Commit | Line | Data |
---|---|---|
02d1d628 AMH |
1 | #include "image.h" |
2 | #include <stdlib.h> | |
3 | #include <math.h> | |
4 | ||
5 | ||
6 | /* | |
7 | =head1 NAME | |
8 | ||
9 | filters.c - implements filters that operate on images | |
10 | ||
11 | =head1 SYNOPSIS | |
12 | ||
13 | ||
14 | i_contrast(im, 0.8); | |
15 | i_hardinvert(im); | |
b6381851 | 16 | i_unsharp_mask(im, 2.0, 1.0); |
02d1d628 AMH |
17 | // and more |
18 | ||
19 | =head1 DESCRIPTION | |
20 | ||
21 | filters.c implements basic filters for Imager. These filters | |
22 | should be accessible from the filter interface as defined in | |
23 | the pod for Imager. | |
24 | ||
25 | =head1 FUNCTION REFERENCE | |
26 | ||
27 | Some of these functions are internal. | |
28 | ||
29 | =over 4 | |
30 | ||
31 | =cut | |
32 | */ | |
33 | ||
34 | ||
35 | ||
36 | ||
37 | ||
38 | ||
39 | ||
40 | /* | |
41 | =item i_contrast(im, intensity) | |
42 | ||
43 | Scales the pixel values by the amount specified. | |
44 | ||
45 | im - image object | |
46 | intensity - scalefactor | |
47 | ||
48 | =cut | |
49 | */ | |
50 | ||
51 | void | |
52 | i_contrast(i_img *im, float intensity) { | |
53 | int x, y; | |
54 | unsigned char ch; | |
55 | unsigned int new_color; | |
56 | i_color rcolor; | |
57 | ||
58 | mm_log((1,"i_contrast(im %p, intensity %f)\n", im, intensity)); | |
59 | ||
60 | if(intensity < 0) return; | |
61 | ||
62 | for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) { | |
63 | i_gpix(im, x, y, &rcolor); | |
64 | ||
65 | for(ch = 0; ch < im->channels; ch++) { | |
66 | new_color = (unsigned int) rcolor.channel[ch]; | |
67 | new_color *= intensity; | |
68 | ||
69 | if(new_color > 255) { | |
70 | new_color = 255; | |
71 | } | |
72 | rcolor.channel[ch] = (unsigned char) new_color; | |
73 | } | |
74 | i_ppix(im, x, y, &rcolor); | |
75 | } | |
76 | } | |
77 | ||
78 | ||
79 | /* | |
80 | =item i_hardinvert(im) | |
81 | ||
82 | Inverts the pixel values of the input image. | |
83 | ||
84 | im - image object | |
85 | ||
86 | =cut | |
87 | */ | |
88 | ||
89 | void | |
90 | i_hardinvert(i_img *im) { | |
91 | int x, y; | |
92 | unsigned char ch; | |
93 | ||
94 | i_color rcolor; | |
95 | ||
96 | mm_log((1,"i_hardinvert(im %p)\n", im)); | |
97 | ||
98 | for(y = 0; y < im->ysize; y++) { | |
99 | for(x = 0; x < im->xsize; x++) { | |
100 | i_gpix(im, x, y, &rcolor); | |
101 | ||
102 | for(ch = 0; ch < im->channels; ch++) { | |
103 | rcolor.channel[ch] = 255 - rcolor.channel[ch]; | |
104 | } | |
105 | ||
106 | i_ppix(im, x, y, &rcolor); | |
107 | } | |
108 | } | |
109 | } | |
110 | ||
111 | ||
112 | ||
113 | /* | |
114 | =item i_noise(im, amount, type) | |
115 | ||
116 | Inverts the pixel values by the amount specified. | |
117 | ||
118 | im - image object | |
119 | amount - deviation in pixel values | |
120 | type - noise individual for each channel if true | |
121 | ||
122 | =cut | |
123 | */ | |
124 | ||
125 | #ifdef _MSC_VER | |
126 | /* random() is non-ASCII, even if it is better than rand() */ | |
127 | #define random() rand() | |
128 | #endif | |
129 | ||
130 | void | |
131 | i_noise(i_img *im, float amount, unsigned char type) { | |
132 | int x, y; | |
133 | unsigned char ch; | |
134 | int new_color; | |
135 | float damount = amount * 2; | |
136 | i_color rcolor; | |
137 | int color_inc = 0; | |
138 | ||
139 | mm_log((1,"i_noise(im %p, intensity %.2f\n", im, amount)); | |
140 | ||
141 | if(amount < 0) return; | |
142 | ||
143 | for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) { | |
144 | i_gpix(im, x, y, &rcolor); | |
145 | ||
146 | if(type == 0) { | |
147 | color_inc = (amount - (damount * ((float)random() / RAND_MAX))); | |
148 | } | |
149 | ||
150 | for(ch = 0; ch < im->channels; ch++) { | |
151 | new_color = (int) rcolor.channel[ch]; | |
152 | ||
153 | if(type != 0) { | |
154 | new_color += (amount - (damount * ((float)random() / RAND_MAX))); | |
155 | } else { | |
156 | new_color += color_inc; | |
157 | } | |
158 | ||
159 | if(new_color < 0) { | |
160 | new_color = 0; | |
161 | } | |
162 | if(new_color > 255) { | |
163 | new_color = 255; | |
164 | } | |
165 | ||
166 | rcolor.channel[ch] = (unsigned char) new_color; | |
167 | } | |
168 | ||
169 | i_ppix(im, x, y, &rcolor); | |
170 | } | |
171 | } | |
172 | ||
173 | ||
174 | /* | |
175 | =item i_noise(im, amount, type) | |
176 | ||
177 | Inverts the pixel values by the amount specified. | |
178 | ||
179 | im - image object | |
180 | amount - deviation in pixel values | |
181 | type - noise individual for each channel if true | |
182 | ||
183 | =cut | |
184 | */ | |
185 | ||
186 | ||
187 | /* | |
188 | =item i_applyimage(im, add_im, mode) | |
189 | ||
190 | Apply's an image to another image | |
191 | ||
192 | im - target image | |
193 | add_im - image that is applied to target | |
194 | mode - what method is used in applying: | |
195 | ||
196 | 0 Normal | |
197 | 1 Multiply | |
198 | 2 Screen | |
199 | 3 Overlay | |
200 | 4 Soft Light | |
201 | 5 Hard Light | |
202 | 6 Color dodge | |
203 | 7 Color Burn | |
204 | 8 Darker | |
205 | 9 Lighter | |
206 | 10 Add | |
207 | 11 Subtract | |
208 | 12 Difference | |
209 | 13 Exclusion | |
210 | ||
211 | =cut | |
212 | */ | |
213 | ||
214 | void i_applyimage(i_img *im, i_img *add_im, unsigned char mode) { | |
215 | int x, y; | |
216 | int mx, my; | |
217 | ||
218 | mm_log((1, "i_applyimage(im %p, add_im %p, mode %d", im, add_im, mode)); | |
219 | ||
220 | mx = (add_im->xsize <= im->xsize) ? add_im->xsize : add_im->xsize; | |
221 | my = (add_im->ysize <= im->ysize) ? add_im->ysize : add_im->ysize; | |
222 | ||
223 | for(x = 0; x < mx; x++) { | |
224 | for(y = 0; y < my; y++) { | |
225 | } | |
226 | } | |
227 | } | |
228 | ||
229 | ||
230 | /* | |
231 | =item i_bumpmap(im, bump, channel, light_x, light_y, st) | |
232 | ||
233 | Makes a bumpmap on image im using the bump image as the elevation map. | |
234 | ||
235 | im - target image | |
236 | bump - image that contains the elevation info | |
237 | channel - to take the elevation information from | |
238 | light_x - x coordinate of light source | |
239 | light_y - y coordinate of light source | |
240 | st - length of shadow | |
241 | ||
242 | =cut | |
243 | */ | |
244 | ||
245 | void | |
246 | i_bumpmap(i_img *im, i_img *bump, int channel, int light_x, int light_y, int st) { | |
247 | int x, y, ch; | |
248 | int mx, my; | |
249 | i_color x1_color, y1_color, x2_color, y2_color, dst_color; | |
250 | double nX, nY; | |
251 | double tX, tY, tZ; | |
252 | double aX, aY, aL; | |
253 | double fZ; | |
254 | unsigned char px1, px2, py1, py2; | |
255 | ||
256 | i_img new_im; | |
257 | ||
258 | mm_log((1, "i_bumpmap(im %p, add_im %p, channel %d, light_x %d, light_y %d, st %d)\n", | |
259 | im, bump, channel, light_x, light_y, st)); | |
260 | ||
261 | ||
262 | if(channel >= bump->channels) { | |
263 | mm_log((1, "i_bumpmap: channel = %d while bump image only has %d channels\n", channel, bump->channels)); | |
264 | return; | |
265 | } | |
266 | ||
267 | mx = (bump->xsize <= im->xsize) ? bump->xsize : im->xsize; | |
268 | my = (bump->ysize <= im->ysize) ? bump->ysize : im->ysize; | |
269 | ||
270 | i_img_empty_ch(&new_im, im->xsize, im->ysize, im->channels); | |
271 | ||
