist < mindist) { | |
830 | mindist = curdist; | |
831 | midx = p; | |
832 | } | |
833 | } | |
834 | i_ppix(im, x, y, &ival[midx]); | |
835 | } | |
836 | } | |
837 | ||
02d1d628 AMH |
838 | void |
839 | i_nearest_color(i_img *im, int num, int *xo, int *yo, i_color *oval, int dmeasure) { | |
840 | i_color *ival; | |
841 | float *tval; | |
842 | float c1, c2; | |
843 | i_color val; | |
844 | int p, x, y, ch; | |
02d1d628 AMH |
845 | int xsize = im->xsize; |
846 | int ysize = im->ysize; | |
847 | int *cmatch; | |
848 | ||
d7f707d8 | 849 | mm_log((1,"i_nearest_color(im %p, num %d, xo %p, yo %p, ival %p, dmeasure %d)\n", im, num, xo, yo, oval, dmeasure)); |
02d1d628 AMH |
850 | |
851 | tval = mymalloc( sizeof(float)*num*im->channels ); | |
852 | ival = mymalloc( sizeof(i_color)*num ); | |
853 | cmatch = mymalloc( sizeof(int)*num ); | |
854 | ||
855 | for(p = 0; p<num; p++) { | |
856 | for(ch = 0; ch<im->channels; ch++) tval[ p * im->channels + ch] = 0; | |
857 | cmatch[p] = 0; | |
858 | } | |
859 | ||
860 | ||
861 | for(y = 0; y<ysize; y++) for(x = 0; x<xsize; x++) { | |
862 | int midx = 0; | |
863 | float mindist = 0; | |
864 | float curdist = 0; | |
865 | ||
866 | int xd = x-xo[0]; | |
867 | int yd = y-yo[0]; | |
868 | ||
869 | switch (dmeasure) { | |
870 | case 0: /* euclidean */ | |
871 | mindist = sqrt(xd*xd + yd*yd); /* euclidean distance */ | |
872 | break; | |
873 | case 1: /* euclidean squared */ | |
874 | mindist = xd*xd + yd*yd; /* euclidean distance */ | |
875 | break; | |
876 | case 2: /* euclidean squared */ | |
877 | mindist = max(xd*xd, yd*yd); /* manhattan distance */ | |
878 | break; | |
879 | default: | |
880 | m_fatal(3,"i_nearest_color: Unknown distance measure\n"); | |
881 | } | |
882 | ||
883 | for(p = 1; p<num; p++) { | |
884 | xd = x-xo[p]; | |
885 | yd = y-yo[p]; | |
886 | switch (dmeasure) { | |
887 | case 0: /* euclidean */ | |
888 | curdist = sqrt(xd*xd + yd*yd); /* euclidean distance */ | |
889 | break; | |
890 | case 1: /* euclidean squared */ | |
891 | curdist = xd*xd + yd*yd; /* euclidean distance */ | |
892 | break; | |
893 | case 2: /* euclidean squared */ | |
894 | curdist = max(xd*xd, yd*yd); /* manhattan distance */ | |
895 | break; | |
896 | default: | |
897 | m_fatal(3,"i_nearest_color: Unknown distance measure\n"); | |
898 | } | |
899 | if (curdist < mindist) { | |
900 | mindist = curdist; | |
901 | midx = p; | |
902 | } | |
903 | } | |
904 | ||
905 | cmatch[midx]++; | |
906 | i_gpix(im, x, y, &val); | |
907 | c2 = 1.0/(float)(cmatch[midx]); | |
908 | c1 = 1.0-c2; | |
909 | ||
02d1d628 AMH |
910 | for(ch = 0; ch<im->channels; ch++) |
911 | tval[midx*im->channels + ch] = c1*tval[midx*im->channels + ch] + c2 * (float) val.channel[ch]; | |
3bb1c1f3 | 912 | |
02d1d628 AMH |
913 | |
914 | } | |
915 | ||
916 | for(p = 0; p<num; p++) for(ch = 0; ch<im->channels; ch++) ival[p].channel[ch] = tval[p*im->channels + ch]; | |
917 | ||
918 | i_nearest_color_foo(im, num, xo, yo, ival, dmeasure); | |
919 | } | |
6607600c | 920 | |
f1ac5027 | 921 | struct fount_state; |
6607600c TC |
922 | static double linear_fount_f(double x, double y, struct fount_state *state); |
923 | static double bilinear_fount_f(double x, double y, struct fount_state *state); | |
924 | static double radial_fount_f(double x, double y, struct fount_state *state); | |
925 | static double square_fount_f(double x, double y, struct fount_state *state); | |
926 | static double revolution_fount_f(double x, double y, | |
927 | struct fount_state *state); | |
928 | static double conical_fount_f(double x, double y, struct fount_state *state); | |
929 | ||
930 | typedef double (*fount_func)(double, double, struct fount_state *); | |
931 | static fount_func fount_funcs[] = | |
932 | { | |
933 | linear_fount_f, | |
934 | bilinear_fount_f, | |
935 | radial_fount_f, | |
936 | square_fount_f, | |
937 | revolution_fount_f, | |
938 | conical_fount_f, | |
939 | }; | |
940 | ||
941 | static double linear_interp(double pos, i_fountain_seg *seg); | |
942 | static double sine_interp(double pos, i_fountain_seg *seg); | |
943 | static double sphereup_interp(double pos, i_fountain_seg *seg); | |
944 | static double spheredown_interp(double pos, i_fountain_seg *seg); | |
945 | typedef double (*fount_interp)(double pos, i_fountain_seg *seg); | |
946 | static fount_interp fount_interps[] = | |
947 | { | |
948 | linear_interp, | |
949 | linear_interp, | |
