Commit | Line | Data |
---|---|---|
02d1d628 | 1 | #include "image.h" |
faa9b3e7 | 2 | #include "imagei.h" |
02d1d628 AMH |
3 | #include "io.h" |
4 | ||
5 | /* | |
6 | =head1 NAME | |
7 | ||
8 | image.c - implements most of the basic functions of Imager and much of the rest | |
9 | ||
10 | =head1 SYNOPSIS | |
11 | ||
12 | i_img *i; | |
13 | i_color *c; | |
14 | c = i_color_new(red, green, blue, alpha); | |
15 | ICL_DESTROY(c); | |
16 | i = i_img_new(); | |
17 | i_img_destroy(i); | |
18 | // and much more | |
19 | ||
20 | =head1 DESCRIPTION | |
21 | ||
22 | image.c implements the basic functions to create and destroy image and | |
23 | color objects for Imager. | |
24 | ||
25 | =head1 FUNCTION REFERENCE | |
26 | ||
27 | Some of these functions are internal. | |
28 | ||
29 | =over 4 | |
30 | ||
31 | =cut | |
32 | */ | |
33 | ||
34 | #define XAXIS 0 | |
35 | #define YAXIS 1 | |
142c26ff | 36 | #define XYAXIS 2 |
02d1d628 AMH |
37 | |
38 | #define minmax(a,b,i) ( ((a>=i)?a: ( (b<=i)?b:i )) ) | |
39 | ||
40 | /* Hack around an obscure linker bug on solaris - probably due to builtin gcc thingies */ | |
faa9b3e7 TC |
41 | void fake(void) { ceil(1); } |
42 | ||
43 | static int i_ppix_d(i_img *im, int x, int y, i_color *val); | |
44 | static int i_gpix_d(i_img *im, int x, int y, i_color *val); | |
45 | static int i_glin_d(i_img *im, int l, int r, int y, i_color *vals); | |
46 | static int i_plin_d(i_img *im, int l, int r, int y, i_color *vals); | |
47 | static int i_ppixf_d(i_img *im, int x, int y, i_fcolor *val); | |
48 | static int i_gpixf_d(i_img *im, int x, int y, i_fcolor *val); | |
49 | static int i_glinf_d(i_img *im, int l, int r, int y, i_fcolor *vals); | |
50 | static int i_plinf_d(i_img *im, int l, int r, int y, i_fcolor *vals); | |
51 | static int i_gsamp_d(i_img *im, int l, int r, int y, i_sample_t *samps, int *chans, int chan_count); | |
52 | static int i_gsampf_d(i_img *im, int l, int r, int y, i_fsample_t *samps, int *chans, int chan_count); | |
02d1d628 AMH |
53 | |
54 | /* | |
55 | =item ICL_new_internal(r, g, b, a) | |
56 | ||
57 | Return a new color object with values passed to it. | |
58 | ||
59 | r - red component (range: 0 - 255) | |
60 | g - green component (range: 0 - 255) | |
61 | b - blue component (range: 0 - 255) | |
62 | a - alpha component (range: 0 - 255) | |
63 | ||
64 | =cut | |
65 | */ | |
66 | ||
67 | i_color * | |
68 | ICL_new_internal(unsigned char r,unsigned char g,unsigned char b,unsigned char a) { | |
4cac9410 | 69 | i_color *cl = NULL; |
02d1d628 | 70 | |
4cac9410 | 71 | mm_log((1,"ICL_new_internal(r %d,g %d,b %d,a %d)\n", r, g, b, a)); |
02d1d628 AMH |
72 | |
73 | if ( (cl=mymalloc(sizeof(i_color))) == NULL) m_fatal(2,"malloc() error\n"); | |
4cac9410 AMH |
74 | cl->rgba.r = r; |
75 | cl->rgba.g = g; | |
76 | cl->rgba.b = b; | |
77 | cl->rgba.a = a; | |
78 | mm_log((1,"(%p) <- ICL_new_internal\n",cl)); | |
02d1d628 AMH |
79 | return cl; |
80 | } | |
81 | ||
82 | ||
83 | /* | |
84 | =item ICL_set_internal(cl, r, g, b, a) | |
85 | ||
86 | Overwrite a color with new values. | |
87 | ||
88 | cl - pointer to color object | |
89 | r - red component (range: 0 - 255) | |
90 | g - green component (range: 0 - 255) | |
91 | b - blue component (range: 0 - 255) | |
92 | a - alpha component (range: 0 - 255) | |
93 | ||
94 | =cut | |
95 | */ | |
96 | ||
97 | i_color * | |
98 | ICL_set_internal(i_color *cl,unsigned char r,unsigned char g,unsigned char b,unsigned char a) { | |
4cac9410 | 99 | mm_log((1,"ICL_set_internal(cl* %p,r %d,g %d,b %d,a %d)\n",cl,r,g,b,a)); |
02d1d628 AMH |
100 | if (cl == NULL) |
101 | if ( (cl=mymalloc(sizeof(i_color))) == NULL) | |
102 | m_fatal(2,"malloc() error\n"); | |
103 | cl->rgba.r=r; | |
104 | cl->rgba.g=g; | |
105 | cl->rgba.b=b; | |
106 | cl->rgba.a=a; | |
4cac9410 | 107 | mm_log((1,"(%p) <- ICL_set_internal\n",cl)); |
02d1d628 AMH |
108 | return cl; |
109 | } | |
110 | ||
111 | ||
112 | /* | |
113 | =item ICL_add(dst, src, ch) | |
114 | ||
115 | Add src to dst inplace - dst is modified. | |
116 | ||
117 | dst - pointer to destination color object | |
118 | src - pointer to color object that is added | |
119 | ch - number of channels | |
120 | ||
121 | =cut | |
122 | */ | |
123 | ||
124 | void | |
125 | ICL_add(i_color *dst,i_color *src,int ch) { | |
126 | int tmp,i; | |
127 | for(i=0;i<ch;i++) { | |
128 | tmp=dst->channel[i]+src->channel[i]; | |
129 | dst->channel[i]= tmp>255 ? 255:tmp; | |
130 | } | |
131 | } | |
132 | ||
133 | /* | |
134 | =item ICL_info(cl) | |
135 | ||
136 | Dump color information to log - strictly for debugging. | |
137 | ||
138 | cl - pointer to color object | |
139 | ||
140 | =cut | |
141 | */ | |
142 | ||
143 | void | |
144 | ICL_info(i_color *cl) { | |
4cac9410 | 145 | mm_log((1,"i_color_info(cl* %p)\n",cl)); |
02d1d628 AMH |
146 | mm_log((1,"i_color_info: (%d,%d,%d,%d)\n",cl->rgba.r,cl->rgba.g,cl->rgba.b,cl->rgba.a)); |
147 | } | |
148 | ||
149 | /* | |
150 | =item ICL_DESTROY | |
151 | ||
152 | Destroy ancillary data for Color object. | |
153 | ||
154 | cl - pointer to color object | |
155 | ||
156 | =cut | |
157 | */ | |
158 | ||
159 | void | |
160 | ICL_DESTROY(i_color *cl) { | |
4cac9410 | 161 | mm_log((1,"ICL_DESTROY(cl* %p)\n",cl)); |
02d1d628 AMH |
162 | myfree(cl); |
163 | } | |
164 | ||
faa9b3e7 TC |
165 | /* |
166 | =item i_fcolor_new(double r, double g, double b, double a) | |
167 | ||
168 | =cut | |
169 | */ | |
170 | i_fcolor *i_fcolor_new(double r, double g, double b, double a) { | |
171 | i_fcolor *cl = NULL; | |
172 | ||
173 | mm_log((1,"i_fcolor_new(r %g,g %g,b %g,a %g)\n", r, g, b, a)); | |
174 | ||
175 | if ( (cl=mymalloc(sizeof(i_fcolor))) == NULL) m_fatal(2,"malloc() error\n"); | |
176 | cl->rgba.r = r; | |
177 | cl->rgba.g = g; | |
178 | cl->rgba.b = b; | |
179 | cl->rgba.a = a; | |
180 | mm_log((1,"(%p) <- i_fcolor_new\n",cl)); | |
181 | ||
182 | return cl; | |
183 | } | |
184 | ||
185 | /* | |
186 | =item i_fcolor_destroy(i_fcolor *cl) | |
187 | ||
188 | =cut | |
189 | */ | |
190 | void i_fcolor_destroy(i_fcolor *cl) { | |
191 | myfree(cl); | |
192 | } | |
193 | ||
194 | /* | |
195 | =item IIM_base_8bit_direct (static) | |
196 | ||
197 | A static i_img object used to initialize direct 8-bit per sample images. | |
198 | ||
199 | =cut | |
200 | */ | |
201 | static i_img IIM_base_8bit_direct = | |
202 | { | |
203 | 0, /* channels set */ | |
204 | 0, 0, 0, /* xsize, ysize, bytes */ | |
205 | ~0, /* ch_mask */ | |
206 | i_8_bits, /* bits */ | |
207 | i_direct_type, /* type */ | |
208 | 0, /* virtual */ | |
209 | NULL, /* idata */ | |
210 | { 0, 0, NULL }, /* tags */ | |
211 | NULL, /* ext_data */ | |
212 | ||
213 | i_ppix_d, /* i_f_ppix */ | |
214 | i_ppixf_d, /* i_f_ppixf */ | |
215 | i_plin_d, /* i_f_plin */ | |
216 | i_plinf_d, /* i_f_plinf */ | |
217 | i_gpix_d, /* i_f_gpix */ | |
218 | i_gpixf_d, /* i_f_gpixf */ | |
219 | i_glin_d, /* i_f_glin */ | |
220 | i_glinf_d, /* i_f_glinf */ | |
221 | i_gsamp_d, /* i_f_gsamp */ | |
222 | i_gsampf_d, /* i_f_gsampf */ | |
223 | ||
224 | NULL, /* i_f_gpal */ | |
225 | NULL, /* i_f_ppal */ | |
226 | NULL, /* i_f_addcolors */ | |
227 | NULL, /* i_f_getcolors */ | |
228 | NULL, /* i_f_colorcount */ | |
229 | NULL, /* i_f_maxcolors */ | |
230 | NULL, /* i_f_findcolor */ | |
231 | NULL, /* i_f_setcolors */ | |
232 | ||
233 | NULL, /* i_f_destroy */ | |
234 | }; | |
235 | ||
236 | /*static void set_8bit_direct(i_img *im) { | |
237 | im->i_f_ppix = i_ppix_d; | |
238 | im->i_f_ppixf = i_ppixf_d; | |
239 | im->i_f_plin = i_plin_d; | |
240 | im->i_f_plinf = i_plinf_d; | |
241 | im->i_f_gpix = i_gpix_d; | |
242 | im->i_f_gpixf = i_gpixf_d; | |
243 | im->i_f_glin = i_glin_d; | |
244 | im->i_f_glinf = i_glinf_d; | |
245 | im->i_f_gpal = NULL; | |
246 | im->i_f_ppal = NULL; | |
247 | im->i_f_addcolor = NULL; | |
248 | im->i_f_getcolor = NULL; | |
249 | im->i_f_colorcount = NULL; | |
250 | im->i_f_findcolor = NULL; | |