272 | aX = (light_x > (mx >> 1)) ? light_x : mx - light_x; | |
273 | aY = (light_y > (my >> 1)) ? light_y : my - light_y; | |
274 | ||
275 | aL = sqrt((aX * aX) + (aY * aY)); | |
276 | ||
277 | for(y = 1; y < my - 1; y++) { | |
278 | for(x = 1; x < mx - 1; x++) { | |
279 | i_gpix(bump, x + st, y, &x1_color); | |
280 | i_gpix(bump, x, y + st, &y1_color); | |
281 | i_gpix(bump, x - st, y, &x2_color); | |
282 | i_gpix(bump, x, y - st, &y2_color); | |
283 | ||
284 | i_gpix(im, x, y, &dst_color); | |
285 | ||
286 | px1 = x1_color.channel[channel]; | |
287 | py1 = y1_color.channel[channel]; | |
288 | px2 = x2_color.channel[channel]; | |
289 | py2 = y2_color.channel[channel]; | |
290 | ||
291 | nX = px1 - px2; | |
292 | nY = py1 - py2; | |
293 | ||
294 | nX += 128; | |
295 | nY += 128; | |
296 | ||
297 | fZ = (sqrt((nX * nX) + (nY * nY)) / aL); | |
298 | ||
299 | tX = abs(x - light_x) / aL; | |
300 | tY = abs(y - light_y) / aL; | |
301 | ||
302 | tZ = 1 - (sqrt((tX * tX) + (tY * tY)) * fZ); | |
303 | ||
304 | if(tZ < 0) tZ = 0; | |
305 | if(tZ > 2) tZ = 2; | |
306 | ||
307 | for(ch = 0; ch < im->channels; ch++) | |
308 | dst_color.channel[ch] = (unsigned char) (float)(dst_color.channel[ch] * tZ); | |
309 | ||
310 | i_ppix(&new_im, x, y, &dst_color); | |
311 | } | |
312 | } | |
313 | ||
314 | i_copyto(im, &new_im, 0, 0, (int)im->xsize, (int)im->ysize, 0, 0); | |
315 | ||
316 | i_img_exorcise(&new_im); | |
317 | } | |
318 | ||
319 | ||
320 | ||
321 | /* | |
322 | =item i_postlevels(im, levels) | |
323 | ||
324 | Quantizes Images to fewer levels. | |
325 | ||
326 | im - target image | |
327 | levels - number of levels | |
328 | ||
329 | =cut | |
330 | */ | |
331 | ||
332 | void | |
333 | i_postlevels(i_img *im, int levels) { | |
334 | int x, y, ch; | |
335 | float pv; | |
336 | int rv; | |
337 | float av; | |
338 | ||
339 | i_color rcolor; | |
340 | ||
341 | rv = (int) ((float)(256 / levels)); | |
342 | av = (float)levels; | |
343 | ||
344 | for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) { | |
345 | i_gpix(im, x, y, &rcolor); | |
346 | ||
347 | for(ch = 0; ch < im->channels; ch++) { | |
348 | pv = (((float)rcolor.channel[ch] / 255)) * av; | |
349 | pv = (int) ((int)pv * rv); | |
350 | ||
351 | if(pv < 0) pv = 0; | |
352 | else if(pv > 255) pv = 255; | |
353 | ||
354 | rcolor.channel[ch] = (unsigned char) pv; | |
355 | } | |
356 | i_ppix(im, x, y, &rcolor); | |
357 | } | |
358 | } | |
359 | ||
360 | ||
361 | /* | |
362 | =item i_mosaic(im, size) | |
363 | ||
364 | Makes an image looks like a mosaic with tilesize of size | |
365 | ||
366 | im - target image | |
367 | size - size of tiles | |
368 | ||
369 | =cut | |
370 | */ | |
371 | ||
372 | void | |
373 | i_mosaic(i_img *im, int size) { | |
374 | int x, y, ch; | |
375 | int lx, ly, z; | |
376 | long sqrsize; | |
377 | ||
378 | i_color rcolor; | |
379 | long col[256]; | |
380 | ||
381 | sqrsize = size * size; | |
382 | ||
383 | for(y = 0; y < im->ysize; y += size) for(x = 0; x < im->xsize; x += size) { | |
384 | for(z = 0; z < 256; z++) col[z] = 0; | |
385 | ||
386 | for(lx = 0; lx < size; lx++) { | |
387 | for(ly = 0; ly < size; ly++) { | |
388 | i_gpix(im, (x + lx), (y + ly), &rcolor); | |
389 | ||
390 | for(ch = 0; ch < im->channels; ch++) { | |
391 | col[ch] += rcolor.channel[ch]; | |
392 | } | |
393 | } | |
394 | } | |
395 | ||
396 | for(ch = 0; ch < im->channels; ch++) | |
397 | rcolor.channel[ch] = (int) ((float)col[ch] / sqrsize); | |
398 | ||
399 | ||
400 | for(lx = 0; lx < size; lx++) | |
401 | for(ly = 0; ly < size; ly++) | |
402 | i_ppix(im, (x + lx), (y + ly), &rcolor); | |
403 | ||
404 | } | |
405 | } | |
406 | ||
407 | /* | |
408 | =item saturate(in) | |
409 | ||
410 | Clamps the input value between 0 and 255. (internal) | |
411 | ||
412 | in - input integer | |
413 | ||
414 | =cut | |
415 | */ | |
416 | ||
417 | static | |
418 | unsigned char | |
419 | saturate(int in) { | |
420 | if (in>255) { return 255; } | |
421 | else if (in>0) return in; | |
422 | return 0; | |
423 | } | |
424 | ||
425 | ||
426 | /* | |
427 | =item i_watermark(im, wmark, tx, ty, pixdiff) | |
428 | ||
429 | Applies a watermark to the target image | |
430 | ||
431 | im - target image | |
432 | wmark - watermark image | |
433 | tx - x coordinate of where watermark should be applied | |
434 | ty - y coordinate of where watermark should be applied | |
435 | pixdiff - the magnitude of the watermark, controls how visible it is | |
436 | ||
437 | =cut | |
438 | */ | |
439 | ||
440 | void | |
441 | i_watermark(i_img *im, i_img *wmark, int tx, int ty, int pixdiff) { | |
442 | int vx, vy, ch; | |
443 | i_color val, wval; | |
444 | ||
445 | for(vx=0;vx<128;vx++) for(vy=0;vy<110;vy++) { | |
446 | ||
447 | i_gpix(im, tx+vx, ty+vy,&val ); | |
448 | i_gpix(wmark, vx, vy, &wval); | |
449 | ||
450 | for(ch=0;ch<im->channels;ch++) | |
451 | val.channel[ch] = saturate( val.channel[ch] + (pixdiff* (wval.channel[0]-128) )/128 ); | |
452 | ||
453 | i_ppix(im,tx+vx,ty+vy,&val); | |
454 | } | |
455 | } | |
456 | ||
457 | ||
458 | /* | |
459 | =item i_autolevels(im, lsat, usat, skew) | |
460 | ||
461 | Scales and translates each color such that it fills the range completely. | |
462 | Skew is not implemented yet - purpose is to control the color skew that can | |
463 | occur when changing the contrast. | |
464 | ||
465 | im - target image | |
466 | lsat - fraction of pixels that will be truncated at the lower end of the spectrum | |
467 | usat - fraction of pixels that will be truncated at the higher end of the spectrum | |
468 | skew - not used yet | |
469 | ||
470 | =cut | |
471 | */ | |
472 | ||
473 | void | |
474 | i_autolevels(i_img *im, float lsat, float usat, float skew) { | |
475 | i_color val; | |
476 | int i, x, y, rhist[256], ghist[256], bhist[256]; | |
477 | int rsum, rmin, rmax; | |
478 | int gsum, gmin, gmax; | |
479 | int bsum, bmin, bmax; | |
480 | int rcl, rcu, gcl, gcu, bcl, bcu; | |
481 | ||
482 | mm_log((1,"i_autolevels(im %p, lsat %f,usat %f,skew %f)\n", im, lsat,usat,skew)); | |
483 | ||
484 | rsum=gsum=bsum=0; | |
485 | for(i=0;i<256;i++) rhist[i]=ghist[i]=bhist[i] = 0; | |
486 | /* create histogram for each channel */ | |
487 | for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) { | |
488 | i_gpix(im, x, y, &val); | |
489 | rhist[val.channel[0]]++; | |
490 | ghist[val.channel[1]]++; | |
491 | bhist[val.channel[2]]++; | |
492 | } | |
493 | ||
494 | for(i=0;i<256;i++) { | |
495 | rsum+=rhist[i]; | |
496 | gsum+=ghist[i]; | |
497 | bsum+=bhist[i]; | |
498 | } | |
499 | ||
500 | rmin = gmin = bmin = 0; | |
501 | rmax = gmax = bmax = 255; | |
502 | ||
503 | rcu = rcl = gcu = gcl = bcu = bcl = 0; | |
504 | ||
505 | for(i=0; i<256; i++) { | |
506 | rcl += rhist[i]; if ( (rcl<rsum*lsat) ) rmin=i; | |
507 | rcu += rhist[255-i]; if ( (rcu<rsum*usat) ) rmax=255-i; | |
508 | ||
509 | gcl += ghist[i]; if ( (gcl<gsum*lsat) ) gmin=i; | |
510 | gcu += ghist[255-i]; if ( (gcu<gsum*usat) ) gmax=255-i; | |
511 | ||
512 | bcl += bhist[i]; if ( (bcl<bsum*lsat) ) bmin=i; | |
513 | bcu += bhist[255-i]; if ( (bcu<bsum*usat) ) bmax=255-i; | |
514 | } | |
515 | ||
516 | for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) { | |
517 | i_gpix(im, x, y, &val); | |