950 | sine_interp, | |
951 | sphereup_interp, | |
952 | spheredown_interp, | |
953 | }; | |
954 | ||
955 | static void direct_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg); | |
956 | static void hue_up_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg); | |
957 | static void hue_down_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg); | |
958 | typedef void (*fount_cinterp)(i_fcolor *out, double pos, i_fountain_seg *seg); | |
959 | static fount_cinterp fount_cinterps[] = | |
960 | { | |
961 | direct_cinterp, | |
962 | hue_up_cinterp, | |
963 | hue_down_cinterp, | |
964 | }; | |
965 | ||
966 | typedef double (*fount_repeat)(double v); | |
967 | static double fount_r_none(double v); | |
968 | static double fount_r_sawtooth(double v); | |
969 | static double fount_r_triangle(double v); | |
970 | static double fount_r_saw_both(double v); | |
971 | static double fount_r_tri_both(double v); | |
972 | static fount_repeat fount_repeats[] = | |
973 | { | |
974 | fount_r_none, | |
975 | fount_r_sawtooth, | |
976 | fount_r_triangle, | |
977 | fount_r_saw_both, | |
978 | fount_r_tri_both, | |
979 | }; | |
980 | ||
f1ac5027 TC |
981 | static int simple_ssample(i_fcolor *out, double x, double y, |
982 | struct fount_state *state); | |
983 | static int random_ssample(i_fcolor *out, double x, double y, | |
984 | struct fount_state *state); | |
985 | static int circle_ssample(i_fcolor *out, double x, double y, | |
986 | struct fount_state *state); | |
987 | typedef int (*fount_ssample)(i_fcolor *out, double x, double y, | |
988 | struct fount_state *state); | |
6607600c TC |
989 | static fount_ssample fount_ssamples[] = |
990 | { | |
991 | NULL, | |
992 | simple_ssample, | |
993 | random_ssample, | |
994 | circle_ssample, | |
995 | }; | |
996 | ||
997 | static int | |
f1ac5027 TC |
998 | fount_getat(i_fcolor *out, double x, double y, struct fount_state *state); |
999 | ||
1000 | /* | |
1001 | Keep state information used by each type of fountain fill | |
1002 | */ | |
1003 | struct fount_state { | |
1004 | /* precalculated for the equation of the line perpendicular to the line AB */ | |
1005 | double lA, lB, lC; | |
1006 | double AB; | |
1007 | double sqrtA2B2; | |
1008 | double mult; | |
1009 | double cos; | |
1010 | double sin; | |
1011 | double theta; | |
1012 | int xa, ya; | |
1013 | void *ssample_data; | |
1014 | fount_func ffunc; | |
1015 | fount_repeat rpfunc; | |
1016 | fount_ssample ssfunc; | |
1017 | double parm; | |
1018 | i_fountain_seg *segs; | |
1019 | int count; | |
1020 | }; | |
1021 | ||
1022 | static void | |
1023 | fount_init_state(struct fount_state *state, double xa, double ya, | |
1024 | double xb, double yb, i_fountain_type type, | |
1025 | i_fountain_repeat repeat, int combine, int super_sample, | |
1026 | double ssample_param, int count, i_fountain_seg *segs); | |
1027 | ||
1028 | static void | |
1029 | fount_finish_state(struct fount_state *state); | |
6607600c TC |
1030 | |
1031 | #define EPSILON (1e-6) | |
1032 | ||
1033 | /* | |
1034 | =item i_fountain(im, xa, ya, xb, yb, type, repeat, combine, super_sample, ssample_param, count, segs) | |
1035 | ||
1036 | Draws a fountain fill using A(xa, ya) and B(xb, yb) as reference points. | |
1037 | ||
1038 | I<type> controls how the reference points are used: | |
1039 | ||
1040 | =over | |
1041 | ||
1042 | =item i_ft_linear | |
1043 | ||
1044 | linear, where A is 0 and B is 1. | |
1045 | ||
1046 | =item i_ft_bilinear | |
1047 | ||
1048 | linear in both directions from A. | |
1049 | ||
1050 | =item i_ft_radial | |
1051 | ||
1052 | circular, where A is the centre of the fill, and B is a point | |
1053 | on the radius. | |
1054 | ||
1055 | =item i_ft_radial_square | |
1056 | ||
1057 | where A is the centre of the fill and B is the centre of | |
1058 | one side of the square. | |
1059 | ||
1060 | =item i_ft_revolution | |
1061 | ||
1062 | where A is the centre of the fill and B defines the 0/1.0 | |
1063 | angle of the fill. | |
1064 | ||
1065 | =item i_ft_conical | |
1066 | ||
1067 | similar to i_ft_revolution, except that the revolution goes in both | |
1068 | directions | |
1069 | ||
1070 | =back | |
1071 | ||
1072 | I<repeat> can be one of: | |
1073 | ||
1074 | =over | |
1075 | ||
1076 | =item i_fr_none | |
1077 | ||
1078 | values < 0 are treated as zero, values > 1 are treated as 1. | |
1079 | ||
1080 | =item i_fr_sawtooth | |
1081 | ||