251 | }*/ | |
252 | ||
02d1d628 AMH |
253 | /* |
254 | =item IIM_new(x, y, ch) | |
255 | ||
256 | Creates a new image object I<x> pixels wide, and I<y> pixels high with I<ch> channels. | |
257 | ||
258 | =cut | |
259 | */ | |
260 | ||
261 | ||
262 | i_img * | |
263 | IIM_new(int x,int y,int ch) { | |
264 | i_img *im; | |
265 | mm_log((1,"IIM_new(x %d,y %d,ch %d)\n",x,y,ch)); | |
266 | ||
267 | im=i_img_empty_ch(NULL,x,y,ch); | |
268 | ||
4cac9410 | 269 | mm_log((1,"(%p) <- IIM_new\n",im)); |
02d1d628 AMH |
270 | return im; |
271 | } | |
272 | ||
273 | ||
274 | void | |
275 | IIM_DESTROY(i_img *im) { | |
4cac9410 | 276 | mm_log((1,"IIM_DESTROY(im* %p)\n",im)); |
faa9b3e7 | 277 | i_img_destroy(im); |
02d1d628 AMH |
278 | /* myfree(cl); */ |
279 | } | |
280 | ||
281 | ||
282 | ||
283 | /* | |
284 | =item i_img_new() | |
285 | ||
286 | Create new image reference - notice that this isn't an object yet and | |
287 | this should be fixed asap. | |
288 | ||
289 | =cut | |
290 | */ | |
291 | ||
292 | ||
293 | i_img * | |
294 | i_img_new() { | |
295 | i_img *im; | |
296 | ||
297 | mm_log((1,"i_img_struct()\n")); | |
298 | if ( (im=mymalloc(sizeof(i_img))) == NULL) | |
299 | m_fatal(2,"malloc() error\n"); | |
300 | ||
faa9b3e7 | 301 | *im = IIM_base_8bit_direct; |
02d1d628 AMH |
302 | im->xsize=0; |
303 | im->ysize=0; | |
304 | im->channels=3; | |
305 | im->ch_mask=MAXINT; | |
306 | im->bytes=0; | |
faa9b3e7 | 307 | im->idata=NULL; |
02d1d628 | 308 | |
4cac9410 | 309 | mm_log((1,"(%p) <- i_img_struct\n",im)); |
02d1d628 AMH |
310 | return im; |
311 | } | |
312 | ||
313 | /* | |
314 | =item i_img_empty(im, x, y) | |
315 | ||
316 | Re-new image reference (assumes 3 channels) | |
317 | ||
318 | im - Image pointer | |
319 | x - xsize of destination image | |
320 | y - ysize of destination image | |
321 | ||
faa9b3e7 TC |
322 | **FIXME** what happens if a live image is passed in here? |
323 | ||
324 | Should this just call i_img_empty_ch()? | |
325 | ||
02d1d628 AMH |
326 | =cut |
327 | */ | |
328 | ||
329 | i_img * | |
330 | i_img_empty(i_img *im,int x,int y) { | |
4cac9410 | 331 | mm_log((1,"i_img_empty(*im %p, x %d, y %d)\n",im, x, y)); |
faa9b3e7 | 332 | return i_img_empty_ch(im, x, y, 3); |
02d1d628 AMH |
333 | } |
334 | ||
335 | /* | |
336 | =item i_img_empty_ch(im, x, y, ch) | |
337 | ||
338 | Re-new image reference | |
339 | ||
340 | im - Image pointer | |
142c26ff AMH |
341 | x - xsize of destination image |
342 | y - ysize of destination image | |
02d1d628 AMH |
343 | ch - number of channels |
344 | ||
345 | =cut | |
346 | */ | |
347 | ||
348 | i_img * | |
349 | i_img_empty_ch(i_img *im,int x,int y,int ch) { | |
4cac9410 AMH |
350 | mm_log((1,"i_img_empty_ch(*im %p, x %d, y %d, ch %d)\n", im, x, y, ch)); |
351 | if (im == NULL) | |
02d1d628 AMH |
352 | if ( (im=mymalloc(sizeof(i_img))) == NULL) |
353 | m_fatal(2,"malloc() error\n"); | |
faa9b3e7 TC |
354 | |
355 | memcpy(im, &IIM_base_8bit_direct, sizeof(i_img)); | |
356 | i_tags_new(&im->tags); | |
4cac9410 AMH |
357 | im->xsize = x; |
358 | im->ysize = y; | |
359 | im->channels = ch; | |
360 | im->ch_mask = MAXINT; | |
02d1d628 | 361 | im->bytes=x*y*im->channels; |
faa9b3e7 TC |
362 | if ( (im->idata=mymalloc(im->bytes)) == NULL) m_fatal(2,"malloc() error\n"); |
363 | memset(im->idata,0,(size_t)im->bytes); | |
02d1d628 | 364 | |
4cac9410 | 365 | im->ext_data = NULL; |
02d1d628 | 366 | |
4cac9410 | 367 | mm_log((1,"(%p) <- i_img_empty_ch\n",im)); |
02d1d628 AMH |
368 | return im; |
369 | } | |
370 | ||
371 | /* | |
372 | =item i_img_exorcise(im) | |
373 | ||
374 | Free image data. | |
375 | ||
376 | im - Image pointer | |
377 | ||
378 | =cut | |
379 | */ | |
380 | ||
381 | void | |
382 | i_img_exorcise(i_img *im) { | |
383 | mm_log((1,"i_img_exorcise(im* 0x%x)\n",im)); | |
faa9b3e7 TC |
384 | i_tags_destroy(&im->tags); |
385 | if (im->i_f_destroy) | |
386 | (im->i_f_destroy)(im); | |
387 | if (im->idata != NULL) { myfree(im->idata); } | |
388 | im->idata = NULL; | |
4cac9410 AMH |
389 | im->xsize = 0; |
390 | im->ysize = 0; | |
391 | im->channels = 0; | |
02d1d628 AMH |
392 | |
393 | im->i_f_ppix=i_ppix_d; | |
394 | im->i_f_gpix=i_gpix_d; | |
7a0584ef TC |
395 | im->i_f_plin=i_plin_d; |
396 | im->i_f_glin=i_glin_d; | |
02d1d628 AMH |
397 | im->ext_data=NULL; |
398 | } | |
399 | ||
400 | /* | |
401 | =item i_img_destroy(im) | |
402 | ||
403 | Destroy image and free data via exorcise. | |
404 | ||
405 | im - Image pointer | |
406 | ||
407 | =cut | |
408 | */ | |
409 | ||
410 | void | |
411 | i_img_destroy(i_img *im) { | |
412 | mm_log((1,"i_img_destroy(im* 0x%x)\n",im)); | |
413 | i_img_exorcise(im); | |
414 | if (im) { myfree(im); } | |
415 | } | |
416 | ||
417 | /* | |
418 | =item i_img_info(im, info) | |
419 | ||
420 | Return image information | |
421 | ||
422 | im - Image pointer | |
423 | info - pointer to array to return data | |
424 | ||
425 | info is an array of 4 integers with the following values: | |
426 | ||
427 | info[0] - width | |
428 | info[1] - height | |
429 | info[2] - channels | |
430 | info[3] - channel mask | |
431 | ||
432 | =cut | |
433 | */ | |
434 | ||
435 | ||
436 | void | |
437 | i_img_info(i_img *im,int *info) { | |
438 | mm_log((1,"i_img_info(im 0x%x)\n",im)); | |
439 | if (im != NULL) { | |
440 | mm_log((1,"i_img_info: xsize=%d ysize=%d channels=%d mask=%ud\n",im->xsize,im->ysize,im->channels,im->ch_mask)); | |
faa9b3e7 | 441 | mm_log((1,"i_img_info: idata=0x%d\n",im->idata)); |
4cac9410 AMH |
442 | info[0] = im->xsize; |
443 | info[1] = im->ysize; | |
444 | info[2] = im->channels; | |
445 | info[3] = im->ch_mask; | |
02d1d628 | 446 | } else { |
4cac9410 AMH |
447 | info[0] = 0; |
448 | info[1] = 0; | |
449 | info[2] = 0; | |
450 | info[3] = 0; | |
02d1d628 AMH |
451 | } |
452 | } | |
453 | ||
454 | /* | |
455 | =item i_img_setmask(im, ch_mask) | |
456 | ||
457 | Set the image channel mask for I<im> to I<ch_mask>. | |
458 | ||
459 | =cut | |
460 | */ | |
461 | void | |
462 | i_img_setmask(i_img *im,int ch_mask) { im->ch_mask=ch_mask; } | |
463 | ||
464 | ||
465 | /* | |
466 | =item i_img_getmask(im) | |
467 | ||
468 | Get the image channel mask for I<im>. | |
469 | ||
470 | =cut | |
471 | */ | |
472 | int | |
473 | i_img_getmask(i_img *im) { return im->ch_mask; } | |
474 | ||
475 | /* | |
476 | =item i_img_getchannels(im) | |
477 | ||
478 | Get the number of channels in I<im>. | |
479 | ||
480 | =cut | |
481 | */ | |
482 | int | |
483 | i_img_getchannels(i_img *im) { return im->channels; } | |
484 | ||
485 | ||
486 | /* | |
487 | =item i_ppix(im, x, y, col) | |
488 | ||
489 | Sets the pixel at (I<x>,I<y>) in I<im> to I<col>. | |
490 | ||
491 | Returns true if the pixel could be set, false if x or y is out of | |
492 | range. | |
493 | ||
494 | =cut | |
495 | */ | |
496 | int | |
faa9b3e7 | 497 | (i_ppix)(i_img *im, int x, int y, i_color *val) { return im->i_f_ppix(im, x, y, val); } |
02d1d628 AMH |
498 | |
499 | /* | |
500 | =item i_gpix(im, x, y, &col) | |
501 | ||
502 | Get the pixel at (I<x>,I<y>) in I<im> into I<col>. | |
503 | ||
504 | Returns true if the pixel could be retrieved, false otherwise. | |
505 | ||
506 | =cut | |
507 | */ | |
508 | int | |
faa9b3e7 | 509 | (i_gpix)(i_img *im, int x, int y, i_color *val) { return im->i_f_gpix(im, x, y, val); } |
7a0584ef | 510 | |
02d1d628 AMH |
511 | /* |
512 | =item i_ppix_pch(im, x, y, ch) | |
513 | ||
514 | Get the value from the channel I<ch> for pixel (I<x>,I<y>) from I<im> | |
515 | scaled to [0,1]. | |
516 | ||
517 | Returns zero if x or y is out of range. | |
518 | ||
519 | Warning: this ignores the vptr interface for images. | |
520 | ||
521 | =cut | |
522 | */ | |
523 | float | |
524 | i_gpix_pch(i_img *im,int x,int y,int ch) { | |
faa9b3e7 TC |
525 | /* FIXME */ |
526 | if (x>-1 && x<im->xsize && y>-1 && y<im->ysize) return ((float)im->idata[(x+y*im->xsize)*im->channels+ch]/255); | |