518 | val.channel[0]=saturate((val.channel[0]-rmin)*255/(rmax-rmin)); | |
519 | val.channel[1]=saturate((val.channel[1]-gmin)*255/(gmax-gmin)); | |
520 | val.channel[2]=saturate((val.channel[2]-bmin)*255/(bmax-bmin)); | |
521 | i_ppix(im, x, y, &val); | |
522 | } | |
523 | } | |
524 | ||
525 | /* | |
526 | =item Noise(x,y) | |
527 | ||
528 | Pseudo noise utility function used to generate perlin noise. (internal) | |
529 | ||
530 | x - x coordinate | |
531 | y - y coordinate | |
532 | ||
533 | =cut | |
534 | */ | |
535 | ||
536 | static | |
537 | float | |
538 | Noise(int x, int y) { | |
539 | int n = x + y * 57; | |
540 | n = (n<<13) ^ n; | |
541 | return ( 1.0 - ( (n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824.0); | |
542 | } | |
543 | ||
544 | /* | |
545 | =item SmoothedNoise1(x,y) | |
546 | ||
547 | Pseudo noise utility function used to generate perlin noise. (internal) | |
548 | ||
549 | x - x coordinate | |
550 | y - y coordinate | |
551 | ||
552 | =cut | |
553 | */ | |
554 | ||
555 | static | |
556 | float | |
557 | SmoothedNoise1(float x, float y) { | |
558 | float corners = ( Noise(x-1, y-1)+Noise(x+1, y-1)+Noise(x-1, y+1)+Noise(x+1, y+1) ) / 16; | |
559 | float sides = ( Noise(x-1, y) +Noise(x+1, y) +Noise(x, y-1) +Noise(x, y+1) ) / 8; | |
560 | float center = Noise(x, y) / 4; | |
561 | return corners + sides + center; | |
562 | } | |
563 | ||
564 | ||
565 | /* | |
566 | =item G_Interpolate(a, b, x) | |
567 | ||
568 | Utility function used to generate perlin noise. (internal) | |
569 | ||
570 | =cut | |
571 | */ | |
572 | ||
573 | static | |
574 | float C_Interpolate(float a, float b, float x) { | |
575 | /* float ft = x * 3.1415927; */ | |
576 | float ft = x * PI; | |
577 | float f = (1 - cos(ft)) * .5; | |
578 | return a*(1-f) + b*f; | |
579 | } | |
580 | ||
581 | ||
582 | /* | |
583 | =item InterpolatedNoise(x, y) | |
584 | ||
585 | Utility function used to generate perlin noise. (internal) | |
586 | ||
587 | =cut | |
588 | */ | |
589 | ||
590 | static | |
591 | float | |
592 | InterpolatedNoise(float x, float y) { | |
593 | ||
594 | int integer_X = x; | |
595 | float fractional_X = x - integer_X; | |
596 | int integer_Y = y; | |
597 | float fractional_Y = y - integer_Y; | |
598 | ||
599 | float v1 = SmoothedNoise1(integer_X, integer_Y); | |
600 | float v2 = SmoothedNoise1(integer_X + 1, integer_Y); | |
601 | float v3 = SmoothedNoise1(integer_X, integer_Y + 1); | |
602 | float v4 = SmoothedNoise1(integer_X + 1, integer_Y + 1); | |
603 | ||
604 | float i1 = C_Interpolate(v1 , v2 , fractional_X); | |
605 | float i2 = C_Interpolate(v3 , v4 , fractional_X); | |
606 | ||
607 | return C_Interpolate(i1 , i2 , fractional_Y); | |
608 | } | |
609 | ||
610 | ||
611 | ||
612 | /* | |
613 | =item PerlinNoise_2D(x, y) | |
614 | ||
615 | Utility function used to generate perlin noise. (internal) | |
616 | ||
617 | =cut | |
618 | */ | |
619 | ||
620 | static | |
621 | float | |
622 | PerlinNoise_2D(float x, float y) { | |
623 | int i,frequency; | |
624 | float amplitude; | |
625 | float total = 0; | |
626 | int Number_Of_Octaves=6; | |
627 | int n = Number_Of_Octaves - 1; | |
628 | ||
629 | for(i=0;i<n;i++) { | |
630 | frequency = 2*i; | |
631 | amplitude = PI; | |
632 | total = total + InterpolatedNoise(x * frequency, y * frequency) * amplitude; | |
633 | } | |
634 | ||
635 | return total; | |
636 | } | |
637 | ||
638 | ||
639 | /* | |
640 | =item i_radnoise(im, xo, yo, rscale, ascale) | |
641 | ||
642 | Perlin-like radial noise. | |
643 | ||
644 | im - target image | |
645 | xo - x coordinate of center | |
646 | yo - y coordinate of center | |
647 | rscale - radial scale | |
648 | ascale - angular scale | |
649 | ||
650 | =cut | |
651 | */ | |
652 | ||
653 | void | |
654 | i_radnoise(i_img *im, int xo, int yo, float rscale, float ascale) { | |
655 | int x, y, ch; | |
656 | i_color val; | |
657 | unsigned char v; | |
658 | float xc, yc, r; | |
659 | double a; | |
660 | ||
661 | for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) { | |
662 | xc = (float)x-xo+0.5; | |
663 | yc = (float)y-yo+0.5; | |
664 | r = rscale*sqrt(xc*xc+yc*yc)+1.2; | |
665 | a = (PI+atan2(yc,xc))*ascale; | |
666 | v = saturate(128+100*(PerlinNoise_2D(a,r))); | |
667 | /* v=saturate(120+12*PerlinNoise_2D(xo+(float)x/scale,yo+(float)y/scale)); Good soft marble */ | |
668 | for(ch=0; ch<im->channels; ch++) val.channel[ch]=v; | |
669 | i_ppix(im, x, y, &val); | |
670 | } | |
671 | } | |
672 | ||
673 | ||
674 | /* | |
675 | =item i_turbnoise(im, xo, yo, scale) | |
676 | ||
677 | Perlin-like 2d noise noise. | |
678 | ||
679 | im - target image | |
680 | xo - x coordinate translation | |
681 | yo - y coordinate translation | |
682 | scale - scale of noise | |
683 | ||
684 | =cut | |
685 | */ | |
686 | ||
687 | void | |
688 | i_turbnoise(i_img *im, float xo, float yo, float scale) { | |
689 | int x,y,ch; | |
690 | unsigned char v; | |
691 | i_color val; | |
692 | ||
693 | for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) { | |
694 | /* v=saturate(125*(1.0+PerlinNoise_2D(xo+(float)x/scale,yo+(float)y/scale))); */ | |
695 | v = saturate(120*(1.0+sin(xo+(float)x/scale+PerlinNoise_2D(xo+(float)x/scale,yo+(float)y/scale)))); | |
696 | for(ch=0; ch<im->channels; ch++) val.channel[ch] = v; | |
697 | i_ppix(im, x, y, &val); | |
698 | } | |
699 | } | |
700 | ||
701 | ||
702 | ||
703 | /* | |
704 | =item i_gradgen(im, num, xo, yo, ival, dmeasure) | |
705 | ||
706 | Gradient generating function. | |
707 | ||
708 | im - target image | |
709 | num - number of points given | |
710 | xo - array of x coordinates | |
711 | yo - array of y coordinates | |
712 | ival - array of i_color objects | |
713 | dmeasure - distance measure to be used. | |
714 | 0 = Euclidean | |
715 | 1 = Euclidean squared | |
716 | 2 = Manhattan distance | |
717 | ||
718 | =cut | |
719 | */ | |
720 | ||
721 | ||
722 | void | |
723 | i_gradgen(i_img *im, int num, int *xo, int *yo, i_color *ival, int dmeasure) { | |
724 | ||
725 | i_color val; | |
726 | int p, x, y, ch; | |
727 | int channels = im->channels; | |
728 | int xsize = im->xsize; | |
729 | int ysize = im->ysize; | |
730 | ||
731 | float *fdist; | |
732 | ||
733 | mm_log((1,"i_gradgen(im %p, num %d, xo %p, yo %p, ival %p, dmeasure %d)\n", im, num, xo, yo, ival, dmeasure)); | |
734 | ||
735 | for(p = 0; p<num; p++) { | |
736 | mm_log((1,"i_gradgen: (%d, %d)\n", xo[p], yo[p])); | |
737 | ICL_info(&ival[p]); | |
738 | } | |
739 | ||
740 | fdist = mymalloc( sizeof(float) * num ); | |
741 | ||
742 | for(y = 0; y<ysize; y++) for(x = 0; x<xsize; x++) { | |
743 | float cs = 0; | |
744 | float csd = 0; | |
745 | for(p = 0; p<num; p++) { | |
746 | int xd = x-xo[p]; | |
747 | int yd = y-yo[p]; | |
748 | switch (dmeasure) { | |
749 | case 0: /* euclidean */ | |
750 | fdist[p] = sqrt(xd*xd + yd*yd); /* euclidean distance */ | |
751 | break; | |
752 | case 1: /* euclidean squared */ | |
753 | fdist[p] = xd*xd + yd*yd; /* euclidean distance */ | |
754 | break; | |
755 | case 2: /* euclidean squared */ | |
756 | fdist[p] = max(xd*xd, yd*yd); /* manhattan distance */ | |
757 | break; | |
758 | default: | |
759 | m_fatal(3,"i_gradgen: Unknown distance measure\n"); | |
760 | } | |
761 | cs += fdist[p]; | |