1082 | negative values are treated as 0, positive values are modulo 1.0 | |
1083 | ||
1084 | =item i_fr_triangle | |
1085 | ||
1086 | negative values are treated as zero, if (int)value is odd then the value is treated as 1-(value | |
1087 | mod 1.0), otherwise the same as for sawtooth. | |
1088 | ||
1089 | =item i_fr_saw_both | |
1090 | ||
1091 | like i_fr_sawtooth, except that the sawtooth pattern repeats into | |
1092 | negative values. | |
1093 | ||
1094 | =item i_fr_tri_both | |
1095 | ||
1096 | Like i_fr_triangle, except that negative values are handled as their | |
1097 | absolute values. | |
1098 | ||
1099 | =back | |
1100 | ||
1101 | If combine is non-zero then non-opaque values are combined with the | |
1102 | underlying color. | |
1103 | ||
1104 | I<super_sample> controls super sampling, if any. At some point I'll | |
1105 | probably add a adaptive super-sampler. Current possible values are: | |
1106 | ||
1107 | =over | |
1108 | ||
1109 | =item i_fts_none | |
1110 | ||
1111 | No super-sampling is done. | |
1112 | ||
1113 | =item i_fts_grid | |
1114 | ||
1115 | A square grid of points withing the pixel are sampled. | |
1116 | ||
1117 | =item i_fts_random | |
1118 | ||
1119 | Random points within the pixel are sampled. | |
1120 | ||
1121 | =item i_fts_circle | |
1122 | ||
1123 | Points on the radius of a circle are sampled. This produces fairly | |
1124 | good results, but is fairly slow since sin() and cos() are evaluated | |
1125 | for each point. | |
1126 | ||
1127 | =back | |
1128 | ||
1129 | I<ssample_param> is intended to be roughly the number of points | |
1130 | sampled within the pixel. | |
1131 | ||
1132 | I<count> and I<segs> define the segments of the fill. | |
1133 | ||
1134 | =cut | |
1135 | ||
1136 | */ | |
1137 | ||
1138 | void | |
1139 | i_fountain(i_img *im, double xa, double ya, double xb, double yb, | |
1140 | i_fountain_type type, i_fountain_repeat repeat, | |
1141 | int combine, int super_sample, double ssample_param, | |
1142 | int count, i_fountain_seg *segs) { | |
1143 | struct fount_state state; | |
6607600c TC |
1144 | int x, y; |
1145 | i_fcolor *line = mymalloc(sizeof(i_fcolor) * im->xsize); | |
efdc2568 | 1146 | i_fcolor *work = NULL; |
f1ac5027 TC |
1147 | int ch; |
1148 | i_fountain_seg *my_segs; | |
efdc2568 TC |
1149 | i_fill_combine_f combine_func = NULL; |
1150 | i_fill_combinef_f combinef_func = NULL; | |
1151 | ||
1152 | i_get_combine(combine, &combine_func, &combinef_func); | |
1153 | if (combinef_func) | |
1154 | work = mymalloc(sizeof(i_fcolor) * im->xsize); | |
f1ac5027 TC |
1155 | |
1156 | fount_init_state(&state, xa, ya, xb, yb, type, repeat, combine, | |
1157 | super_sample, ssample_param, count, segs); | |
1158 | my_segs = state.segs; | |
1159 | ||
1160 | for (y = 0; y < im->ysize; ++y) { | |
1161 | i_glinf(im, 0, im->xsize, y, line); | |
1162 | for (x = 0; x < im->xsize; ++x) { | |
1163 | i_fcolor c; | |
1164 | int got_one; | |
1165 | double v; | |
1166 | if (super_sample == i_fts_none) | |
1167 | got_one = fount_getat(&c, x, y, &state); | |
1168 | else | |
1169 | got_one = state.ssfunc(&c, x, y, &state); | |
1170 | if (got_one) { | |
efdc2568 TC |
1171 | if (combine) |
1172 | work[x] = c; | |
f1ac5027 TC |
1173 | else |
1174 | line[x] = c; | |
1175 | } | |
1176 | } | |
efdc2568 TC |
1177 | if (combine) |
1178 | combinef_func(line, work, im->channels, im->xsize); | |
f1ac5027 TC |
1179 | i_plinf(im, 0, im->xsize, y, line); |
1180 | } | |
1181 | fount_finish_state(&state); | |
1182 | myfree(line); | |
1183 | } | |
1184 | ||
1185 | typedef struct { | |
1186 | i_fill_t base; | |
1187 | struct fount_state state; | |
1188 | } i_fill_fountain_t; | |
1189 | ||
1190 | static void | |
1191 | fill_fountf(i_fill_t *fill, int x, int y, int width, int channels, | |
efdc2568 | 1192 | i_fcolor *data, i_fcolor *work); |
f1ac5027 TC |
1193 | static void |
1194 | fount_fill_destroy(i_fill_t *fill); | |
1195 | ||
1196 | /* | |
1197 | =item i_new_fount(xa, ya, xb, yb, type, repeat, combine, super_sample, ssample_param, count, segs) | |
1198 | ||
773bc121 TC |
1199 | Creates a new general fill which fills with a fountain fill. |
1200 | ||
f1ac5027 TC |
1201 | =cut |
1202 | */ | |
1203 | ||
1204 | i_fill_t * | |
1205 | i_new_fill_fount(double xa, double ya, double xb, double yb, | |
1206 | i_fountain_type type, i_fountain_repeat repeat, | |
1207 | int combine, int super_sample, double ssample_param, | |