02d1d628 AMH |
527 | else return 0; |
528 | } | |
529 | ||
530 | ||
531 | /* | |
532 | =item i_copyto_trans(im, src, x1, y1, x2, y2, tx, ty, trans) | |
533 | ||
534 | (x1,y1) (x2,y2) specifies the region to copy (in the source coordinates) | |
535 | (tx,ty) specifies the upper left corner for the target image. | |
536 | pass NULL in trans for non transparent i_colors. | |
537 | ||
538 | =cut | |
539 | */ | |
540 | ||
541 | void | |
542 | i_copyto_trans(i_img *im,i_img *src,int x1,int y1,int x2,int y2,int tx,int ty,i_color *trans) { | |
543 | i_color pv; | |
544 | int x,y,t,ttx,tty,tt,ch; | |
545 | ||
4cac9410 AMH |
546 | mm_log((1,"i_copyto_trans(im* %p,src 0x%x, x1 %d, y1 %d, x2 %d, y2 %d, tx %d, ty %d, trans* 0x%x)\n", |
547 | im, src, x1, y1, x2, y2, tx, ty, trans)); | |
548 | ||
02d1d628 AMH |
549 | if (x2<x1) { t=x1; x1=x2; x2=t; } |
550 | if (y2<y1) { t=y1; y1=y2; y2=t; } | |
551 | ||
552 | ttx=tx; | |
553 | for(x=x1;x<x2;x++) | |
554 | { | |
555 | tty=ty; | |
556 | for(y=y1;y<y2;y++) | |
557 | { | |
558 | i_gpix(src,x,y,&pv); | |
559 | if ( trans != NULL) | |
560 | { | |
561 | tt=0; | |
562 | for(ch=0;ch<im->channels;ch++) if (trans->channel[ch]!=pv.channel[ch]) tt++; | |
563 | if (tt) i_ppix(im,ttx,tty,&pv); | |
564 | } else i_ppix(im,ttx,tty,&pv); | |
565 | tty++; | |
566 | } | |
567 | ttx++; | |
568 | } | |
569 | } | |
570 | ||
571 | /* | |
572 | =item i_copyto(dest, src, x1, y1, x2, y2, tx, ty) | |
573 | ||
574 | Copies image data from the area (x1,y1)-[x2,y2] in the source image to | |
575 | a rectangle the same size with it's top-left corner at (tx,ty) in the | |
576 | destination image. | |
577 | ||
578 | If x1 > x2 or y1 > y2 then the corresponding co-ordinates are swapped. | |
579 | ||
580 | =cut | |
581 | */ | |
582 | ||
583 | void | |
4cac9410 | 584 | i_copyto(i_img *im, i_img *src, int x1, int y1, int x2, int y2, int tx, int ty) { |
4cac9410 | 585 | int x, y, t, ttx, tty; |
faa9b3e7 | 586 | |
02d1d628 AMH |
587 | if (x2<x1) { t=x1; x1=x2; x2=t; } |
588 | if (y2<y1) { t=y1; y1=y2; y2=t; } | |
faa9b3e7 | 589 | |
4cac9410 AMH |
590 | mm_log((1,"i_copyto(im* %p, src %p, x1 %d, y1 %d, x2 %d, y2 %d, tx %d, ty %d)\n", |
591 | im, src, x1, y1, x2, y2, tx, ty)); | |
faa9b3e7 TC |
592 | |
593 | if (im->bits == i_8_bits) { | |
594 | i_color pv; | |
4cac9410 AMH |
595 | tty = ty; |
596 | for(y=y1; y<y2; y++) { | |
faa9b3e7 TC |
597 | ttx = tx; |
598 | for(x=x1; x<x2; x++) { | |
599 | i_gpix(src, x, y, &pv); | |
600 | i_ppix(im, ttx, tty, &pv); | |
601 | ttx++; | |
602 | } | |
603 | tty++; | |
604 | } | |
605 | } | |
606 | else { | |
607 | i_fcolor pv; | |
608 | tty = ty; | |
609 | for(y=y1; y<y2; y++) { | |
610 | ttx = tx; | |
611 | for(x=x1; x<x2; x++) { | |
612 | i_gpixf(src, x, y, &pv); | |
613 | i_ppixf(im, ttx, tty, &pv); | |
614 | ttx++; | |
615 | } | |
616 | tty++; | |
02d1d628 | 617 | } |
02d1d628 AMH |
618 | } |
619 | } | |
620 | ||
621 | /* | |
622 | =item i_copy(im, src) | |
623 | ||
624 | Copies the contents of the image I<src> over the image I<im>. | |
625 | ||
626 | =cut | |
627 | */ | |
628 | ||
629 | void | |
4cac9410 | 630 | i_copy(i_img *im, i_img *src) { |
a743c0a6 | 631 | int y, y1, x1; |
02d1d628 | 632 | |
4202e066 | 633 | mm_log((1,"i_copy(im* %p,src %p)\n", im, src)); |
02d1d628 | 634 | |
4cac9410 AMH |
635 | x1 = src->xsize; |
636 | y1 = src->ysize; | |
faa9b3e7 TC |
637 | if (src->type == i_direct_type) { |
638 | if (src->bits == i_8_bits) { | |
639 | i_color *pv; | |
640 | i_img_empty_ch(im, x1, y1, src->channels); | |
641 | pv = mymalloc(sizeof(i_color) * x1); | |
642 | ||
643 | for (y = 0; y < y1; ++y) { | |
644 | i_glin(src, 0, x1, y, pv); | |
645 | i_plin(im, 0, x1, y, pv); | |
646 | } | |
647 | myfree(pv); | |
648 | } | |
649 | else { | |
faa9b3e7 | 650 | i_fcolor *pv; |
af3c2450 TC |
651 | if (src->bits == i_16_bits) |
652 | i_img_16_new_low(im, x1, y1, src->channels); | |
653 | else if (src->bits == i_double_bits) | |
654 | i_img_double_new_low(im, x1, y1, src->channels); | |
655 | else { | |
656 | fprintf(stderr, "i_copy(): Unknown image bit size %d\n", src->bits); | |
657 | return; /* I dunno */ | |
658 | } | |
659 | ||
faa9b3e7 TC |
660 | pv = mymalloc(sizeof(i_fcolor) * x1); |
661 | for (y = 0; y < y1; ++y) { | |
662 | i_glinf(src, 0, x1, y, pv); | |
663 | i_plinf(im, 0, x1, y, pv); | |
664 | } | |
665 | myfree(pv); | |
666 | } | |
667 | } | |
668 | else { | |
669 | i_color temp; | |
670 | int index; | |
671 | int count; | |
672 | i_palidx *vals; | |
673 | ||
674 | /* paletted image */ | |
675 | i_img_pal_new_low(im, x1, y1, src->channels, i_maxcolors(src)); | |
676 | /* copy across the palette */ | |
677 | count = i_colorcount(src); | |
678 | for (index = 0; index < count; ++index) { | |
679 | i_getcolors(src, index, &temp, 1); | |
680 | i_addcolors(im, &temp, 1); | |
681 | } | |
682 | ||
683 | vals = mymalloc(sizeof(i_palidx) * x1); | |
684 | for (y = 0; y < y1; ++y) { | |
685 | i_gpal(src, 0, x1, y, vals); | |
686 | i_ppal(im, 0, x1, y, vals); | |
687 | } | |
688 | myfree(vals); | |
02d1d628 AMH |
689 | } |
690 | } | |
691 | ||
692 | ||
693 | /* | |
694 | =item i_rubthru(im, src, tx, ty) | |
695 | ||
696 | Takes the image I<src> and applies it at an original (I<tx>,I<ty>) in I<im>. | |
697 | ||
698 | The alpha channel of each pixel in I<src> is used to control how much | |
699 | the existing colour in I<im> is replaced, if it is 255 then the colour | |
700 | is completely replaced, if it is 0 then the original colour is left | |
701 | unmodified. | |
702 | ||
703 | =cut | |
704 | */ | |
142c26ff | 705 | |
faa9b3e7 | 706 | int |
02d1d628 | 707 | i_rubthru(i_img *im,i_img *src,int tx,int ty) { |
4cac9410 | 708 | int x, y, ttx, tty; |
faa9b3e7 TC |
709 | int chancount; |
710 | int chans[3]; | |
711 | int alphachan; | |
712 | int ch; | |
02d1d628 | 713 | |
4cac9410 | 714 | mm_log((1,"i_rubthru(im %p, src %p, tx %d, ty %d)\n", im, src, tx, ty)); |
faa9b3e7 | 715 | i_clear_error(); |
02d1d628 | 716 | |
faa9b3e7 TC |
717 | if (im->channels == 3 && src->channels == 4) { |
718 | chancount = 3; | |
719 | chans[0] = 0; chans[1] = 1; chans[2] = 2; | |
720 | alphachan = 3; | |
721 | } | |
722 | else if (im->channels == 3 && src->channels == 2) { | |
723 | chancount = 3; | |
724 | chans[0] = chans[1] = chans[2] = 0; | |
725 | alphachan = 1; | |
726 | } | |
727 | else if (im->channels == 1 && src->channels == 2) { | |
728 | chancount = 1; | |
729 | chans[0] = 0; | |
730 | alphachan = 1; | |
731 | } | |
732 | else { | |
733 | i_push_error(0, "rubthru can only work where (dest, src) channels are (3,4), (3,2) or (1,2)"); | |
734 | return 0; | |
735 | } | |
736 | ||
737 | if (im->bits <= 8) { | |
738 | /* if you change this code, please make sure the else branch is | |
739 | changed in a similar fashion - TC */ | |
740 | int alpha; | |
741 | i_color pv, orig, dest; | |
742 | ttx = tx; | |
743 | for(x=0; x<src->xsize; x++) { | |
744 | tty=ty; | |
745 | for(y=0;y<src->ysize;y++) { | |
746 | /* fprintf(stderr,"reading (%d,%d) writing (%d,%d).\n",x,y,ttx,tty); */ | |
747 | i_gpix(src, x, y, &pv); | |
748 | i_gpix(im, ttx, tty, &orig); | |
749 | alpha = pv.channel[alphachan]; | |
750 | for (ch = 0; ch < chancount; ++ch) { | |
751 | dest.channel[ch] = (alpha * pv.channel[chans[ch]] | |
752 | + (255 - alpha) * orig.channel[ch])/255; | |
753 | } | |
754 | i_ppix(im, ttx, tty, &dest); | |
755 | tty++; | |
756 | } | |
757 | ttx++; | |
758 | } | |
759 | } | |
760 | else { | |
761 | double alpha; | |
762 | i_fcolor pv, orig, dest; | |
763 | ||
764 | ttx = tx; | |
765 | for(x=0; x<src->xsize; x++) { | |
766 | tty=ty; | |
767 | for(y=0;y<src->ysize;y++) { | |
768 | /* fprintf(stderr,"reading (%d,%d) writing (%d,%d).\n",x,y,ttx,tty); */ | |
769 | i_gpixf(src, x, y, &pv); | |
770 | i_gpixf(im, ttx, tty, &orig); | |
771 | alpha = pv.channel[alphachan]; | |
772 | for (ch = 0; ch < chancount; ++ch) { | |