762 | } | |
763 | ||
764 | csd = 1/((num-1)*cs); | |
765 | ||
766 | for(p = 0; p<num; p++) fdist[p] = (cs-fdist[p])*csd; | |
767 | ||
768 | for(ch = 0; ch<channels; ch++) { | |
769 | int tres = 0; | |
770 | for(p = 0; p<num; p++) tres += ival[p].channel[ch] * fdist[p]; | |
771 | val.channel[ch] = saturate(tres); | |
772 | } | |
773 | i_ppix(im, x, y, &val); | |
774 | } | |
775 | ||
776 | } | |
777 | ||
02d1d628 AMH |
778 | void |
779 | i_nearest_color_foo(i_img *im, int num, int *xo, int *yo, i_color *ival, int dmeasure) { | |
780 | ||
a743c0a6 | 781 | int p, x, y; |
02d1d628 AMH |
782 | int xsize = im->xsize; |
783 | int ysize = im->ysize; | |
784 | ||
785 | mm_log((1,"i_gradgen(im %p, num %d, xo %p, yo %p, ival %p, dmeasure %d)\n", im, num, xo, yo, ival, dmeasure)); | |
786 | ||
787 | for(p = 0; p<num; p++) { | |
788 | mm_log((1,"i_gradgen: (%d, %d)\n", xo[p], yo[p])); | |
789 | ICL_info(&ival[p]); | |
790 | } | |
791 | ||
792 | for(y = 0; y<ysize; y++) for(x = 0; x<xsize; x++) { | |
793 | int midx = 0; | |
794 | float mindist = 0; | |
795 | float curdist = 0; | |
796 | ||
797 | int xd = x-xo[0]; | |
798 | int yd = y-yo[0]; | |
799 | ||
800 | switch (dmeasure) { | |
801 | case 0: /* euclidean */ | |
802 | mindist = sqrt(xd*xd + yd*yd); /* euclidean distance */ | |
803 | break; | |
804 | case 1: /* euclidean squared */ | |
805 | mindist = xd*xd + yd*yd; /* euclidean distance */ | |
806 | break; | |
807 | case 2: /* euclidean squared */ | |
808 | mindist = max(xd*xd, yd*yd); /* manhattan distance */ | |
809 | break; | |
810 | default: | |
811 | m_fatal(3,"i_nearest_color: Unknown distance measure\n"); | |
812 | } | |
813 | ||
814 | for(p = 1; p<num; p++) { | |
815 | xd = x-xo[p]; | |
816 | yd = y-yo[p]; | |
817 | switch (dmeasure) { | |
818 | case 0: /* euclidean */ | |
819 | curdist = sqrt(xd*xd + yd*yd); /* euclidean distance */ | |
820 | break; | |
821 | case 1: /* euclidean squared */ | |
822 | curdist = xd*xd + yd*yd; /* euclidean distance */ | |
823 | break; | |
824 | case 2: /* euclidean squared */ | |
825 | curdist = max(xd*xd, yd*yd); /* manhattan distance */ | |
826 | break; | |
827 | default: | |
828 | m_fatal(3,"i_nearest_color: Unknown distance measure\n"); | |
829 | } | |
830 | if (curdist < mindist) { | |
831 | mindist = curdist; | |
832 | midx = p; | |
833 | } | |
834 | } | |
835 | i_ppix(im, x, y, &ival[midx]); | |
836 | } | |
837 | } | |
838 | ||
02d1d628 AMH |
839 | void |
840 | i_nearest_color(i_img *im, int num, int *xo, int *yo, i_color *oval, int dmeasure) { | |
841 | i_color *ival; | |
842 | float *tval; | |
843 | float c1, c2; | |
844 | i_color val; | |
845 | int p, x, y, ch; | |
02d1d628 AMH |
846 | int xsize = im->xsize; |
847 | int ysize = im->ysize; | |
848 | int *cmatch; | |
849 | ||
d7f707d8 | 850 | mm_log((1,"i_nearest_color(im %p, num %d, xo %p, yo %p, ival %p, dmeasure %d)\n", im, num, xo, yo, oval, dmeasure)); |
02d1d628 AMH |
851 | |
852 | tval = mymalloc( sizeof(float)*num*im->channels ); | |
853 | ival = mymalloc( sizeof(i_color)*num ); | |
854 | cmatch = mymalloc( sizeof(int)*num ); | |
855 | ||
856 | for(p = 0; p<num; p++) { | |
857 | for(ch = 0; ch<im->channels; ch++) tval[ p * im->channels + ch] = 0; | |
858 | cmatch[p] = 0; | |
859 | } | |
860 | ||
861 | ||
862 | for(y = 0; y<ysize; y++) for(x = 0; x<xsize; x++) { | |
863 | int midx = 0; | |
864 | float mindist = 0; | |
865 | float curdist = 0; | |
866 | ||
867 | int xd = x-xo[0]; | |
868 | int yd = y-yo[0]; | |
869 | ||
870 | switch (dmeasure) { | |
871 | case 0: /* euclidean */ | |
872 | mindist = sqrt(xd*xd + yd*yd); /* euclidean distance */ | |
873 | break; | |
874 | case 1: /* euclidean squared */ | |
875 | mindist = xd*xd + yd*yd; /* euclidean distance */ | |
876 | break; | |
877 | case 2: /* euclidean squared */ | |
878 | mindist = max(xd*xd, yd*yd); /* manhattan distance */ | |
879 | break; | |
880 | default: | |
881 | m_fatal(3,"i_nearest_color: Unknown distance measure\n"); | |
882 | } | |
883 | ||
884 | for(p = 1; p<num; p++) { | |
885 | xd = x-xo[p]; | |
886 | yd = y-yo[p]; | |
887 | switch (dmeasure) { | |
888 | case 0: /* euclidean */ | |
889 | curdist = sqrt(xd*xd + yd*yd); /* euclidean distance */ | |
890 | break; | |
891 | case 1: /* euclidean squared */ | |
892 | curdist = xd*xd + yd*yd; /* euclidean distance */ | |
893 | break; | |
894 | case 2: /* euclidean squared */ | |
895 | curdist = max(xd*xd, yd*yd); /* manhattan distance */ | |
896 | break; | |
897 | default: | |
898 | m_fatal(3,"i_nearest_color: Unknown distance measure\n"); | |
899 | } | |
900 | if (curdist < mindist) { | |
901 | mindist = curdist; | |
902 | midx = p; | |
903 | } | |
904 | } | |
905 | ||
906 | cmatch[midx]++; | |
907 | i_gpix(im, x, y, &val); | |
908 | c2 = 1.0/(float)(cmatch[midx]); | |
909 | c1 = 1.0-c2; | |
910 | ||
02d1d628 AMH |
911 | for(ch = 0; ch<im->channels; ch++) |
912 | tval[midx*im->channels + ch] = c1*tval[midx*im->channels + ch] + c2 * (float) val.channel[ch]; | |
3bb1c1f3 | 913 | |
02d1d628 AMH |
914 | |
915 | } | |
916 | ||
917 | for(p = 0; p<num; p++) for(ch = 0; ch<im->channels; ch++) ival[p].channel[ch] = tval[p*im->channels + ch]; | |
918 | ||
919 | i_nearest_color_foo(im, num, xo, yo, ival, dmeasure); | |
920 | } | |
6607600c | 921 | |
b6381851 TC |
922 | /* |
923 | =item i_unsharp_mask(im, stddev, scale) | |
924 | ||
925 | Perform an usharp mask, which is defined as subtracting the blurred | |
926 | image from double the original. | |
927 | ||
928 | =cut | |
929 | */ | |
930 | void i_unsharp_mask(i_img *im, double stddev, double scale) { | |
931 | i_img copy; | |
932 | int x, y, ch; | |
933 | ||
934 | if (scale < 0) | |
935 | return; | |
936 | /* it really shouldn't ever be more than 1.0, but maybe ... */ | |
937 | if (scale > 100) | |
938 | scale = 100; | |
939 | ||
940 | i_copy(©, im); | |
941 | i_gaussian(©, stddev); | |
942 | if (im->bits == i_8_bits) { | |
943 | i_color *blur = mymalloc(im->xsize * sizeof(i_color) * 2); | |
944 | i_color *out = blur + im->xsize; | |
945 | ||
946 | for (y = 0; y < im->ysize; ++y) { | |
947 | i_glin(©, 0, copy.xsize, y, blur); | |
948 | i_glin(im, 0, im->xsize, y, out); | |
949 | for (x = 0; x < im->xsize; ++x) { | |
950 | for (ch = 0; ch < im->channels; ++ch) { | |
951 | /*int temp = out[x].channel[ch] + | |
952 | scale * (out[x].channel[ch] - blur[x].channel[ch]);*/ | |
953 | int temp = out[x].channel[ch] * 2 - blur[x].channel[ch]; | |
954 | if (temp < 0) | |
955 | temp = 0; | |
956 | else if (temp > 255) | |
957 | temp = 255; | |
958 | out[x].channel[ch] = temp; | |
959 | } | |
960 | } | |
961 | i_plin(im, 0, im->xsize, y, out); | |
962 | } | |
963 | ||
964 | myfree(blur); | |
965 | } | |
966 | else { | |
967 | i_fcolor *blur = mymalloc(im->xsize * sizeof(i_fcolor) * 2); | |
968 | i_fcolor *out = blur + im->xsize; | |
969 | ||
970 | for (y = 0; y < im->ysize; ++y) { | |
971 | i_glinf(©, 0, copy.xsize, y, blur); | |
972 | i_glinf(im, 0, im->xsize, y, out); | |
973 | for (x = 0; x < im->xsize; ++x) { | |
974 | for (ch = 0; ch < im->channels; ++ch) { | |
975 | double temp = out[x].channel[ch] + | |
976 | scale * (out[x].channel[ch] - blur[x].channel[ch]); | |
977 | if (temp < 0) | |
978 | temp = 0; | |