1208 | int count, i_fountain_seg *segs) { | |
1209 | i_fill_fountain_t *fill = mymalloc(sizeof(i_fill_fountain_t)); | |
1210 | ||
1211 | fill->base.fill_with_color = NULL; | |
1212 | fill->base.fill_with_fcolor = fill_fountf; | |
1213 | fill->base.destroy = fount_fill_destroy; | |
efdc2568 TC |
1214 | if (combine) |
1215 | i_get_combine(combine, &fill->base.combine, &fill->base.combinef); | |
1216 | else { | |
1217 | fill->base.combine = NULL; | |
1218 | fill->base.combinef = NULL; | |
1219 | } | |
f1ac5027 TC |
1220 | fount_init_state(&fill->state, xa, ya, xb, yb, type, repeat, combine, |
1221 | super_sample, ssample_param, count, segs); | |
1222 | ||
1223 | return &fill->base; | |
1224 | } | |
1225 | ||
1226 | /* | |
1227 | =back | |
1228 | ||
1229 | =head1 INTERNAL FUNCTIONS | |
1230 | ||
1231 | =over | |
1232 | ||
1233 | =item fount_init_state(...) | |
1234 | ||
1235 | Used by both the fountain fill filter and the fountain fill. | |
1236 | ||
1237 | =cut | |
1238 | */ | |
1239 | ||
1240 | static void | |
1241 | fount_init_state(struct fount_state *state, double xa, double ya, | |
1242 | double xb, double yb, i_fountain_type type, | |
1243 | i_fountain_repeat repeat, int combine, int super_sample, | |
1244 | double ssample_param, int count, i_fountain_seg *segs) { | |
6607600c TC |
1245 | int i, j; |
1246 | i_fountain_seg *my_segs = mymalloc(sizeof(i_fountain_seg) * count); | |
f1ac5027 | 1247 | /*int have_alpha = im->channels == 2 || im->channels == 4;*/ |
6607600c | 1248 | int ch; |
f1ac5027 TC |
1249 | |
1250 | memset(state, 0, sizeof(*state)); | |
6607600c TC |
1251 | /* we keep a local copy that we can adjust for speed */ |
1252 | for (i = 0; i < count; ++i) { | |
1253 | i_fountain_seg *seg = my_segs + i; | |
1254 | ||
1255 | *seg = segs[i]; | |
1256 | if (seg->type < 0 || type >= i_ft_end) | |
1257 | seg->type = i_ft_linear; | |
1258 | if (seg->color < 0 || seg->color >= i_fc_end) | |
1259 | seg->color = i_fc_direct; | |
1260 | if (seg->color == i_fc_hue_up || seg->color == i_fc_hue_down) { | |
1261 | /* so we don't have to translate to HSV on each request, do it here */ | |
1262 | for (j = 0; j < 2; ++j) { | |
1263 | i_rgb_to_hsvf(seg->c+j); | |
1264 | } | |
1265 | if (seg->color == i_fc_hue_up) { | |
1266 | if (seg->c[1].channel[0] <= seg->c[0].channel[0]) | |
1267 | seg->c[1].channel[0] += 1.0; | |
1268 | } | |
1269 | else { | |
1270 | if (seg->c[0].channel[0] <= seg->c[0].channel[1]) | |
1271 | seg->c[0].channel[0] += 1.0; | |
1272 | } | |
1273 | } | |
1274 | /*printf("start %g mid %g end %g c0(%g,%g,%g,%g) c1(%g,%g,%g,%g) type %d color %d\n", | |
1275 | seg->start, seg->middle, seg->end, seg->c[0].channel[0], | |
1276 | seg->c[0].channel[1], seg->c[0].channel[2], seg->c[0].channel[3], | |
1277 | seg->c[1].channel[0], seg->c[1].channel[1], seg->c[1].channel[2], | |
1278 | seg->c[1].channel[3], seg->type, seg->color);*/ | |
1279 | ||
1280 | } | |
1281 | ||
1282 | /* initialize each engine */ | |
1283 | /* these are so common ... */ | |
f1ac5027 TC |
1284 | state->lA = xb - xa; |
1285 | state->lB = yb - ya; | |
1286 | state->AB = sqrt(state->lA * state->lA + state->lB * state->lB); | |
1287 | state->xa = xa; | |
1288 | state->ya = ya; | |
6607600c TC |
1289 | switch (type) { |
1290 | default: | |
1291 | type = i_ft_linear; /* make the invalid value valid */ | |
1292 | case i_ft_linear: | |
1293 | case i_ft_bilinear: | |
f1ac5027 TC |
1294 | state->lC = ya * ya - ya * yb + xa * xa - xa * xb; |
1295 | state->mult = 1; | |
1296 | state->mult = 1/linear_fount_f(xb, yb, state); | |
6607600c TC |
1297 | break; |
1298 | ||
1299 | case i_ft_radial: | |
f1ac5027 TC |
1300 | state->mult = 1.0 / sqrt((double)(xb-xa)*(xb-xa) |
1301 | + (double)(yb-ya)*(yb-ya)); | |
6607600c TC |
1302 | break; |
1303 | ||
1304 | case i_ft_radial_square: | |
f1ac5027 TC |
1305 | state->cos = state->lA / state->AB; |
1306 | state->sin = state->lB / state->AB; | |
1307 | state->mult = 1.0 / state->AB; | |
6607600c TC |
1308 | break; |
1309 | ||
1310 | case i_ft_revolution: | |
f1ac5027 TC |
1311 | state->theta = atan2(yb-ya, xb-xa); |
1312 | state->mult = 1.0 / (PI * 2); | |
6607600c TC |
1313 | break; |
1314 | ||
1315 | case i_ft_conical: | |
f1ac5027 TC |
1316 | state->theta = atan2(yb-ya, xb-xa); |
1317 | state->mult = 1.0 / PI; | |
6607600c TC |
1318 | break; |
1319 | } | |
f1ac5027 | 1320 | state->ffunc = fount_funcs[type]; |
6607600c TC |