773 | dest.channel[ch] = alpha * pv.channel[chans[ch]] | |
774 | + (1 - alpha) * orig.channel[ch]; | |
775 | } | |
776 | i_ppixf(im, ttx, tty, &dest); | |
777 | tty++; | |
778 | } | |
779 | ttx++; | |
02d1d628 | 780 | } |
4cac9410 | 781 | } |
faa9b3e7 TC |
782 | |
783 | return 1; | |
02d1d628 AMH |
784 | } |
785 | ||
142c26ff AMH |
786 | |
787 | /* | |
788 | =item i_flipxy(im, axis) | |
789 | ||
790 | Flips the image inplace around the axis specified. | |
791 | Returns 0 if parameters are invalid. | |
792 | ||
793 | im - Image pointer | |
794 | axis - 0 = x, 1 = y, 2 = both | |
795 | ||
796 | =cut | |
797 | */ | |
798 | ||
799 | undef_int | |
800 | i_flipxy(i_img *im, int direction) { | |
801 | int x, x2, y, y2, xm, ym; | |
802 | int xs = im->xsize; | |
803 | int ys = im->ysize; | |
804 | ||
805 | mm_log((1, "i_flipxy(im %p, direction %d)\n", im, direction )); | |
806 | ||
807 | if (!im) return 0; | |
808 | ||
809 | switch (direction) { | |
810 | case XAXIS: /* Horizontal flip */ | |
811 | xm = xs/2; | |
812 | ym = ys; | |
813 | for(y=0; y<ym; y++) { | |
814 | x2 = xs-1; | |
815 | for(x=0; x<xm; x++) { | |
816 | i_color val1, val2; | |
817 | i_gpix(im, x, y, &val1); | |
818 | i_gpix(im, x2, y, &val2); | |
819 | i_ppix(im, x, y, &val2); | |
820 | i_ppix(im, x2, y, &val1); | |
821 | x2--; | |
822 | } | |
823 | } | |
824 | break; | |
390cd725 | 825 | case YAXIS: /* Vertical flip */ |
142c26ff AMH |
826 | xm = xs; |
827 | ym = ys/2; | |
828 | y2 = ys-1; | |
829 | for(y=0; y<ym; y++) { | |
830 | for(x=0; x<xm; x++) { | |
831 | i_color val1, val2; | |
832 | i_gpix(im, x, y, &val1); | |
833 | i_gpix(im, x, y2, &val2); | |
834 | i_ppix(im, x, y, &val2); | |
835 | i_ppix(im, x, y2, &val1); | |
836 | } | |
837 | y2--; | |
838 | } | |
839 | break; | |
390cd725 | 840 | case XYAXIS: /* Horizontal and Vertical flip */ |
142c26ff AMH |
841 | xm = xs/2; |
842 | ym = ys/2; | |
843 | y2 = ys-1; | |
844 | for(y=0; y<ym; y++) { | |
845 | x2 = xs-1; | |
846 | for(x=0; x<xm; x++) { | |
847 | i_color val1, val2; | |
848 | i_gpix(im, x, y, &val1); | |
849 | i_gpix(im, x2, y2, &val2); | |
850 | i_ppix(im, x, y, &val2); | |
851 | i_ppix(im, x2, y2, &val1); | |
852 | ||
853 | i_gpix(im, x2, y, &val1); | |
854 | i_gpix(im, x, y2, &val2); | |
855 | i_ppix(im, x2, y, &val2); | |
856 | i_ppix(im, x, y2, &val1); | |
857 | x2--; | |
858 | } | |
859 | y2--; | |
860 | } | |
390cd725 AMH |
861 | if (xm*2 != xs) { /* odd number of column */ |
862 | mm_log((1, "i_flipxy: odd number of columns\n")); | |
863 | x = xm; | |
864 | y2 = ys-1; | |
865 | for(y=0; y<ym; y++) { | |
866 | i_color val1, val2; | |
867 | i_gpix(im, x, y, &val1); | |
868 | i_gpix(im, x, y2, &val2); | |
869 | i_ppix(im, x, y, &val2); | |
870 | i_ppix(im, x, y2, &val1); | |
871 | y2--; | |
872 | } | |
873 | } | |
874 | if (ym*2 != ys) { /* odd number of rows */ | |
875 | mm_log((1, "i_flipxy: odd number of rows\n")); | |
876 | y = ym; | |
877 | x2 = xs-1; | |
878 | for(x=0; x<xm; x++) { | |
879 | i_color val1, val2; | |
880 | i_gpix(im, x, y, &val1); | |
881 | i_gpix(im, x2, y, &val2); | |
882 | i_ppix(im, x, y, &val2); | |
883 | i_ppix(im, x2, y, &val1); | |
884 | x2--; | |
885 | } | |
886 | } | |
142c26ff AMH |
887 | break; |
888 | default: | |
889 | mm_log((1, "i_flipxy: direction is invalid\n" )); | |
890 | return 0; | |
891 | } | |
892 | return 1; | |
893 | } | |
894 | ||
895 | ||
896 | ||
897 | ||
898 | ||
899 | static | |
02d1d628 AMH |
900 | float |
901 | Lanczos(float x) { | |
902 | float PIx, PIx2; | |
903 | ||
904 | PIx = PI * x; | |
905 | PIx2 = PIx / 2.0; | |
906 | ||
907 | if ((x >= 2.0) || (x <= -2.0)) return (0.0); | |
908 | else if (x == 0.0) return (1.0); | |
909 | else return(sin(PIx) / PIx * sin(PIx2) / PIx2); | |
910 | } | |
911 | ||
912 | /* | |
913 | =item i_scaleaxis(im, value, axis) | |
914 | ||
915 | Returns a new image object which is I<im> scaled by I<value> along | |
916 | wither the x-axis (I<axis> == 0) or the y-axis (I<axis> == 1). | |
917 | ||
918 | =cut | |
919 | */ | |
920 | ||
921 | i_img* | |
922 | i_scaleaxis(i_img *im, float Value, int Axis) { | |
923 | int hsize, vsize, i, j, k, l, lMax, iEnd, jEnd; | |
924 | int LanczosWidthFactor; | |
925 | float *l0, *l1, OldLocation; | |
926 | int T, TempJump1, TempJump2; | |
927 | float F, PictureValue[MAXCHANNELS]; | |
928 | short psave; | |
929 | i_color val,val1,val2; | |
930 | i_img *new_img; | |
931 | ||
932 | mm_log((1,"i_scaleaxis(im 0x%x,Value %.2f,Axis %d)\n",im,Value,Axis)); | |
933 | ||
934 | if (Axis == XAXIS) { | |
935 | hsize = (int) ((float) im->xsize * Value); | |
936 | vsize = im->ysize; | |
937 | ||
938 | jEnd = hsize; | |
939 | iEnd = vsize; | |
940 | ||
941 | TempJump1 = (hsize - 1) * 3; | |
942 | TempJump2 = hsize * (vsize - 1) * 3 + TempJump1; | |
943 | } else { | |
944 | hsize = im->xsize; | |
945 | vsize = (int) ((float) im->ysize * Value); | |
946 | ||
947 | jEnd = vsize; | |
948 | iEnd = hsize; | |
949 | ||
950 | TempJump1 = 0; | |
951 | TempJump2 = 0; | |
952 | } | |
953 | ||
954 | new_img=i_img_empty_ch(NULL,hsize,vsize,im->channels); | |
955 | ||
956 | if (Value >=1) LanczosWidthFactor = 1; | |
957 | else LanczosWidthFactor = (int) (1.0/Value); | |
958 | ||
959 | lMax = LanczosWidthFactor << 1; | |
960 | ||
961 | l0 = (float *) mymalloc(lMax * sizeof(float)); | |
962 | l1 = (float *) mymalloc(lMax * sizeof(float)); | |
963 | ||
964 | for (j=0; j<jEnd; j++) { | |
965 | OldLocation = ((float) j) / Value; | |
966 | T = (int) (OldLocation); | |
967 | F = OldLocation - (float) T; | |
968 | ||
969 | for (l = 0; l < lMax; l++) { | |
970 | l0[lMax-l-1] = Lanczos(((float) (lMax-l-1) + F) / (float) LanczosWidthFactor); | |
971 | l1[l] = Lanczos(((float) (l + 1) - F) / (float) LanczosWidthFactor); | |
972 | } | |
973 | ||
974 | if (Axis== XAXIS) { | |
975 | ||
976 | for (i=0; i<iEnd; i++) { | |
977 | for (k=0; k<im->channels; k++) PictureValue[k] = 0.0; | |
978 | for (l=0; l < lMax; l++) { | |
979 | i_gpix(im,T+l+1, i, &val1); | |
980 | i_gpix(im,T-lMax+l+1, i, &val2); | |
981 | for (k=0; k<im->channels; k++) { | |
982 | PictureValue[k] += l1[l] * val1.channel[k]; | |
983 | PictureValue[k] += l0[lMax-l-1] * val2.channel[k]; | |
984 | } | |
985 | } | |
986 | for(k=0;k<im->channels;k++) { | |
987 | psave = (short)( PictureValue[k] / LanczosWidthFactor); | |
988 | val.channel[k]=minmax(0,255,psave); | |
989 | } | |
990 | i_ppix(new_img,j,i,&val); | |
991 | } | |
992 | ||
993 | } else { | |
994 | ||
995 | for (i=0; i<iEnd; i++) { | |
996 | for (k=0; k<im->channels; k++) PictureValue[k] = 0.0; | |
997 | for (l=0; l < lMax; l++) { | |
998 | i_gpix(im,i, T+l+1, &val1); | |
999 | i_gpix(im,i, T-lMax+l+1, &val2); | |
1000 | for (k=0; k<im->channels; k++) { | |
1001 | PictureValue[k] += l1[l] * val1.channel[k]; | |
1002 | PictureValue[k] += l0[lMax-l-1] * val2.channel[k]; | |
1003 | } | |
1004 | } | |
1005 | for (k=0; k<im->channels; k++) { | |
1006 | psave = (short)( PictureValue[k] / LanczosWidthFactor); | |
1007 | val.channel[k]=minmax(0,255,psave); | |
1008 | } | |
1009 | i_ppix(new_img,i,j,&val); | |
1010 | } | |
1011 | ||
1012 | } | |
1013 | } | |
1014 | myfree(l0); | |
1015 | myfree(l1); | |
1016 | ||
1017 | mm_log((1,"(0x%x) <- i_scaleaxis\n",new_img)); | |
1018 | ||
1019 | return new_img; | |
1020 | } | |
1021 | ||
1022 | ||
1023 | /* | |
1024 | =item i_scale_nn(im, scx, scy) | |
1025 | ||
1026 | Scale by using nearest neighbor | |
1027 | Both axes scaled at the same time since | |
1028 | nothing is gained by doing it in two steps | |
1029 | ||
1030 | =cut | |
1031 | */ | |
1032 | ||
1033 | ||
1034 | i_img* | |
1035 | i_scale_nn(i_img *im, float scx, float scy) { | |
1036 | ||
1037 | int nxsize,nysize,nx,ny; | |
1038 | i_img *new_img; | |
1039 | i_color val; | |
1040 | ||
1041 | mm_log((1,"i_scale_nn(im 0x%x,scx %.2f,scy %.2f)\n",im,scx,scy)); | |
1042 | ||
1043 | nxsize = (int) ((float) im->xsize * scx); | |