979 | else if (temp > 1.0) | |
980 | temp = 1.0; | |
981 | out[x].channel[ch] = temp; | |
982 | } | |
983 | } | |
984 | i_plinf(im, 0, im->xsize, y, out); | |
985 | } | |
986 | ||
987 | myfree(blur); | |
988 | } | |
989 | i_img_exorcise(©); | |
990 | } | |
991 | ||
f1ac5027 | 992 | struct fount_state; |
6607600c TC |
993 | static double linear_fount_f(double x, double y, struct fount_state *state); |
994 | static double bilinear_fount_f(double x, double y, struct fount_state *state); | |
995 | static double radial_fount_f(double x, double y, struct fount_state *state); | |
996 | static double square_fount_f(double x, double y, struct fount_state *state); | |
997 | static double revolution_fount_f(double x, double y, | |
998 | struct fount_state *state); | |
999 | static double conical_fount_f(double x, double y, struct fount_state *state); | |
1000 | ||
1001 | typedef double (*fount_func)(double, double, struct fount_state *); | |
1002 | static fount_func fount_funcs[] = | |
1003 | { | |
1004 | linear_fount_f, | |
1005 | bilinear_fount_f, | |
1006 | radial_fount_f, | |
1007 | square_fount_f, | |
1008 | revolution_fount_f, | |
1009 | conical_fount_f, | |
1010 | }; | |
1011 | ||
1012 | static double linear_interp(double pos, i_fountain_seg *seg); | |
1013 | static double sine_interp(double pos, i_fountain_seg *seg); | |
1014 | static double sphereup_interp(double pos, i_fountain_seg *seg); | |
1015 | static double spheredown_interp(double pos, i_fountain_seg *seg); | |
1016 | typedef double (*fount_interp)(double pos, i_fountain_seg *seg); | |
1017 | static fount_interp fount_interps[] = | |
1018 | { | |
1019 | linear_interp, | |
1020 | linear_interp, | |
1021 | sine_interp, | |
1022 | sphereup_interp, | |
1023 | spheredown_interp, | |
1024 | }; | |
1025 | ||
1026 | static void direct_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg); | |
1027 | static void hue_up_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg); | |
1028 | static void hue_down_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg); | |
1029 | typedef void (*fount_cinterp)(i_fcolor *out, double pos, i_fountain_seg *seg); | |
1030 | static fount_cinterp fount_cinterps[] = | |
1031 | { | |
1032 | direct_cinterp, | |
1033 | hue_up_cinterp, | |
1034 | hue_down_cinterp, | |
1035 | }; | |
1036 | ||
1037 | typedef double (*fount_repeat)(double v); | |
1038 | static double fount_r_none(double v); | |
1039 | static double fount_r_sawtooth(double v); | |
1040 | static double fount_r_triangle(double v); | |
1041 | static double fount_r_saw_both(double v); | |
1042 | static double fount_r_tri_both(double v); | |
1043 | static fount_repeat fount_repeats[] = | |
1044 | { | |
1045 | fount_r_none, | |
1046 | fount_r_sawtooth, | |
1047 | fount_r_triangle, | |
1048 | fount_r_saw_both, | |
1049 | fount_r_tri_both, | |
1050 | }; | |
1051 | ||
f1ac5027 TC |
1052 | static int simple_ssample(i_fcolor *out, double x, double y, |
1053 | struct fount_state *state); | |
1054 | static int random_ssample(i_fcolor *out, double x, double y, | |
1055 | struct fount_state *state); | |
1056 | static int circle_ssample(i_fcolor *out, double x, double y, | |
1057 | struct fount_state *state); | |
1058 | typedef int (*fount_ssample)(i_fcolor *out, double x, double y, | |
1059 | struct fount_state *state); | |
6607600c TC |
1060 | static fount_ssample fount_ssamples[] = |
1061 | { | |
1062 | NULL, | |
1063 | simple_ssample, | |
1064 | random_ssample, | |
1065 | circle_ssample, | |
1066 | }; | |
1067 | ||
1068 | static int | |
f1ac5027 TC |
1069 | fount_getat(i_fcolor *out, double x, double y, struct fount_state *state); |
1070 | ||
1071 | /* | |
1072 | Keep state information used by each type of fountain fill | |
1073 | */ | |
1074 | struct fount_state { | |
1075 | /* precalculated for the equation of the line perpendicular to the line AB */ | |
1076 | double lA, lB, lC; | |
1077 | double AB; | |
1078 | double sqrtA2B2; | |
1079 | double mult; | |
1080 | double cos; | |
1081 | double sin; | |
1082 | double theta; | |
1083 | int xa, ya; | |
1084 | void *ssample_data; | |
1085 | fount_func ffunc; | |
1086 | fount_repeat rpfunc; | |
1087 | fount_ssample ssfunc; | |
1088 | double parm; | |
1089 | i_fountain_seg *segs; | |
1090 | int count; | |
1091 | }; | |
1092 | ||
1093 | static void | |
1094 | fount_init_state(struct fount_state *state, double xa, double ya, | |
1095 | double xb, double yb, i_fountain_type type, | |
1096 | i_fountain_repeat repeat, int combine, int super_sample, | |
1097 | double ssample_param, int count, i_fountain_seg *segs); | |
1098 | ||
1099 | static void | |
1100 | fount_finish_state(struct fount_state *state); | |
6607600c TC |
1101 | |
1102 | #define EPSILON (1e-6) | |
1103 | ||
1104 | /* | |
1105 | =item i_fountain(im, xa, ya, xb, yb, type, repeat, combine, super_sample, ssample_param, count, segs) | |
1106 | ||
1107 | Draws a fountain fill using A(xa, ya) and B(xb, yb) as reference points. | |
1108 | ||
1109 | I<type> controls how the reference points are used: | |
1110 | ||
1111 | =over | |
1112 | ||
1113 | =item i_ft_linear | |
1114 | ||
1115 | linear, where A is 0 and B is 1. | |
1116 | ||
1117 | =item i_ft_bilinear | |
1118 | ||
1119 | linear in both directions from A. | |
1120 | ||
1121 | =item i_ft_radial | |
1122 | ||
1123 | circular, where A is the centre of the fill, and B is a point | |
1124 | on the radius. | |
1125 | ||
1126 | =item i_ft_radial_square | |
1127 | ||
1128 | where A is the centre of the fill and B is the centre of | |
1129 | one side of the square. | |
1130 | ||
1131 | =item i_ft_revolution | |
1132 | ||
1133 | where A is the centre of the fill and B defines the 0/1.0 | |
1134 | angle of the fill. | |
1135 | ||
1136 | =item i_ft_conical | |
1137 | ||
1138 | similar to i_ft_revolution, except that the revolution goes in both | |
1139 | directions | |
1140 | ||
1141 | =back | |
1142 | ||
1143 | I<repeat> can be one of: | |
1144 | ||
1145 | =over | |
1146 | ||
1147 | =item i_fr_none | |
1148 | ||
1149 | values < 0 are treated as zero, values > 1 are treated as 1. | |
1150 | ||
1151 | =item i_fr_sawtooth | |
1152 | ||
1153 | negative values are treated as 0, positive values are modulo 1.0 | |
1154 | ||
1155 | =item i_fr_triangle | |
1156 | ||
1157 | negative values are treated as zero, if (int)value is odd then the value is treated as 1-(value | |
1158 | mod 1.0), otherwise the same as for sawtooth. | |
1159 | ||
1160 | =item i_fr_saw_both | |
1161 | ||
1162 | like i_fr_sawtooth, except that the sawtooth pattern repeats into | |
1163 | negative values. | |
1164 | ||
1165 | =item i_fr_tri_both | |
1166 | ||
1167 | Like i_fr_triangle, except that negative values are handled as their | |
1168 | absolute values. | |
1169 | ||
1170 | =back | |
1171 | ||
1172 | If combine is non-zero then non-opaque values are combined with the | |
1173 | underlying color. | |
1174 | ||
1175 | I<super_sample> controls super sampling, if any. At some point I'll | |
1176 | probably add a adaptive super-sampler. Current possible values are: | |
1177 | ||
1178 | =over | |
1179 | ||
1180 | =item i_fts_none | |
1181 | ||
1182 | No super-sampling is done. | |
1183 | ||
1184 | =item i_fts_grid | |
1185 | ||