1321 | if (super_sample < 0 |
1322 | || super_sample >= (sizeof(fount_ssamples)/sizeof(*fount_ssamples))) { | |
1323 | super_sample = 0; | |
1324 | } | |
f1ac5027 | 1325 | state->ssample_data = NULL; |
6607600c TC |
1326 | switch (super_sample) { |
1327 | case i_fts_grid: | |
1328 | ssample_param = floor(0.5 + sqrt(ssample_param)); | |
f1ac5027 | 1329 | state->ssample_data = mymalloc(sizeof(i_fcolor) * ssample_param * ssample_param); |
6607600c TC |
1330 | break; |
1331 | ||
1332 | case i_fts_random: | |
1333 | case i_fts_circle: | |
1334 | ssample_param = floor(0.5+ssample_param); | |
f1ac5027 | 1335 | state->ssample_data = mymalloc(sizeof(i_fcolor) * ssample_param); |
6607600c TC |
1336 | break; |
1337 | } | |
f1ac5027 TC |
1338 | state->parm = ssample_param; |
1339 | state->ssfunc = fount_ssamples[super_sample]; | |
6607600c TC |
1340 | if (repeat < 0 || repeat >= (sizeof(fount_repeats)/sizeof(*fount_repeats))) |
1341 | repeat = 0; | |
f1ac5027 TC |
1342 | state->rpfunc = fount_repeats[repeat]; |
1343 | state->segs = my_segs; | |
1344 | state->count = count; | |
6607600c TC |
1345 | } |
1346 | ||
f1ac5027 TC |
1347 | static void |
1348 | fount_finish_state(struct fount_state *state) { | |
1349 | if (state->ssample_data) | |
1350 | myfree(state->ssample_data); | |
1351 | myfree(state->segs); | |
1352 | } | |
6607600c | 1353 | |
6607600c | 1354 | |
f1ac5027 | 1355 | /* |
6607600c TC |
1356 | =item fount_getat(out, x, y, ffunc, rpfunc, state, segs, count) |
1357 | ||
1358 | Evaluates the fountain fill at the given point. | |
1359 | ||
1360 | This is called by both the non-super-sampling and super-sampling code. | |
1361 | ||
1362 | You might think that it would make sense to sample the fill parameter | |
1363 | instead, and combine those, but this breaks badly. | |
1364 | ||
1365 | =cut | |
1366 | */ | |
1367 | ||
1368 | static int | |
f1ac5027 TC |
1369 | fount_getat(i_fcolor *out, double x, double y, struct fount_state *state) { |
1370 | double v = (state->rpfunc)((state->ffunc)(x, y, state)); | |
6607600c TC |
1371 | int i; |
1372 | ||
1373 | i = 0; | |
f1ac5027 TC |
1374 | while (i < state->count |
1375 | && (v < state->segs[i].start || v > state->segs[i].end)) { | |
6607600c TC |
1376 | ++i; |
1377 | } | |
f1ac5027 TC |
1378 | if (i < state->count) { |
1379 | v = (fount_interps[state->segs[i].type])(v, state->segs+i); | |
1380 | (fount_cinterps[state->segs[i].color])(out, v, state->segs+i); | |
6607600c TC |
1381 | return 1; |
1382 | } | |
1383 | else | |
1384 | return 0; | |
1385 | } | |
1386 | ||
1387 | /* | |
1388 | =item linear_fount_f(x, y, state) | |
1389 | ||
1390 | Calculate the fill parameter for a linear fountain fill. | |
1391 | ||
1392 | Uses the point to line distance function, with some precalculation | |
1393 | done in i_fountain(). | |
1394 | ||
1395 | =cut | |
1396 | */ | |
1397 | static double | |
1398 | linear_fount_f(double x, double y, struct fount_state *state) { | |
1399 | return (state->lA * x + state->lB * y + state->lC) / state->AB * state->mult; | |
1400 | } | |
1401 | ||
1402 | /* | |
1403 | =item bilinear_fount_f(x, y, state) | |
1404 | ||
1405 | Calculate the fill parameter for a bi-linear fountain fill. | |
1406 | ||
1407 | =cut | |
1408 | */ | |
1409 | static double | |
1410 | bilinear_fount_f(double x, double y, struct fount_state *state) { | |
1411 | return fabs((state->lA * x + state->lB * y + state->lC) / state->AB * state->mult); | |
1412 | } | |
1413 | ||
1414 | /* | |
1415 | =item radial_fount_f(x, y, state) | |
1416 | ||
1417 | Calculate the fill parameter for a radial fountain fill. | |
1418 | ||
1419 | Simply uses the distance function. | |
1420 | ||
1421 | =cut | |
1422 | */ | |
1423 | static double | |
1424 | radial_fount_f(double x, double y, struct fount_state *state) { | |
1425 | return sqrt((double)(state->xa-x)*(state->xa-x) | |
1426 | + (double)(state->ya-y)*(state->ya-y)) * state->mult; | |
1427 | } | |
1428 | ||
1429 | /* | |
1430 | =item square_fount_f(x, y, state) | |
1431 | ||
1432 | Calculate the fill parameter for a square fountain fill. | |
1433 | ||
1434 | Works by rotating the reference co-ordinate around the centre of the | |
1435 | square. | |
1436 | ||
1437 | =cut | |
1438 | */ | |
1439 | static double | |
1440 | square_fount_f(double x, double y, struct fount_state *state) { | |
1441 | int xc, yc; /* centred on A */ | |
1442 | double xt, yt; /* rotated by theta */ | |