1044 | nysize = (int) ((float) im->ysize * scy); | |
1045 | ||
1046 | new_img=i_img_empty_ch(NULL,nxsize,nysize,im->channels); | |
1047 | ||
1048 | for(ny=0;ny<nysize;ny++) for(nx=0;nx<nxsize;nx++) { | |
1049 | i_gpix(im,((float)nx)/scx,((float)ny)/scy,&val); | |
1050 | i_ppix(new_img,nx,ny,&val); | |
1051 | } | |
1052 | ||
1053 | mm_log((1,"(0x%x) <- i_scale_nn\n",new_img)); | |
1054 | ||
1055 | return new_img; | |
1056 | } | |
1057 | ||
faa9b3e7 TC |
1058 | /* |
1059 | =item i_sametype(i_img *im, int xsize, int ysize) | |
1060 | ||
1061 | Returns an image of the same type (sample size, channels, paletted/direct). | |
1062 | ||
1063 | For paletted images the palette is copied from the source. | |
1064 | ||
1065 | =cut | |
1066 | */ | |
1067 | ||
1068 | i_img *i_sametype(i_img *src, int xsize, int ysize) { | |
1069 | if (src->type == i_direct_type) { | |
1070 | if (src->bits == 8) { | |
1071 | return i_img_empty_ch(NULL, xsize, ysize, src->channels); | |
1072 | } | |
af3c2450 | 1073 | else if (src->bits == i_16_bits) { |
faa9b3e7 TC |
1074 | return i_img_16_new(xsize, ysize, src->channels); |
1075 | } | |
af3c2450 TC |
1076 | else if (src->bits == i_double_bits) { |
1077 | return i_img_double_new(xsize, ysize, src->channels); | |
1078 | } | |
faa9b3e7 TC |
1079 | else { |
1080 | i_push_error(0, "Unknown image bits"); | |
1081 | return NULL; | |
1082 | } | |
1083 | } | |
1084 | else { | |
1085 | i_color col; | |
1086 | int i; | |
1087 | ||
1088 | i_img *targ = i_img_pal_new(xsize, ysize, src->channels, i_maxcolors(src)); | |
1089 | for (i = 0; i < i_colorcount(src); ++i) { | |
1090 | i_getcolors(src, i, &col, 1); | |
1091 | i_addcolors(targ, &col, 1); | |
1092 | } | |
1093 | ||
1094 | return targ; | |
1095 | } | |
1096 | } | |
02d1d628 AMH |
1097 | |
1098 | /* | |
1099 | =item i_transform(im, opx, opxl, opy, opyl, parm, parmlen) | |
1100 | ||
1101 | Spatially transforms I<im> returning a new image. | |
1102 | ||
1103 | opx for a length of opxl and opy for a length of opy are arrays of | |
1104 | operators that modify the x and y positions to retreive the pixel data from. | |
1105 | ||
1106 | parm and parmlen define extra parameters that the operators may use. | |
1107 | ||
1108 | Note that this function is largely superseded by the more flexible | |
1109 | L<transform.c/i_transform2>. | |
1110 | ||
1111 | Returns the new image. | |
1112 | ||
1113 | The operators for this function are defined in L<stackmach.c>. | |
1114 | ||
1115 | =cut | |
1116 | */ | |
1117 | i_img* | |
1118 | i_transform(i_img *im, int *opx,int opxl,int *opy,int opyl,double parm[],int parmlen) { | |
1119 | double rx,ry; | |
1120 | int nxsize,nysize,nx,ny; | |
1121 | i_img *new_img; | |
1122 | i_color val; | |
1123 | ||
1124 | mm_log((1,"i_transform(im 0x%x, opx 0x%x, opxl %d, opy 0x%x, opyl %d, parm 0x%x, parmlen %d)\n",im,opx,opxl,opy,opyl,parm,parmlen)); | |
1125 | ||
1126 | nxsize = im->xsize; | |
1127 | nysize = im->ysize ; | |
1128 | ||
1129 | new_img=i_img_empty_ch(NULL,nxsize,nysize,im->channels); | |
1130 | /* fprintf(stderr,"parm[2]=%f\n",parm[2]); */ | |
1131 | for(ny=0;ny<nysize;ny++) for(nx=0;nx<nxsize;nx++) { | |
1132 | /* parm[parmlen-2]=(double)nx; | |
1133 | parm[parmlen-1]=(double)ny; */ | |
1134 | ||
1135 | parm[0]=(double)nx; | |
1136 | parm[1]=(double)ny; | |
1137 | ||
1138 | /* fprintf(stderr,"(%d,%d) ->",nx,ny); */ | |
1139 | rx=op_run(opx,opxl,parm,parmlen); | |
1140 | ry=op_run(opy,opyl,parm,parmlen); | |
1141 | /* fprintf(stderr,"(%f,%f)\n",rx,ry); */ | |
1142 | i_gpix(im,rx,ry,&val); | |
1143 | i_ppix(new_img,nx,ny,&val); | |
1144 | } | |
1145 | ||
1146 | mm_log((1,"(0x%x) <- i_transform\n",new_img)); | |
1147 | return new_img; | |
1148 | } | |
1149 | ||
1150 | /* | |
1151 | =item i_img_diff(im1, im2) | |
1152 | ||
1153 | Calculates the sum of the squares of the differences between | |
1154 | correspoding channels in two images. | |
1155 | ||
1156 | If the images are not the same size then only the common area is | |
1157 | compared, hence even if images are different sizes this function | |
1158 | can return zero. | |
1159 | ||
1160 | =cut | |
1161 | */ | |
1162 | float | |
1163 | i_img_diff(i_img *im1,i_img *im2) { | |
1164 | int x,y,ch,xb,yb,chb; | |
1165 | float tdiff; | |
1166 | i_color val1,val2; | |
1167 | ||
1168 | mm_log((1,"i_img_diff(im1 0x%x,im2 0x%x)\n",im1,im2)); | |
1169 | ||
1170 | xb=(im1->xsize<im2->xsize)?im1->xsize:im2->xsize; | |
1171 | yb=(im1->ysize<im2->ysize)?im1->ysize:im2->ysize; | |
1172 | chb=(im1->channels<im2->channels)?im1->channels:im2->channels; | |
1173 | ||
1174 | mm_log((1,"i_img_diff: xb=%d xy=%d chb=%d\n",xb,yb,chb)); | |
1175 | ||
1176 | tdiff=0; | |
1177 | for(y=0;y<yb;y++) for(x=0;x<xb;x++) { | |
1178 | i_gpix(im1,x,y,&val1); | |
1179 | i_gpix(im2,x,y,&val2); | |
1180 | ||
1181 | for(ch=0;ch<chb;ch++) tdiff+=(val1.channel[ch]-val2.channel[ch])*(val1.channel[ch]-val2.channel[ch]); | |
1182 | } | |
1183 | mm_log((1,"i_img_diff <- (%.2f)\n",tdiff)); | |
1184 | return tdiff; | |
1185 | } | |
1186 | ||
1187 | /* just a tiny demo of haar wavelets */ | |
1188 | ||
1189 | i_img* | |
1190 | i_haar(i_img *im) { | |
1191 | int mx,my; | |
1192 | int fx,fy; | |
1193 | int x,y; | |
1194 | int ch,c; | |
1195 | i_img *new_img,*new_img2; | |
1196 | i_color val1,val2,dval1,dval2; | |
1197 | ||
1198 | mx=im->xsize; | |
1199 | my=im->ysize; | |
1200 | fx=(mx+1)/2; | |
1201 | fy=(my+1)/2; | |
1202 | ||
1203 | ||
1204 | /* horizontal pass */ | |
1205 | ||
1206 | new_img=i_img_empty_ch(NULL,fx*2,fy*2,im->channels); | |
1207 | new_img2=i_img_empty_ch(NULL,fx*2,fy*2,im->channels); | |
1208 | ||
1209 | c=0; | |
1210 | for(y=0;y<my;y++) for(x=0;x<fx;x++) { | |
1211 | i_gpix(im,x*2,y,&val1); | |
1212 | i_gpix(im,x*2+1,y,&val2); | |
1213 | for(ch=0;ch<im->channels;ch++) { | |
1214 | dval1.channel[ch]=(val1.channel[ch]+val2.channel[ch])/2; | |
1215 | dval2.channel[ch]=(255+val1.channel[ch]-val2.channel[ch])/2; | |
1216 | } | |
1217 | i_ppix(new_img,x,y,&dval1); | |
1218 | i_ppix(new_img,x+fx,y,&dval2); | |
1219 | } | |
1220 | ||
1221 | for(y=0;y<fy;y++) for(x=0;x<mx;x++) { | |
1222 | i_gpix(new_img,x,y*2,&val1); | |
1223 | i_gpix(new_img,x,y*2+1,&val2); | |
1224 | for(ch=0;ch<im->channels;ch++) { | |
1225 | dval1.channel[ch]=(val1.channel[ch]+val2.channel[ch])/2; | |
1226 | dval2.channel[ch]=(255+val1.channel[ch]-val2.channel[ch])/2; | |
1227 | } | |
1228 | i_ppix(new_img2,x,y,&dval1); | |
1229 | i_ppix(new_img2,x,y+fy,&dval2); | |
1230 | } | |
1231 | ||
1232 | i_img_destroy(new_img); | |
1233 | return new_img2; | |
1234 | } | |
1235 | ||
1236 | /* | |
1237 | =item i_count_colors(im, maxc) | |
1238 | ||
1239 | returns number of colors or -1 | |
1240 | to indicate that it was more than max colors | |
1241 | ||
1242 | =cut | |
1243 | */ | |
1244 | int | |
1245 | i_count_colors(i_img *im,int maxc) { | |
1246 | struct octt *ct; | |
1247 | int x,y; | |
1248 | int xsize,ysize; | |
1249 | i_color val; | |
1250 | int colorcnt; | |
1251 | ||
1252 | mm_log((1,"i_count_colors(im 0x%08X,maxc %d)\n")); | |
1253 | ||
1254 | xsize=im->xsize; | |
1255 | ysize=im->ysize; | |
1256 | ct=octt_new(); | |
1257 | ||
1258 | colorcnt=0; | |
1259 | for(y=0;y<ysize;y++) for(x=0;x<xsize;x++) { | |
1260 | i_gpix(im,x,y,&val); | |
1261 | colorcnt+=octt_add(ct,val.rgb.r,val.rgb.g,val.rgb.b); | |
1262 | if (colorcnt > maxc) { octt_delete(ct); return -1; } | |
1263 | } | |
1264 | octt_delete(ct); | |
1265 | return colorcnt; | |
1266 | } | |
1267 | ||
1268 | ||
1269 | symbol_table_t symbol_table={i_has_format,ICL_set_internal,ICL_info, | |
1270 | i_img_new,i_img_empty,i_img_empty_ch,i_img_exorcise, | |
1271 | i_img_info,i_img_setmask,i_img_getmask,i_ppix,i_gpix, | |
1272 | i_box,i_draw,i_arc,i_copyto,i_copyto_trans,i_rubthru}; | |
1273 | ||
1274 | ||
1275 | /* | |
faa9b3e7 TC |
1276 | =back |
1277 | ||
1278 | =head2 8-bit per sample image internal functions | |
1279 | ||