1186 | A square grid of points withing the pixel are sampled. | |
1187 | ||
1188 | =item i_fts_random | |
1189 | ||
1190 | Random points within the pixel are sampled. | |
1191 | ||
1192 | =item i_fts_circle | |
1193 | ||
1194 | Points on the radius of a circle are sampled. This produces fairly | |
1195 | good results, but is fairly slow since sin() and cos() are evaluated | |
1196 | for each point. | |
1197 | ||
1198 | =back | |
1199 | ||
1200 | I<ssample_param> is intended to be roughly the number of points | |
1201 | sampled within the pixel. | |
1202 | ||
1203 | I<count> and I<segs> define the segments of the fill. | |
1204 | ||
1205 | =cut | |
1206 | ||
1207 | */ | |
1208 | ||
1209 | void | |
1210 | i_fountain(i_img *im, double xa, double ya, double xb, double yb, | |
1211 | i_fountain_type type, i_fountain_repeat repeat, | |
1212 | int combine, int super_sample, double ssample_param, | |
1213 | int count, i_fountain_seg *segs) { | |
1214 | struct fount_state state; | |
6607600c TC |
1215 | int x, y; |
1216 | i_fcolor *line = mymalloc(sizeof(i_fcolor) * im->xsize); | |
efdc2568 | 1217 | i_fcolor *work = NULL; |
f1ac5027 TC |
1218 | int ch; |
1219 | i_fountain_seg *my_segs; | |
efdc2568 TC |
1220 | i_fill_combine_f combine_func = NULL; |
1221 | i_fill_combinef_f combinef_func = NULL; | |
1222 | ||
1223 | i_get_combine(combine, &combine_func, &combinef_func); | |
1224 | if (combinef_func) | |
1225 | work = mymalloc(sizeof(i_fcolor) * im->xsize); | |
f1ac5027 TC |
1226 | |
1227 | fount_init_state(&state, xa, ya, xb, yb, type, repeat, combine, | |
1228 | super_sample, ssample_param, count, segs); | |
1229 | my_segs = state.segs; | |
1230 | ||
1231 | for (y = 0; y < im->ysize; ++y) { | |
1232 | i_glinf(im, 0, im->xsize, y, line); | |
1233 | for (x = 0; x < im->xsize; ++x) { | |
1234 | i_fcolor c; | |
1235 | int got_one; | |
1236 | double v; | |
1237 | if (super_sample == i_fts_none) | |
1238 | got_one = fount_getat(&c, x, y, &state); | |
1239 | else | |
1240 | got_one = state.ssfunc(&c, x, y, &state); | |
1241 | if (got_one) { | |
efdc2568 TC |
1242 | if (combine) |
1243 | work[x] = c; | |
f1ac5027 TC |
1244 | else |
1245 | line[x] = c; | |
1246 | } | |
1247 | } | |
efdc2568 TC |
1248 | if (combine) |
1249 | combinef_func(line, work, im->channels, im->xsize); | |
f1ac5027 TC |
1250 | i_plinf(im, 0, im->xsize, y, line); |
1251 | } | |
1252 | fount_finish_state(&state); | |
1253 | myfree(line); | |
1254 | } | |
1255 | ||
1256 | typedef struct { | |
1257 | i_fill_t base; | |
1258 | struct fount_state state; | |
1259 | } i_fill_fountain_t; | |
1260 | ||
1261 | static void | |
1262 | fill_fountf(i_fill_t *fill, int x, int y, int width, int channels, | |
efdc2568 | 1263 | i_fcolor *data, i_fcolor *work); |
f1ac5027 TC |
1264 | static void |
1265 | fount_fill_destroy(i_fill_t *fill); | |
1266 | ||
1267 | /* | |
1268 | =item i_new_fount(xa, ya, xb, yb, type, repeat, combine, super_sample, ssample_param, count, segs) | |
1269 | ||
773bc121 TC |
1270 | Creates a new general fill which fills with a fountain fill. |
1271 | ||
f1ac5027 TC |
1272 | =cut |
1273 | */ | |
1274 | ||
1275 | i_fill_t * | |
1276 | i_new_fill_fount(double xa, double ya, double xb, double yb, | |
1277 | i_fountain_type type, i_fountain_repeat repeat, | |
1278 | int combine, int super_sample, double ssample_param, | |
1279 | int count, i_fountain_seg *segs) { | |
1280 | i_fill_fountain_t *fill = mymalloc(sizeof(i_fill_fountain_t)); | |
1281 | ||
1282 | fill->base.fill_with_color = NULL; | |
1283 | fill->base.fill_with_fcolor = fill_fountf; | |
1284 | fill->base.destroy = fount_fill_destroy; | |
efdc2568 TC |
1285 | if (combine) |
1286 | i_get_combine(combine, &fill->base.combine, &fill->base.combinef); | |
1287 | else { | |
1288 | fill->base.combine = NULL; | |
1289 | fill->base.combinef = NULL; | |
1290 | } | |
f1ac5027 TC |
1291 | fount_init_state(&fill->state, xa, ya, xb, yb, type, repeat, combine, |
1292 | super_sample, ssample_param, count, segs); | |
1293 | ||
1294 | return &fill->base; | |
1295 | } | |
1296 | ||
1297 | /* | |
1298 | =back | |
1299 | ||
1300 | =head1 INTERNAL FUNCTIONS | |
1301 | ||
1302 | =over | |
1303 | ||
1304 | =item fount_init_state(...) | |
1305 | ||
1306 | Used by both the fountain fill filter and the fountain fill. | |
1307 | ||
1308 | =cut | |
1309 | */ | |
1310 | ||
1311 | static void | |
1312 | fount_init_state(struct fount_state *state, double xa, double ya, | |
1313 | double xb, double yb, i_fountain_type type, | |
1314 | i_fountain_repeat repeat, int combine, int super_sample, | |
1315 | double ssample_param, int count, i_fountain_seg *segs) { | |
6607600c TC |
1316 | int i, j; |
1317 | i_fountain_seg *my_segs = mymalloc(sizeof(i_fountain_seg) * count); | |
f1ac5027 | 1318 | /*int have_alpha = im->channels == 2 || im->channels == 4;*/ |
6607600c | 1319 | int ch; |
f1ac5027 TC |
1320 | |
1321 | memset(state, 0, sizeof(*state)); | |
6607600c TC |
1322 | /* we keep a local copy that we can adjust for speed */ |
1323 | for (i = 0; i < count; ++i) { | |
1324 | i_fountain_seg *seg = my_segs + i; | |
1325 | ||
1326 | *seg = segs[i]; | |
1327 | if (seg->type < 0 || type >= i_ft_end) | |
1328 | seg->type = i_ft_linear; | |
1329 | if (seg->color < 0 || seg->color >= i_fc_end) | |
1330 | seg->color = i_fc_direct; | |
1331 | if (seg->color == i_fc_hue_up || seg->color == i_fc_hue_down) { | |
1332 | /* so we don't have to translate to HSV on each request, do it here */ | |
1333 | for (j = 0; j < 2; ++j) { | |
1334 | i_rgb_to_hsvf(seg->c+j); | |
1335 | } | |
1336 | if (seg->color == i_fc_hue_up) { | |
1337 | if (seg->c[1].channel[0] <= seg->c[0].channel[0]) | |
1338 | seg->c[1].channel[0] += 1.0; | |
1339 | } | |
1340 | else { | |
1341 | if (seg->c[0].channel[0] <= seg->c[0].channel[1]) | |
1342 | seg->c[0].channel[0] += 1.0; | |
1343 | } | |
1344 | } | |
1345 | /*printf("start %g mid %g end %g c0(%g,%g,%g,%g) c1(%g,%g,%g,%g) type %d color %d\n", | |
1346 | seg->start, seg->middle, seg->end, seg->c[0].channel[0], | |
1347 | seg->c[0].channel[1], seg->c[0].channel[2], seg->c[0].channel[3], | |
1348 | seg->c[1].channel[0], seg->c[1].channel[1], seg->c[1].channel[2], | |
1349 | seg->c[1].channel[3], seg->type, seg->color);*/ | |
1350 | ||
1351 | } | |
1352 | ||
1353 | /* initialize each engine */ | |
1354 | /* these are so common ... */ | |
f1ac5027 TC |
1355 | state->lA = xb - xa; |
1356 | state->lB = yb - ya; | |
1357 | state->AB = sqrt(state->lA * state->lA + state->lB * state->lB); | |
1358 | state->xa = xa; | |
1359 | state->ya = ya; | |
6607600c TC |
1360 | switch (type) { |
1361 | default: | |
1362 | type = i_ft_linear; /* make the invalid value valid */ | |
1363 | case i_ft_linear: | |
1364 | case i_ft_bilinear: | |
f1ac5027 TC |
1365 | state->lC = ya * ya - ya * yb + xa * xa - xa * xb; |
1366 | state->mult = 1; | |
1367 | state->mult = 1/linear_fount_f(xb, yb, state); | |
6607600c TC |
1368 | break; |
1369 | ||
1370 | case i_ft_radial: | |
f1ac5027 TC |
1371 | state->mult = 1.0 / sqrt((double)(xb-xa)*(xb-xa) |
1372 | + (double)(yb-ya)*(yb-ya)); | |
6607600c TC |
1373 | break; |
1374 | ||
1375 | case i_ft_radial_square: | |
f1ac5027 TC |
1376 | state->cos = state->lA / state->AB; |