1443 | xc = x - state->xa; | |
1444 | yc = y - state->ya; | |
1445 | xt = fabs(xc * state->cos + yc * state->sin); | |
1446 | yt = fabs(-xc * state->sin + yc * state->cos); | |
1447 | return (xt > yt ? xt : yt) * state->mult; | |
1448 | } | |
1449 | ||
1450 | /* | |
1451 | =item revolution_fount_f(x, y, state) | |
1452 | ||
1453 | Calculates the fill parameter for the revolution fountain fill. | |
1454 | ||
1455 | =cut | |
1456 | */ | |
1457 | static double | |
1458 | revolution_fount_f(double x, double y, struct fount_state *state) { | |
1459 | double angle = atan2(y - state->ya, x - state->xa); | |
1460 | ||
1461 | angle -= state->theta; | |
1462 | if (angle < 0) { | |
1463 | angle = fmod(angle+ PI * 4, PI*2); | |
1464 | } | |
1465 | ||
1466 | return angle * state->mult; | |
1467 | } | |
1468 | ||
1469 | /* | |
1470 | =item conical_fount_f(x, y, state) | |
1471 | ||
1472 | Calculates the fill parameter for the conical fountain fill. | |
1473 | ||
1474 | =cut | |
1475 | */ | |
1476 | static double | |
1477 | conical_fount_f(double x, double y, struct fount_state *state) { | |
1478 | double angle = atan2(y - state->ya, x - state->xa); | |
1479 | ||
1480 | angle -= state->theta; | |
1481 | if (angle < -PI) | |
1482 | angle += PI * 2; | |
1483 | else if (angle > PI) | |
1484 | angle -= PI * 2; | |
1485 | ||
1486 | return fabs(angle) * state->mult; | |
1487 | } | |
1488 | ||
1489 | /* | |
1490 | =item linear_interp(pos, seg) | |
1491 | ||
1492 | Calculates linear interpolation on the fill parameter. Breaks the | |
1493 | segment into 2 regions based in the I<middle> value. | |
1494 | ||
1495 | =cut | |
1496 | */ | |
1497 | static double | |
1498 | linear_interp(double pos, i_fountain_seg *seg) { | |
1499 | if (pos < seg->middle) { | |
1500 | double len = seg->middle - seg->start; | |
1501 | if (len < EPSILON) | |
1502 | return 0.0; | |
1503 | else | |
1504 | return (pos - seg->start) / len / 2; | |
1505 | } | |
1506 | else { | |
1507 | double len = seg->end - seg->middle; | |
1508 | if (len < EPSILON) | |
1509 | return 1.0; | |
1510 | else | |
1511 | return 0.5 + (pos - seg->middle) / len / 2; | |
1512 | } | |
1513 | } | |
1514 | ||
1515 | /* | |
1516 | =item sine_interp(pos, seg) | |
1517 | ||
1518 | Calculates sine function interpolation on the fill parameter. | |
1519 | ||
1520 | =cut | |
1521 | */ | |
1522 | static double | |
1523 | sine_interp(double pos, i_fountain_seg *seg) { | |
1524 | /* I wonder if there's a simple way to smooth the transition for this */ | |
1525 | double work = linear_interp(pos, seg); | |
1526 | ||
1527 | return (1-cos(work * PI))/2; | |
1528 | } | |
1529 | ||
1530 | /* | |
1531 | =item sphereup_interp(pos, seg) | |
1532 | ||
1533 | Calculates spherical interpolation on the fill parameter, with the cusp | |
1534 | at the low-end. | |
1535 | ||
1536 | =cut | |
1537 | */ | |
1538 | static double | |
1539 | sphereup_interp(double pos, i_fountain_seg *seg) { | |
1540 | double work = linear_interp(pos, seg); | |
1541 | ||
1542 | return sqrt(1.0 - (1-work) * (1-work)); | |
1543 | } | |
1544 | ||
1545 | /* | |
1546 | =item spheredown_interp(pos, seg) | |
1547 | ||
1548 | Calculates spherical interpolation on the fill parameter, with the cusp | |
1549 | at the high-end. | |
1550 | ||
1551 | =cut | |
1552 | */ | |
1553 | static double | |
1554 | spheredown_interp(double pos, i_fountain_seg *seg) { | |
1555 | double work = linear_interp(pos, seg); | |
1556 | ||
1557 | return 1-sqrt(1.0 - work * work); | |
1558 | } | |
1559 | ||
1560 | /* | |
1561 | =item direct_cinterp(out, pos, seg) | |
1562 | ||
1563 | Calculates the fountain color based on direct scaling of the channels | |
1564 | of the color channels. | |
1565 | ||
1566 | =cut | |
1567 | */ | |
1568 | static void | |
1569 | direct_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg) { | |
1570 | int ch; | |
1571 | for (ch = 0; ch < MAXCHANNELS; ++ch) { | |
1572 | out->channel[ch] = seg->c[0].channel[ch] * (1 - pos) | |
1573 | + seg->c[1].channel[ch] * pos; | |
1574 | } | |
1575 | } | |
1576 | ||
1577 | /* | |
1578 | =item hue_up_cinterp(put, pos, seg) | |
1579 | ||
1580 | Calculates the fountain color based on scaling a HSV value. The hue | |
1581 | increases as the fill parameter increases. | |
1582 | ||
1583 | =cut | |
1584 | */ | |
1585 | static void | |
1586 | hue_up_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg) { | |
1587 | int ch; | |