1280 | These are the functions installed in an 8-bit per sample image. | |
1281 | ||
1282 | =over | |
1283 | ||
1284 | =item i_ppix_d(im, x, y, col) | |
1285 | ||
1286 | Internal function. | |
1287 | ||
1288 | This is the function kept in the i_f_ppix member of an i_img object. | |
1289 | It does a normal store of a pixel into the image with range checking. | |
1290 | ||
1291 | Returns 0 if the pixel could be set, -1 otherwise. | |
1292 | ||
1293 | =cut | |
1294 | */ | |
1295 | int | |
1296 | i_ppix_d(i_img *im, int x, int y, i_color *val) { | |
1297 | int ch; | |
1298 | ||
1299 | if ( x>-1 && x<im->xsize && y>-1 && y<im->ysize ) { | |
1300 | for(ch=0;ch<im->channels;ch++) | |
1301 | if (im->ch_mask&(1<<ch)) | |
1302 | im->idata[(x+y*im->xsize)*im->channels+ch]=val->channel[ch]; | |
1303 | return 0; | |
1304 | } | |
1305 | return -1; /* error was clipped */ | |
1306 | } | |
1307 | ||
1308 | /* | |
1309 | =item i_gpix_d(im, x, y, &col) | |
1310 | ||
1311 | Internal function. | |
1312 | ||
1313 | This is the function kept in the i_f_gpix member of an i_img object. | |
1314 | It does normal retrieval of a pixel from the image with range checking. | |
1315 | ||
1316 | Returns 0 if the pixel could be set, -1 otherwise. | |
1317 | ||
1318 | =cut | |
1319 | */ | |
1320 | int | |
1321 | i_gpix_d(i_img *im, int x, int y, i_color *val) { | |
1322 | int ch; | |
1323 | if (x>-1 && x<im->xsize && y>-1 && y<im->ysize) { | |
1324 | for(ch=0;ch<im->channels;ch++) | |
1325 | val->channel[ch]=im->idata[(x+y*im->xsize)*im->channels+ch]; | |
1326 | return 0; | |
1327 | } | |
1328 | return -1; /* error was cliped */ | |
1329 | } | |
1330 | ||
1331 | /* | |
1332 | =item i_glin_d(im, l, r, y, vals) | |
1333 | ||
1334 | Reads a line of data from the image, storing the pixels at vals. | |
1335 | ||
1336 | The line runs from (l,y) inclusive to (r,y) non-inclusive | |
1337 | ||
1338 | vals should point at space for (r-l) pixels. | |
1339 | ||
1340 | l should never be less than zero (to avoid confusion about where to | |
1341 | put the pixels in vals). | |
1342 | ||
1343 | Returns the number of pixels copied (eg. if r, l or y is out of range) | |
1344 | ||
1345 | =cut | |
1346 | */ | |
1347 | int | |
1348 | i_glin_d(i_img *im, int l, int r, int y, i_color *vals) { | |
1349 | int ch, count, i; | |
1350 | unsigned char *data; | |
1351 | if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) { | |
1352 | if (r > im->xsize) | |
1353 | r = im->xsize; | |
1354 | data = im->idata + (l+y*im->xsize) * im->channels; | |
1355 | count = r - l; | |
1356 | for (i = 0; i < count; ++i) { | |
1357 | for (ch = 0; ch < im->channels; ++ch) | |
1358 | vals[i].channel[ch] = *data++; | |
1359 | } | |
1360 | return count; | |
1361 | } | |
1362 | else { | |
1363 | return 0; | |
1364 | } | |
1365 | } | |
1366 | ||
1367 | /* | |
1368 | =item i_plin_d(im, l, r, y, vals) | |
1369 | ||
1370 | Writes a line of data into the image, using the pixels at vals. | |
1371 | ||
1372 | The line runs from (l,y) inclusive to (r,y) non-inclusive | |
1373 | ||
1374 | vals should point at (r-l) pixels. | |
1375 | ||
1376 | l should never be less than zero (to avoid confusion about where to | |
1377 | get the pixels in vals). | |
1378 | ||
1379 | Returns the number of pixels copied (eg. if r, l or y is out of range) | |
1380 | ||
1381 | =cut | |
1382 | */ | |
1383 | int | |
1384 | i_plin_d(i_img *im, int l, int r, int y, i_color *vals) { | |
1385 | int ch, count, i; | |
1386 | unsigned char *data; | |
1387 | if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) { | |
1388 | if (r > im->xsize) | |
1389 | r = im->xsize; | |
1390 | data = im->idata + (l+y*im->xsize) * im->channels; | |
1391 | count = r - l; | |
1392 | for (i = 0; i < count; ++i) { | |
1393 | for (ch = 0; ch < im->channels; ++ch) { | |
1394 | if (im->ch_mask & (1 << ch)) | |
1395 | *data = vals[i].channel[ch]; | |
1396 | ++data; | |
1397 | } | |
1398 | } | |
1399 | return count; | |
1400 | } | |
1401 | else { | |
1402 | return 0; | |
1403 | } | |
1404 | } | |
1405 | ||
1406 | /* | |
1407 | =item i_ppixf_d(im, x, y, val) | |
1408 | ||
1409 | =cut | |
1410 | */ | |
1411 | int | |
1412 | i_ppixf_d(i_img *im, int x, int y, i_fcolor *val) { | |
1413 | int ch; | |
1414 | ||
1415 | if ( x>-1 && x<im->xsize && y>-1 && y<im->ysize ) { | |
1416 | for(ch=0;ch<im->channels;ch++) | |
1417 | if (im->ch_mask&(1<<ch)) { | |
1418 | im->idata[(x+y*im->xsize)*im->channels+ch] = | |
1419 | SampleFTo8(val->channel[ch]); | |
1420 | } | |
1421 | return 0; | |
1422 | } | |
1423 | return -1; /* error was clipped */ | |
1424 | } | |
1425 | ||
1426 | /* | |
1427 | =item i_gpixf_d(im, x, y, val) | |
1428 | ||
1429 | =cut | |
1430 | */ | |
1431 | int | |
1432 | i_gpixf_d(i_img *im, int x, int y, i_fcolor *val) { | |
1433 | int ch; | |
1434 | if (x>-1 && x<im->xsize && y>-1 && y<im->ysize) { | |
1435 | for(ch=0;ch<im->channels;ch++) { | |
1436 | val->channel[ch] = | |
1437 | Sample8ToF(im->idata[(x+y*im->xsize)*im->channels+ch]); | |
1438 | } | |
1439 | return 0; | |
1440 | } | |
1441 | return -1; /* error was cliped */ | |
1442 | } | |
1443 | ||
1444 | /* | |
1445 | =item i_glinf_d(im, l, r, y, vals) | |
1446 | ||
1447 | Reads a line of data from the image, storing the pixels at vals. | |
1448 | ||
1449 | The line runs from (l,y) inclusive to (r,y) non-inclusive | |
1450 | ||
1451 | vals should point at space for (r-l) pixels. | |
1452 | ||
1453 | l should never be less than zero (to avoid confusion about where to | |
1454 | put the pixels in vals). | |
1455 | ||
1456 | Returns the number of pixels copied (eg. if r, l or y is out of range) | |
1457 | ||
1458 | =cut | |
1459 | */ | |
1460 | int | |
1461 | i_glinf_d(i_img *im, int l, int r, int y, i_fcolor *vals) { | |
1462 | int ch, count, i; | |
1463 | unsigned char *data; | |
1464 | if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) { | |
1465 | if (r > im->xsize) | |
1466 | r = im->xsize; | |
1467 | data = im->idata + (l+y*im->xsize) * im->channels; | |
1468 | count = r - l; | |
1469 | for (i = 0; i < count; ++i) { | |
1470 | for (ch = 0; ch < im->channels; ++ch) | |
6607600c | 1471 | vals[i].channel[ch] = Sample8ToF(*data++); |
faa9b3e7 TC |
1472 | } |
1473 | return count; | |
1474 | } | |
1475 | else { | |
1476 | return 0; | |
1477 | } | |
1478 | } | |
1479 | ||
1480 | /* | |
1481 | =item i_plinf_d(im, l, r, y, vals) | |
1482 | ||
1483 | Writes a line of data into the image, using the pixels at vals. | |
1484 | ||
1485 | The line runs from (l,y) inclusive to (r,y) non-inclusive | |
1486 | ||
1487 | vals should point at (r-l) pixels. | |
1488 | ||
1489 | l should never be less than zero (to avoid confusion about where to | |
1490 | get the pixels in vals). | |
1491 | ||
1492 | Returns the number of pixels copied (eg. if r, l or y is out of range) | |
1493 | ||
1494 | =cut | |
1495 | */ | |
1496 | int | |
1497 | i_plinf_d(i_img *im, int l, int r, int y, i_fcolor *vals) { | |
1498 | int ch, count, i; | |
1499 | unsigned char *data; | |
1500 | if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) { | |
1501 | if (r > im->xsize) | |
1502 | r = im->xsize; | |
1503 | data = im->idata + (l+y*im->xsize) * im->channels; | |
1504 | count = r - l; | |
1505 | for (i = 0; i < count; ++i) { | |
1506 | for (ch = 0; ch < im->channels; ++ch) { | |
1507 | if (im->ch_mask & (1 << ch)) | |
6607600c | 1508 | *data = SampleFTo8(vals[i].channel[ch]); |
faa9b3e7 TC |
1509 | ++data; |
1510 | } | |
1511 | } | |
1512 | return count; | |
1513 | } | |
1514 | else { | |
1515 | return 0; | |
1516 | } | |
1517 | } | |
1518 | ||
1519 | /* | |
1520 | =item i_gsamp_d(i_img *im, int l, int r, int y, i_sample_t *samps, int *chans, int chan_count) | |
1521 | ||
1522 | Reads sample values from im for the horizontal line (l, y) to (r-1,y) | |
1523 | for the channels specified by chans, an array of int with chan_count | |
1524 | elements. | |
1525 | ||