1377 | state->sin = state->lB / state->AB; | |
1378 | state->mult = 1.0 / state->AB; | |
6607600c TC |
1379 | break; |
1380 | ||
1381 | case i_ft_revolution: | |
f1ac5027 TC |
1382 | state->theta = atan2(yb-ya, xb-xa); |
1383 | state->mult = 1.0 / (PI * 2); | |
6607600c TC |
1384 | break; |
1385 | ||
1386 | case i_ft_conical: | |
f1ac5027 TC |
1387 | state->theta = atan2(yb-ya, xb-xa); |
1388 | state->mult = 1.0 / PI; | |
6607600c TC |
1389 | break; |
1390 | } | |
f1ac5027 | 1391 | state->ffunc = fount_funcs[type]; |
6607600c TC |
1392 | if (super_sample < 0 |
1393 | || super_sample >= (sizeof(fount_ssamples)/sizeof(*fount_ssamples))) { | |
1394 | super_sample = 0; | |
1395 | } | |
f1ac5027 | 1396 | state->ssample_data = NULL; |
6607600c TC |
1397 | switch (super_sample) { |
1398 | case i_fts_grid: | |
1399 | ssample_param = floor(0.5 + sqrt(ssample_param)); | |
f1ac5027 | 1400 | state->ssample_data = mymalloc(sizeof(i_fcolor) * ssample_param * ssample_param); |
6607600c TC |
1401 | break; |
1402 | ||
1403 | case i_fts_random: | |
1404 | case i_fts_circle: | |
1405 | ssample_param = floor(0.5+ssample_param); | |
f1ac5027 | 1406 | state->ssample_data = mymalloc(sizeof(i_fcolor) * ssample_param); |
6607600c TC |
1407 | break; |
1408 | } | |
f1ac5027 TC |
1409 | state->parm = ssample_param; |
1410 | state->ssfunc = fount_ssamples[super_sample]; | |
6607600c TC |
1411 | if (repeat < 0 || repeat >= (sizeof(fount_repeats)/sizeof(*fount_repeats))) |
1412 | repeat = 0; | |
f1ac5027 TC |
1413 | state->rpfunc = fount_repeats[repeat]; |
1414 | state->segs = my_segs; | |
1415 | state->count = count; | |
6607600c TC |
1416 | } |
1417 | ||
f1ac5027 TC |
1418 | static void |
1419 | fount_finish_state(struct fount_state *state) { | |
1420 | if (state->ssample_data) | |
1421 | myfree(state->ssample_data); | |
1422 | myfree(state->segs); | |
1423 | } | |
6607600c | 1424 | |
6607600c | 1425 | |
f1ac5027 | 1426 | /* |
6607600c TC |
1427 | =item fount_getat(out, x, y, ffunc, rpfunc, state, segs, count) |
1428 | ||
1429 | Evaluates the fountain fill at the given point. | |
1430 | ||
1431 | This is called by both the non-super-sampling and super-sampling code. | |
1432 | ||
1433 | You might think that it would make sense to sample the fill parameter | |
1434 | instead, and combine those, but this breaks badly. | |
1435 | ||
1436 | =cut | |
1437 | */ | |
1438 | ||
1439 | static int | |
f1ac5027 TC |
1440 | fount_getat(i_fcolor *out, double x, double y, struct fount_state *state) { |
1441 | double v = (state->rpfunc)((state->ffunc)(x, y, state)); | |
6607600c TC |
1442 | int i; |
1443 | ||
1444 | i = 0; | |
f1ac5027 TC |
1445 | while (i < state->count |
1446 | && (v < state->segs[i].start || v > state->segs[i].end)) { | |
6607600c TC |
1447 | ++i; |
1448 | } | |
f1ac5027 TC |
1449 | if (i < state->count) { |
1450 | v = (fount_interps[state->segs[i].type])(v, state->segs+i); | |
1451 | (fount_cinterps[state->segs[i].color])(out, v, state->segs+i); | |
6607600c TC |
1452 | return 1; |
1453 | } | |
1454 | else | |
1455 | return 0; | |
1456 | } | |
1457 | ||
1458 | /* | |
1459 | =item linear_fount_f(x, y, state) | |
1460 | ||
1461 | Calculate the fill parameter for a linear fountain fill. | |
1462 | ||
1463 | Uses the point to line distance function, with some precalculation | |
1464 | done in i_fountain(). | |
1465 | ||
1466 | =cut | |
1467 | */ | |
1468 | static double | |
1469 | linear_fount_f(double x, double y, struct fount_state *state) { | |
1470 | return (state->lA * x + state->lB * y + state->lC) / state->AB * state->mult; | |
1471 | } | |
1472 | ||
1473 | /* | |
1474 | =item bilinear_fount_f(x, y, state) | |
1475 | ||
1476 | Calculate the fill parameter for a bi-linear fountain fill. | |
1477 | ||
1478 | =cut | |
1479 | */ | |
1480 | static double | |
1481 | bilinear_fount_f(double x, double y, struct fount_state *state) { | |
1482 | return fabs((state->lA * x + state->lB * y + state->lC) / state->AB * state->mult); | |
1483 | } | |
1484 | ||
1485 | /* | |
1486 | =item radial_fount_f(x, y, state) | |
1487 | ||
1488 | Calculate the fill parameter for a radial fountain fill. | |
1489 | ||
1490 | Simply uses the distance function. | |
1491 | ||
1492 | =cut | |
1493 | */ | |
1494 | static double | |
1495 | radial_fount_f(double x, double y, struct fount_state *state) { | |
1496 | return sqrt((double)(state->xa-x)*(state->xa-x) | |
1497 | + (double)(state->ya-y)*(state->ya-y)) * state->mult; | |
1498 | } | |
1499 | ||
1500 | /* | |
1501 | =item square_fount_f(x, y, state) | |
1502 | ||
1503 | Calculate the fill parameter for a square fountain fill. | |
1504 | ||
1505 | Works by rotating the reference co-ordinate around the centre of the | |
1506 | square. | |
1507 | ||
1508 | =cut | |
1509 | */ | |
1510 | static double | |
1511 | square_fount_f(double x, double y, struct fount_state *state) { | |
1512 | int xc, yc; /* centred on A */ | |
1513 | double xt, yt; /* rotated by theta */ | |
1514 | xc = x - state->xa; | |
1515 | yc = y - state->ya; | |
1516 | xt = fabs(xc * state->cos + yc * state->sin); | |
1517 | yt = fabs(-xc * state->sin + yc * state->cos); | |
1518 | return (xt > yt ? xt : yt) * state->mult; | |
1519 | } | |
1520 | ||
1521 | /* | |
1522 | =item revolution_fount_f(x, y, state) | |
1523 | ||
1524 | Calculates the fill parameter for the revolution fountain fill. | |
1525 | ||
1526 | =cut | |
1527 | */ | |
1528 | static double | |
1529 | revolution_fount_f(double x, double y, struct fount_state *state) { | |
1530 | double angle = atan2(y - state->ya, x - state->xa); | |
1531 | ||
1532 | angle -= state->theta; | |
1533 | if (angle < 0) { | |
1534 | angle = fmod(angle+ PI * 4, PI*2); | |
1535 | } | |
1536 | ||
1537 | return angle * state->mult; | |
1538 | } | |
1539 | ||
1540 | /* | |
1541 | =item conical_fount_f(x, y, state) | |
1542 | ||
1543 | Calculates the fill parameter for the conical fountain fill. | |
1544 | ||
1545 | =cut | |
1546 | */ | |
1547 | static double | |
1548 | conical_fount_f(double x, double y, struct fount_state *state) { | |
1549 | double angle = atan2(y - state->ya, x - state->xa); | |
1550 | ||
1551 | angle -= state->theta; | |
1552 | if (angle < -PI) | |
1553 | angle += PI * 2; | |
1554 | else if (angle > PI) | |
1555 | angle -= PI * 2; | |
1556 | ||
1557 | return fabs(angle) * state->mult; | |
1558 | } | |
1559 | ||
1560 | /* | |
1561 | =item linear_interp(pos, seg) | |
1562 | ||
1563 | Calculates linear interpolation on the fill parameter. Breaks the | |
1564 | segment into 2 regions based in the I<middle> value. | |
1565 | ||
1566 | =cut | |
1567 | */ | |
1568 | static double | |
1569 | linear_interp(double pos, i_fountain_seg *seg) { | |
1570 | if (pos < seg->middle) { | |
1571 | double len = seg->middle - seg->start; | |
1572 | if (len < EPSILON) | |
1573 | return 0.0; | |
1574 | else | |
1575 | return (pos - seg->start) / len / 2; | |
1576 | } | |
1577 | else { | |
1578 | double len = seg->end - seg->middle; | |
1579 | if (len < EPSILON) | |
1580 | return 1.0; | |
1581 | else | |
1582 | return 0.5 + (pos - seg->middle) / len / 2; | |
1583 | } | |
1584 | } | |
1585 | ||
1586 | /* | |
1587 | =item sine_interp(pos, seg) | |
1588 | ||
1589 | Calculates sine function interpolation on the fill parameter. | |