1588 | for (ch = 0; ch < MAXCHANNELS; ++ch) { | |
1589 | out->channel[ch] = seg->c[0].channel[ch] * (1 - pos) | |
1590 | + seg->c[1].channel[ch] * pos; | |
1591 | } | |
1592 | i_hsv_to_rgbf(out); | |
1593 | } | |
1594 | ||
1595 | /* | |
1596 | =item hue_down_cinterp(put, pos, seg) | |
1597 | ||
1598 | Calculates the fountain color based on scaling a HSV value. The hue | |
1599 | decreases as the fill parameter increases. | |
1600 | ||
1601 | =cut | |
1602 | */ | |
1603 | static void | |
1604 | hue_down_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg) { | |
1605 | int ch; | |
1606 | for (ch = 0; ch < MAXCHANNELS; ++ch) { | |
1607 | out->channel[ch] = seg->c[0].channel[ch] * (1 - pos) | |
1608 | + seg->c[1].channel[ch] * pos; | |
1609 | } | |
1610 | i_hsv_to_rgbf(out); | |
1611 | } | |
1612 | ||
1613 | /* | |
1614 | =item simple_ssample(out, parm, x, y, state, ffunc, rpfunc, segs, count) | |
1615 | ||
1616 | Simple grid-based super-sampling. | |
1617 | ||
1618 | =cut | |
1619 | */ | |
1620 | static int | |
f1ac5027 | 1621 | simple_ssample(i_fcolor *out, double x, double y, struct fount_state *state) { |
6607600c TC |
1622 | i_fcolor *work = state->ssample_data; |
1623 | int dx, dy; | |
f1ac5027 | 1624 | int grid = state->parm; |
6607600c TC |
1625 | double base = -0.5 + 0.5 / grid; |
1626 | double step = 1.0 / grid; | |
1627 | int ch, i; | |
1628 | int samp_count = 0; | |
1629 | ||
1630 | for (dx = 0; dx < grid; ++dx) { | |
1631 | for (dy = 0; dy < grid; ++dy) { | |
1632 | if (fount_getat(work+samp_count, x + base + step * dx, | |
f1ac5027 | 1633 | y + base + step * dy, state)) { |
6607600c TC |
1634 | ++samp_count; |
1635 | } | |
1636 | } | |
1637 | } | |
1638 | for (ch = 0; ch < MAXCHANNELS; ++ch) { | |
1639 | out->channel[ch] = 0; | |
1640 | for (i = 0; i < samp_count; ++i) { | |
1641 | out->channel[ch] += work[i].channel[ch]; | |
1642 | } | |
1643 | /* we divide by 4 rather than samp_count since if there's only one valid | |
1644 | sample it should be mostly transparent */ | |
1645 | out->channel[ch] /= grid * grid; | |
1646 | } | |
1647 | return samp_count; | |
1648 | } | |
1649 | ||
1650 | /* | |
1651 | =item random_ssample(out, parm, x, y, state, ffunc, rpfunc, segs, count) | |
1652 | ||
1653 | Random super-sampling. | |
1654 | ||
1655 | =cut | |
1656 | */ | |
1657 | static int | |
f1ac5027 TC |
1658 | random_ssample(i_fcolor *out, double x, double y, |
1659 | struct fount_state *state) { | |
6607600c TC |
1660 | i_fcolor *work = state->ssample_data; |
1661 | int i, ch; | |
f1ac5027 | 1662 | int maxsamples = state->parm; |
6607600c TC |
1663 | double rand_scale = 1.0 / RAND_MAX; |
1664 | int samp_count = 0; | |
1665 | for (i = 0; i < maxsamples; ++i) { | |
1666 | if (fount_getat(work+samp_count, x - 0.5 + rand() * rand_scale, | |
f1ac5027 | 1667 | y - 0.5 + rand() * rand_scale, state)) { |
6607600c TC |
1668 | ++samp_count; |
1669 | } | |
1670 | } | |
1671 | for (ch = 0; ch < MAXCHANNELS; ++ch) { | |
1672 | out->channel[ch] = 0; | |
1673 | for (i = 0; i < samp_count; ++i) { | |
1674 | out->channel[ch] += work[i].channel[ch]; | |
1675 | } | |
1676 | /* we divide by maxsamples rather than samp_count since if there's | |
1677 | only one valid sample it should be mostly transparent */ | |
1678 | out->channel[ch] /= maxsamples; | |
1679 | } | |
1680 | return samp_count; | |
1681 | } | |
1682 | ||
1683 | /* | |
1684 | =item circle_ssample(out, parm, x, y, state, ffunc, rpfunc, segs, count) | |
1685 | ||
1686 | Super-sampling around the circumference of a circle. | |
1687 | ||
1688 | I considered saving the sin()/cos() values and transforming step-size | |
1689 | around the circle, but that's inaccurate, though it may not matter | |
1690 | much. | |
1691 | ||
1692 | =cut | |
1693 | */ | |
1694 | static int | |
f1ac5027 TC |
1695 | circle_ssample(i_fcolor *out, double x, double y, |
1696 | struct fount_state *state) { | |
6607600c TC |
1697 | i_fcolor *work = state->ssample_data; |
1698 | int i, ch; | |
f1ac5027 | 1699 | int maxsamples = state->parm; |
6607600c TC |
1700 | double angle = 2 * PI / maxsamples; |
1701 | double radius = 0.3; /* semi-random */ | |
1702 | int samp_count = 0; | |
1703 | for (i = 0; i < maxsamples; ++i) { | |
1704 | if (fount_getat(work+samp_count, x + radius * cos(angle * i), | |
f1ac5027 | 1705 | y + radius * sin(angle * i), state)) { |
6607600c TC |
1706 | ++samp_count; |
1707 | } | |
1708 | } | |