1526 | Returns the number of samples read (which should be (r-l) * bits_set(chan_mask) | |
1527 | ||
1528 | =cut | |
1529 | */ | |
1530 | int i_gsamp_d(i_img *im, int l, int r, int y, i_sample_t *samps, | |
1531 | int *chans, int chan_count) { | |
1532 | int ch, count, i, w; | |
1533 | unsigned char *data; | |
1534 | ||
1535 | if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) { | |
1536 | if (r > im->xsize) | |
1537 | r = im->xsize; | |
1538 | data = im->idata + (l+y*im->xsize) * im->channels; | |
1539 | w = r - l; | |
1540 | count = 0; | |
1541 | ||
1542 | if (chans) { | |
1543 | /* make sure we have good channel numbers */ | |
1544 | for (ch = 0; ch < chan_count; ++ch) { | |
1545 | if (chans[ch] < 0 || chans[ch] >= im->channels) { | |
1546 | i_push_errorf(0, "No channel %d in this image", chans[ch]); | |
1547 | return 0; | |
1548 | } | |
1549 | } | |
1550 | for (i = 0; i < w; ++i) { | |
1551 | for (ch = 0; ch < chan_count; ++ch) { | |
1552 | *samps++ = data[chans[ch]]; | |
1553 | ++count; | |
1554 | } | |
1555 | data += im->channels; | |
1556 | } | |
1557 | } | |
1558 | else { | |
1559 | for (i = 0; i < w; ++i) { | |
1560 | for (ch = 0; ch < chan_count; ++ch) { | |
1561 | *samps++ = data[ch]; | |
1562 | ++count; | |
1563 | } | |
1564 | data += im->channels; | |
1565 | } | |
1566 | } | |
1567 | ||
1568 | return count; | |
1569 | } | |
1570 | else { | |
1571 | return 0; | |
1572 | } | |
1573 | } | |
1574 | ||
1575 | /* | |
1576 | =item i_gsampf_d(i_img *im, int l, int r, int y, i_fsample_t *samps, int *chans, int chan_count) | |
1577 | ||
1578 | Reads sample values from im for the horizontal line (l, y) to (r-1,y) | |
1579 | for the channels specified by chan_mask, where bit 0 is the first | |
1580 | channel. | |
1581 | ||
1582 | Returns the number of samples read (which should be (r-l) * bits_set(chan_mask) | |
1583 | ||
1584 | =cut | |
1585 | */ | |
1586 | int i_gsampf_d(i_img *im, int l, int r, int y, i_fsample_t *samps, | |
1587 | int *chans, int chan_count) { | |
1588 | int ch, count, i, w; | |
1589 | unsigned char *data; | |
1590 | for (ch = 0; ch < chan_count; ++ch) { | |
1591 | if (chans[ch] < 0 || chans[ch] >= im->channels) { | |
1592 | i_push_errorf(0, "No channel %d in this image", chans[ch]); | |
1593 | } | |
1594 | } | |
1595 | if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) { | |
1596 | if (r > im->xsize) | |
1597 | r = im->xsize; | |
1598 | data = im->idata + (l+y*im->xsize) * im->channels; | |
1599 | w = r - l; | |
1600 | count = 0; | |
1601 | ||
1602 | if (chans) { | |
1603 | /* make sure we have good channel numbers */ | |
1604 | for (ch = 0; ch < chan_count; ++ch) { | |
1605 | if (chans[ch] < 0 || chans[ch] >= im->channels) { | |
1606 | i_push_errorf(0, "No channel %d in this image", chans[ch]); | |
1607 | return 0; | |
1608 | } | |
1609 | } | |
1610 | for (i = 0; i < w; ++i) { | |
1611 | for (ch = 0; ch < chan_count; ++ch) { | |
6607600c | 1612 | *samps++ = Sample8ToF(data[chans[ch]]); |
faa9b3e7 TC |
1613 | ++count; |
1614 | } | |
1615 | data += im->channels; | |
1616 | } | |
1617 | } | |
1618 | else { | |
1619 | for (i = 0; i < w; ++i) { | |
1620 | for (ch = 0; ch < chan_count; ++ch) { | |
6607600c | 1621 | *samps++ = Sample8ToF(data[ch]); |
faa9b3e7 TC |
1622 | ++count; |
1623 | } | |
1624 | data += im->channels; | |
1625 | } | |
1626 | } | |
1627 | return count; | |
1628 | } | |
1629 | else { | |
1630 | return 0; | |
1631 | } | |
1632 | } | |
1633 | ||
1634 | /* | |
1635 | =back | |
1636 | ||
1637 | =head2 Image method wrappers | |
1638 | ||
1639 | These functions provide i_fsample_t functions in terms of their | |
1640 | i_sample_t versions. | |
1641 | ||
1642 | =over | |
1643 | ||
1644 | =item i_ppixf_fp(i_img *im, int x, int y, i_fcolor *pix) | |
1645 | ||
1646 | =cut | |
1647 | */ | |
1648 | ||
1649 | int i_ppixf_fp(i_img *im, int x, int y, i_fcolor *pix) { | |
1650 | i_color temp; | |
1651 | int ch; | |
1652 | ||
1653 | for (ch = 0; ch < im->channels; ++ch) | |
1654 | temp.channel[ch] = SampleFTo8(pix->channel[ch]); | |
1655 | ||
1656 | return i_ppix(im, x, y, &temp); | |
1657 | } | |
1658 | ||
1659 | /* | |
1660 | =item i_gpixf_fp(i_img *im, int x, int y, i_fcolor *pix) | |
1661 | ||
1662 | =cut | |
1663 | */ | |
1664 | int i_gpixf_fp(i_img *im, int x, int y, i_fcolor *pix) { | |
1665 | i_color temp; | |
1666 | int ch; | |
1667 | ||
1668 | if (i_gpix(im, x, y, &temp)) { | |
1669 | for (ch = 0; ch < im->channels; ++ch) | |
1670 | pix->channel[ch] = Sample8ToF(temp.channel[ch]); | |
1671 | return 0; | |
1672 | } | |
1673 | else | |
1674 | return -1; | |
1675 | } | |
1676 | ||
1677 | /* | |
1678 | =item i_plinf_fp(i_img *im, int l, int r, int y, i_fcolor *pix) | |
1679 | ||
1680 | =cut | |
1681 | */ | |
1682 | int i_plinf_fp(i_img *im, int l, int r, int y, i_fcolor *pix) { | |
1683 | i_color *work; | |
1684 | ||
1685 | if (y >= 0 && y < im->ysize && l < im->xsize && l >= 0) { | |
1686 | if (r > im->xsize) | |
1687 | r = im->xsize; | |
1688 | if (r > l) { | |
1689 | int ret; | |
1690 | int i, ch; | |
1691 | work = mymalloc(sizeof(i_color) * (r-l)); | |
1692 | for (i = 0; i < r-l; ++i) { | |
1693 | for (ch = 0; ch < im->channels; ++ch) | |
1694 | work[i].channel[ch] = SampleFTo8(pix[i].channel[ch]); | |
1695 | } | |
1696 | ret = i_plin(im, l, r, y, work); | |
1697 | myfree(work); | |
1698 | ||
1699 | return ret; | |
1700 | } | |
1701 | else { | |
1702 | return 0; | |
1703 | } | |
1704 | } | |
1705 | else { | |
1706 | return 0; | |
1707 | } | |
1708 | } | |
1709 | ||
1710 | /* | |
1711 | =item i_glinf_fp(i_img *im, int l, int r, int y, i_fcolor *pix) | |
1712 | ||
1713 | =cut | |
1714 | */ | |
1715 | int i_glinf_fp(i_img *im, int l, int r, int y, i_fcolor *pix) { | |
1716 | i_color *work; | |
1717 | ||
1718 | if (y >= 0 && y < im->ysize && l < im->xsize && l >= 0) { | |
1719 | if (r > im->xsize) | |
1720 | r = im->xsize; | |
1721 | if (r > l) { | |
1722 | int ret; | |
1723 | int i, ch; | |
1724 | work = mymalloc(sizeof(i_color) * (r-l)); | |
1725 | ret = i_plin(im, l, r, y, work); | |
1726 | for (i = 0; i < r-l; ++i) { | |
1727 | for (ch = 0; ch < im->channels; ++ch) | |
1728 | pix[i].channel[ch] = Sample8ToF(work[i].channel[ch]); | |
1729 | } | |
1730 | myfree(work); | |
1731 | ||
1732 | return ret; | |
1733 | } | |
1734 | else { | |
1735 | return 0; | |
1736 | } | |
1737 | } | |
1738 | else { | |
1739 | return 0; | |
1740 | } | |
1741 | } | |
1742 | ||
1743 | /* | |
1744 | =item i_gsampf_fp(i_img *im, int l, int r, int y, i_fsample_t *samp, int *chans, int chan_count) | |
1745 | ||
1746 | =cut | |
1747 | */ | |
1748 | int i_gsampf_fp(i_img *im, int l, int r, int y, i_fsample_t *samp, | |
1749 | int *chans, int chan_count) { | |
1750 | i_sample_t *work; | |
1751 | ||
1752 | if (y >= 0 && y < im->ysize && l < im->xsize && l >= 0) { | |
1753 | if (r > im->xsize) | |
1754 | r = im->xsize; | |
1755 | if (r > l) { | |
1756 | int ret; | |
1757 | int i; | |
1758 | work = mymalloc(sizeof(i_sample_t) * (r-l)); | |
1759 | ret = i_gsamp(im, l, r, y, work, chans, chan_count); | |
1760 | for (i = 0; i < ret; ++i) { | |
1761 | samp[i] = Sample8ToF(work[i]); | |
1762 | } | |
1763 | myfree(work); | |
1764 | ||
1765 | return ret; | |
1766 | } | |
1767 | else { | |
1768 | return 0; | |
1769 | } | |
1770 | } | |
1771 | else { | |
1772 | return 0; | |
1773 | } | |
1774 | } | |
1775 | ||
1776 | /* | |
1777 | =back | |
1778 | ||
1779 | =head2 Palette wrapper functions | |
1780 | ||
1781 | Used for virtual images, these forward palette calls to a wrapped image, | |
1782 | assuming the wrapped image is the first pointer in the structure that | |
1783 | im->ext_data points at. | |
1784 | ||
1785 | =over | |
1786 | ||
1787 | =item i_addcolors_forward(i_img *im, i_color *colors, int count) | |
1788 | ||
1789 | =cut | |
1790 | */ | |
1791 | int i_addcolors_forward(i_img *im, i_color *colors, int count) { | |
1792 | return i_addcolors(*(i_img **)im->ext_data, colors, count); | |
1793 | } | |
1794 | ||
1795 | /* | |
1796 | =item i_getcolors_forward(i_img *im, int i, i_color *color, int count) | |
1797 | ||
1798 | =cut | |
1799 | */ | |
1800 | int i_getcolors_forward(i_img *im, int i, i_color *color, int count) { | |
1801 | return i_getcolors(*(i_img **)im->ext_data, i, color, count); | |
1802 | } | |
1803 | ||
1804 | /* | |
1805 | =item i_setcolors_forward(i_img *im, int i, i_color *color, int count) | |
1806 | ||
1807 | =cut | |
1808 | */ | |
1809 | int i_setcolors_forward(i_img *im, int i, i_color *color, int count) { | |
1810 | return i_setcolors(*(i_img **)im->ext_data, i, color, count); | |
1811 | } | |
1812 | ||
1813 | /* | |
1814 | =item i_colorcount_forward(i_img *im) | |
1815 | ||
1816 | =cut | |
1817 | */ | |
1818 | int i_colorcount_forward(i_img *im) { | |
1819 | return i_colorcount(*(i_img **)im->ext_data); | |
1820 | } | |
1821 | ||
1822 | /* | |
1823 | =item i_maxcolors_forward(i_img *im) | |
1824 | ||
1825 | =cut | |
1826 | */ | |
1827 | int i_maxcolors_forward(i_img *im) { | |
1828 | return i_maxcolors(*(i_img **)im->ext_data); | |
1829 | } | |
1830 | ||
1831 | /* | |
1832 | =item i_findcolor_forward(i_img *im, i_color *color, i_palidx *entry) | |
1833 | ||
1834 | =cut | |
1835 | */ | |
1836 | int i_findcolor_forward(i_img *im, i_color *color, i_palidx *entry) { | |
1837 | return i_findcolor(*(i_img **)im->ext_data, color, entry); | |
1838 | } | |
1839 | ||
1840 | /* | |
1841 | =back | |
1842 | ||
1843 | =head2 Stream reading and writing wrapper functions | |
1844 | ||
1845 | =over | |
1846 | ||
02d1d628 AMH |
1847 | =item i_gen_reader(i_gen_read_data *info, char *buf, int length) |
1848 | ||
1849 | Performs general read buffering for file readers that permit reading | |
1850 | to be done through a callback. | |
1851 | ||
1852 | The final callback gets two parameters, a I<need> value, and a I<want> | |
1853 | value, where I<need> is the amount of data that the file library needs | |
1854 | to read, and I<want> is the amount of space available in the buffer | |
1855 | maintained by these functions. | |
1856 | ||
1857 | This means if you need to read from a stream that you don't know the | |
1858 | length of, you can return I<need> bytes, taking the performance hit of | |
1859 | possibly expensive callbacks (eg. back to perl code), or if you are | |
1860 | reading from a stream where it doesn't matter if some data is lost, or | |
1861 | if the total length of the stream is known, you can return I<want> | |
1862 | bytes. | |
1863 | ||
1864 | =cut | |
1865 | */ | |
1866 | ||
1867 | int | |
1868 | i_gen_reader(i_gen_read_data *gci, char *buf, int length) { | |
1869 | int total; | |
1870 | ||
1871 | if (length < gci->length - gci->cpos) { | |
1872 | /* simplest case */ | |
1873 | memcpy(buf, gci->buffer+gci->cpos, length); | |
1874 | gci->cpos += length; | |
1875 | return length; | |
1876 | } | |
1877 | ||
1878 | total = 0; | |
1879 | memcpy(buf, gci->buffer+gci->cpos, gci->length-gci->cpos); | |
1880 | total += gci->length - gci->cpos; | |
1881 | length -= gci->length - gci->cpos; | |
1882 | buf += gci->length - gci->cpos; | |
1883 | if (length < (int)sizeof(gci->buffer)) { | |
1884 | int did_read; | |
1885 | int copy_size; | |
1886 | while (length | |
1887 | && (did_read = (gci->cb)(gci->userdata, gci->buffer, length, | |
1888 | sizeof(gci->buffer))) > 0) { | |
1889 | gci->cpos = 0; | |
1890 | gci->length = did_read; | |
1891 | ||
1892 | copy_size = min(length, gci->length); | |
1893 | memcpy(buf, gci->buffer, copy_size); | |
1894 | gci->cpos += copy_size; | |
1895 | buf += copy_size; | |
1896 | total += copy_size; | |
1897 | length -= copy_size; | |
1898 | } | |
1899 | } | |
1900 | else { | |
1901 | /* just read the rest - too big for our buffer*/ | |
1902 | int did_read; | |
1903 | while ((did_read = (gci->cb)(gci->userdata, buf, length, length)) > 0) { | |
1904 | length -= did_read; | |
1905 | total += did_read; | |
1906 | buf += did_read; | |
1907 | } | |
1908 | } | |
1909 | return total; | |
1910 | } | |
1911 | ||
1912 | /* | |
1913 | =item i_gen_read_data_new(i_read_callback_t cb, char *userdata) | |
1914 | ||
1915 | For use by callback file readers to initialize the reader buffer. | |
1916 | ||
1917 | Allocates, initializes and returns the reader buffer. | |
1918 | ||
1919 | See also L<image.c/free_gen_read_data> and L<image.c/i_gen_reader>. | |
1920 | ||
1921 | =cut | |
1922 | */ | |
1923 | i_gen_read_data * | |
1924 | i_gen_read_data_new(i_read_callback_t cb, char *userdata) { | |
1925 | i_gen_read_data *self = mymalloc(sizeof(i_gen_read_data)); | |
1926 | self->cb = cb; | |
1927 | self->userdata = userdata; | |
1928 | self->length = 0; | |
1929 | self->cpos = 0; | |
1930 | ||
1931 | return self; | |
1932 | } | |
1933 | ||
1934 | /* | |
1935 | =item free_gen_read_data(i_gen_read_data *) | |
1936 | ||
1937 | Cleans up. | |
1938 | ||
1939 | =cut | |
1940 | */ | |
1941 | void free_gen_read_data(i_gen_read_data *self) { | |
1942 | myfree(self); | |
1943 | } | |
1944 | ||
1945 | /* | |
1946 | =item i_gen_writer(i_gen_write_data *info, char const *data, int size) | |
1947 | ||
1948 | Performs write buffering for a callback based file writer. | |
1949 | ||
1950 | Failures are considered fatal, if a write fails then data will be | |
1951 | dropped. | |
1952 | ||
1953 | =cut | |
1954 | */ | |
1955 | int | |
1956 | i_gen_writer( | |
1957 | i_gen_write_data *self, | |
1958 | char const *data, | |
1959 | int size) | |
1960 | { | |
1961 | if (self->filledto && self->filledto+size > self->maxlength) { | |
1962 | if (self->cb(self->userdata, self->buffer, self->filledto)) { | |
1963 | self->filledto = 0; | |
1964 | } | |
1965 | else { | |
1966 | self->filledto = 0; | |
1967 | return 0; | |
1968 | } | |
1969 | } | |
1970 | if (self->filledto+size <= self->maxlength) { | |
1971 | /* just save it */ | |
1972 | memcpy(self->buffer+self->filledto, data, size); | |
1973 | self->filledto += size; | |
1974 | return 1; | |
1975 | } | |
1976 | /* doesn't fit - hand it off */ | |
1977 | return self->cb(self->userdata, data, size); | |
1978 | } | |
1979 | ||
1980 | /* | |
1981 | =item i_gen_write_data_new(i_write_callback_t cb, char *userdata, int max_length) | |
1982 | ||
1983 | Allocates and initializes the data structure used by i_gen_writer. | |
1984 | ||
1985 | This should be released with L<image.c/free_gen_write_data> | |
1986 | ||
1987 | =cut | |
1988 | */ | |
1989 | i_gen_write_data *i_gen_write_data_new(i_write_callback_t cb, | |
1990 | char *userdata, int max_length) | |
1991 | { | |
1992 | i_gen_write_data *self = mymalloc(sizeof(i_gen_write_data)); | |
1993 | self->cb = cb; | |
1994 | self->userdata = userdata; | |
1995 | self->maxlength = min(max_length, sizeof(self->buffer)); | |
1996 | if (self->maxlength < 0) | |
1997 | self->maxlength = sizeof(self->buffer); | |
1998 | self->filledto = 0; | |
1999 | ||
2000 | return self; | |
2001 | } | |
2002 | ||
2003 | /* | |
2004 | =item free_gen_write_data(i_gen_write_data *info, int flush) | |
2005 | ||
2006 | Cleans up the write buffer. | |
2007 | ||
2008 | Will flush any left-over data if I<flush> is non-zero. | |
2009 | ||
2010 | Returns non-zero if flush is zero or if info->cb() returns non-zero. | |
2011 | ||
2012 | Return zero only if flush is non-zero and info->cb() returns zero. | |
2013 | ie. if it fails. | |
2014 | ||
2015 | =cut | |
2016 | */ | |
2017 | ||
2018 | int free_gen_write_data(i_gen_write_data *info, int flush) | |
2019 | { | |
2020 | int result = !flush || | |
2021 | info->filledto == 0 || | |
2022 | info->cb(info->userdata, info->buffer, info->filledto); | |
2023 | myfree(info); | |
2024 | ||
2025 | return result; | |
2026 | } | |
2027 | ||
2028 | /* | |
2029 | =back | |
2030 | ||
2031 | =head1 SEE ALSO | |
2032 | ||
2033 | L<Imager>, L<gif.c> | |
2034 | ||
2035 | =cut | |
2036 | */ |