1709 | for (ch = 0; ch < MAXCHANNELS; ++ch) { | |
1710 | out->channel[ch] = 0; | |
1711 | for (i = 0; i < samp_count; ++i) { | |
1712 | out->channel[ch] += work[i].channel[ch]; | |
1713 | } | |
1714 | /* we divide by maxsamples rather than samp_count since if there's | |
1715 | only one valid sample it should be mostly transparent */ | |
1716 | out->channel[ch] /= maxsamples; | |
1717 | } | |
1718 | return samp_count; | |
1719 | } | |
1720 | ||
1721 | /* | |
1722 | =item fount_r_none(v) | |
1723 | ||
1724 | Implements no repeats. Simply clamps the fill value. | |
1725 | ||
1726 | =cut | |
1727 | */ | |
1728 | static double | |
1729 | fount_r_none(double v) { | |
1730 | return v < 0 ? 0 : v > 1 ? 1 : v; | |
1731 | } | |
1732 | ||
1733 | /* | |
1734 | =item fount_r_sawtooth(v) | |
1735 | ||
1736 | Implements sawtooth repeats. Clamps negative values and uses fmod() | |
1737 | on others. | |
1738 | ||
1739 | =cut | |
1740 | */ | |
1741 | static double | |
1742 | fount_r_sawtooth(double v) { | |
1743 | return v < 0 ? 0 : fmod(v, 1.0); | |
1744 | } | |
1745 | ||
1746 | /* | |
1747 | =item fount_r_triangle(v) | |
1748 | ||
1749 | Implements triangle repeats. Clamps negative values, uses fmod to get | |
1750 | a range 0 through 2 and then adjusts values > 1. | |
1751 | ||
1752 | =cut | |
1753 | */ | |
1754 | static double | |
1755 | fount_r_triangle(double v) { | |
1756 | if (v < 0) | |
1757 | return 0; | |
1758 | else { | |
1759 | v = fmod(v, 2.0); | |
1760 | return v > 1.0 ? 2.0 - v : v; | |
1761 | } | |
1762 | } | |
1763 | ||
1764 | /* | |
1765 | =item fount_r_saw_both(v) | |
1766 | ||
1767 | Implements sawtooth repeats in the both postive and negative directions. | |
1768 | ||
1769 | Adjusts the value to be postive and then just uses fmod(). | |
1770 | ||
1771 | =cut | |
1772 | */ | |
1773 | static double | |
1774 | fount_r_saw_both(double v) { | |
1775 | if (v < 0) | |
1776 | v += 1+(int)(-v); | |
1777 | return fmod(v, 1.0); | |
1778 | } | |
1779 | ||
1780 | /* | |
1781 | =item fount_r_tri_both(v) | |
1782 | ||
1783 | Implements triangle repeats in the both postive and negative directions. | |
1784 | ||
1785 | Uses fmod on the absolute value, and then adjusts values > 1. | |
1786 | ||
1787 | =cut | |
1788 | */ | |
1789 | static double | |
1790 | fount_r_tri_both(double v) { | |
1791 | v = fmod(fabs(v), 2.0); | |
1792 | return v > 1.0 ? 2.0 - v : v; | |
1793 | } | |
1794 | ||
f1ac5027 TC |
1795 | /* |
1796 | =item fill_fountf(fill, x, y, width, channels, data) | |
1797 | ||
1798 | The fill function for fountain fills. | |
1799 | ||
1800 | =cut | |
1801 | */ | |
1802 | static void | |
1803 | fill_fountf(i_fill_t *fill, int x, int y, int width, int channels, | |
efdc2568 | 1804 | i_fcolor *data, i_fcolor *work) { |
f1ac5027 | 1805 | i_fill_fountain_t *f = (i_fill_fountain_t *)fill; |
efdc2568 TC |
1806 | |
1807 | if (fill->combinef) { | |
1808 | i_fcolor *wstart = work; | |
1809 | int count = width; | |
f1ac5027 | 1810 | |
efdc2568 TC |
1811 | while (width--) { |
1812 | i_fcolor c; | |
1813 | int got_one; | |
1814 | double v; | |
1815 | if (f->state.ssfunc) | |
1816 | got_one = f->state.ssfunc(&c, x, y, &f->state); | |
1817 | else | |
1818 | got_one = fount_getat(&c, x, y, &f->state); | |
1819 | ||
1820 | *work++ = c; | |
1821 | ||
1822 | ++x; | |
1823 | } | |
1824 | (fill->combinef)(data, wstart, channels, count); | |
1825 | } | |
1826 | else { | |
1827 | while (width--) { | |
1828 | i_fcolor c; | |
1829 | int got_one; | |
1830 | double v; | |
1831 | if (f->state.ssfunc) | |
1832 | got_one = f->state.ssfunc(&c, x, y, &f->state); | |
1833 | else | |
1834 | got_one = fount_getat(&c, x, y, &f->state); | |
1835 | ||
1836 | *data++ = c; | |
1837 | ||
1838 | ++x; | |
f1ac5027 | 1839 | } |
f1ac5027 TC |
1840 | } |
1841 | } | |
1842 | ||
1843 | /* | |
1844 | =item fount_fill_destroy(fill) | |
1845 | ||
1846 | =cut | |
1847 | */ | |
1848 | static void | |
1849 | fount_fill_destroy(i_fill_t *fill) { | |
1850 | i_fill_fountain_t *f = (i_fill_fountain_t *)fill; | |
1851 | fount_finish_state(&f->state); | |
1852 | } | |
1853 | ||
6607600c TC |
1854 | /* |
1855 | =back | |
1856 | ||
1857 | =head1 AUTHOR | |
1858 | ||
1859 | Arnar M. Hrafnkelsson <addi@umich.edu> | |
1860 | ||
1861 | Tony Cook <tony@develop-help.com> (i_fountain()) | |
1862 | ||
1863 | =head1 SEE ALSO | |
1864 | ||
1865 | Imager(3) | |
1866 | ||
1867 | =cut | |
1868 | */ |