1590 | ||
1591 | =cut | |
1592 | */ | |
1593 | static double | |
1594 | sine_interp(double pos, i_fountain_seg *seg) { | |
1595 | /* I wonder if there's a simple way to smooth the transition for this */ | |
1596 | double work = linear_interp(pos, seg); | |
1597 | ||
1598 | return (1-cos(work * PI))/2; | |
1599 | } | |
1600 | ||
1601 | /* | |
1602 | =item sphereup_interp(pos, seg) | |
1603 | ||
1604 | Calculates spherical interpolation on the fill parameter, with the cusp | |
1605 | at the low-end. | |
1606 | ||
1607 | =cut | |
1608 | */ | |
1609 | static double | |
1610 | sphereup_interp(double pos, i_fountain_seg *seg) { | |
1611 | double work = linear_interp(pos, seg); | |
1612 | ||
1613 | return sqrt(1.0 - (1-work) * (1-work)); | |
1614 | } | |
1615 | ||
1616 | /* | |
1617 | =item spheredown_interp(pos, seg) | |
1618 | ||
1619 | Calculates spherical interpolation on the fill parameter, with the cusp | |
1620 | at the high-end. | |
1621 | ||
1622 | =cut | |
1623 | */ | |
1624 | static double | |
1625 | spheredown_interp(double pos, i_fountain_seg *seg) { | |
1626 | double work = linear_interp(pos, seg); | |
1627 | ||
1628 | return 1-sqrt(1.0 - work * work); | |
1629 | } | |
1630 | ||
1631 | /* | |
1632 | =item direct_cinterp(out, pos, seg) | |
1633 | ||
1634 | Calculates the fountain color based on direct scaling of the channels | |
1635 | of the color channels. | |
1636 | ||
1637 | =cut | |
1638 | */ | |
1639 | static void | |
1640 | direct_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg) { | |
1641 | int ch; | |
1642 | for (ch = 0; ch < MAXCHANNELS; ++ch) { | |
1643 | out->channel[ch] = seg->c[0].channel[ch] * (1 - pos) | |
1644 | + seg->c[1].channel[ch] * pos; | |
1645 | } | |
1646 | } | |
1647 | ||
1648 | /* | |
1649 | =item hue_up_cinterp(put, pos, seg) | |
1650 | ||
1651 | Calculates the fountain color based on scaling a HSV value. The hue | |
1652 | increases as the fill parameter increases. | |
1653 | ||
1654 | =cut | |
1655 | */ | |
1656 | static void | |
1657 | hue_up_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg) { | |
1658 | int ch; | |
1659 | for (ch = 0; ch < MAXCHANNELS; ++ch) { | |
1660 | out->channel[ch] = seg->c[0].channel[ch] * (1 - pos) | |
1661 | + seg->c[1].channel[ch] * pos; | |
1662 | } | |
1663 | i_hsv_to_rgbf(out); | |
1664 | } | |
1665 | ||
1666 | /* | |
1667 | =item hue_down_cinterp(put, pos, seg) | |
1668 | ||
1669 | Calculates the fountain color based on scaling a HSV value. The hue | |
1670 | decreases as the fill parameter increases. | |
1671 | ||
1672 | =cut | |
1673 | */ | |
1674 | static void | |
1675 | hue_down_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg) { | |
1676 | int ch; | |
1677 | for (ch = 0; ch < MAXCHANNELS; ++ch) { | |
1678 | out->channel[ch] = seg->c[0].channel[ch] * (1 - pos) | |
1679 | + seg->c[1].channel[ch] * pos; | |
1680 | } | |
1681 | i_hsv_to_rgbf(out); | |
1682 | } | |
1683 | ||
1684 | /* | |
1685 | =item simple_ssample(out, parm, x, y, state, ffunc, rpfunc, segs, count) | |
1686 | ||
1687 | Simple grid-based super-sampling. | |
1688 | ||
1689 | =cut | |
1690 | */ | |
1691 | static int | |
f1ac5027 | 1692 | simple_ssample(i_fcolor *out, double x, double y, struct fount_state *state) { |
6607600c TC |
1693 | i_fcolor *work = state->ssample_data; |
1694 | int dx, dy; | |
f1ac5027 | 1695 | int grid = state->parm; |
6607600c TC |
1696 | double base = -0.5 + 0.5 / grid; |
1697 | double step = 1.0 / grid; | |
1698 | int ch, i; | |
1699 | int samp_count = 0; | |
1700 | ||
1701 | for (dx = 0; dx < grid; ++dx) { | |
1702 | for (dy = 0; dy < grid; ++dy) { | |
1703 | if (fount_getat(work+samp_count, x + base + step * dx, | |
f1ac5027 | 1704 | y + base + step * dy, state)) { |
6607600c TC |
1705 | ++samp_count; |
1706 | } | |
1707 | } | |
1708 | } | |
1709 | for (ch = 0; ch < MAXCHANNELS; ++ch) { | |
1710 | out->channel[ch] = 0; | |
1711 | for (i = 0; i < samp_count; ++i) { | |
1712 | out->channel[ch] += work[i].channel[ch]; | |
1713 | } | |
1714 | /* we divide by 4 rather than samp_count since if there's only one valid | |
1715 | sample it should be mostly transparent */ | |
1716 | out->channel[ch] /= grid * grid; | |
1717 | } | |
1718 | return samp_count; | |
1719 | } | |
1720 | ||
1721 | /* | |
1722 | =item random_ssample(out, parm, x, y, state, ffunc, rpfunc, segs, count) | |
1723 | ||
1724 | Random super-sampling. | |
1725 | ||
1726 | =cut | |
1727 | */ | |
1728 | static int | |
f1ac5027 TC |
1729 | random_ssample(i_fcolor *out, double x, double y, |
1730 | struct fount_state *state) { | |
6607600c TC |
1731 | i_fcolor *work = state->ssample_data; |
1732 | int i, ch; | |
f1ac5027 | 1733 | int maxsamples = state->parm; |
6607600c TC |
1734 | double rand_scale = 1.0 / RAND_MAX; |
1735 | int samp_count = 0; | |
1736 | for (i = 0; i < maxsamples; ++i) { | |
1737 | if (fount_getat(work+samp_count, x - 0.5 + rand() * rand_scale, | |
f1ac5027 | 1738 | y - 0.5 + rand() * rand_scale, state)) { |
6607600c TC |
1739 | ++samp_count; |
1740 | } | |
1741 | } | |
1742 | for (ch = 0; ch < MAXCHANNELS; ++ch) { | |
1743 | out->channel[ch] = 0; | |
1744 | for (i = 0; i < samp_count; ++i) { | |
1745 | out->channel[ch] += work[i].channel[ch]; | |
1746 | } | |
1747 | /* we divide by maxsamples rather than samp_count since if there's | |
1748 | only one valid sample it should be mostly transparent */ | |
1749 | out->channel[ch] /= maxsamples; | |
1750 | } | |
1751 | return samp_count; | |
1752 | } | |
1753 | ||
1754 | /* | |
1755 | =item circle_ssample(out, parm, x, y, state, ffunc, rpfunc, segs, count) | |
1756 | ||
1757 | Super-sampling around the circumference of a circle. | |
1758 | ||
1759 | I considered saving the sin()/cos() values and transforming step-size | |
1760 | around the circle, but that's inaccurate, though it may not matter | |
1761 | much. | |
1762 | ||
1763 | =cut | |
1764 | */ | |
1765 | static int | |
f1ac5027 TC |
1766 | circle_ssample(i_fcolor *out, double x, double y, |
1767 | struct fount_state *state) { | |
6607600c TC |
1768 | i_fcolor *work = state->ssample_data; |
1769 | int i, ch; | |
f1ac5027 | 1770 | int maxsamples = state->parm; |
6607600c TC |
1771 | double angle = 2 * PI / maxsamples; |
1772 | double radius = 0.3; /* semi-random */ | |
1773 | int samp_count = 0; | |
1774 | for (i = 0; i < maxsamples; ++i) { | |
1775 | if (fount_getat(work+samp_count, x + radius * cos(angle * i), | |
f1ac5027 | 1776 | y + radius * sin(angle * i), state)) { |
6607600c TC |
1777 | ++samp_count; |
1778 | } | |
1779 | } | |
1780 | for (ch = 0; ch < MAXCHANNELS; ++ch) { | |
1781 | out->channel[ch] = 0; | |
1782 | for (i = 0; i < samp_count; ++i) { | |
1783 | out->channel[ch] += work[i].channel[ch]; | |
1784 | } | |
1785 | /* we divide by maxsamples rather than samp_count since if there's | |
1786 | only one valid sample it should be mostly transparent */ | |
1787 | out->channel[ch] /= maxsamples; | |
1788 | } | |
1789 | return samp_count; | |
1790 | } | |
1791 | ||
1792 | /* | |
1793 | =item fount_r_none(v) | |
1794 | ||
1795 | Implements no repeats. Simply clamps the fill value. | |
1796 | ||
1797 | =cut | |
1798 | */ | |
1799 | static double | |
1800 | fount_r_none(double v) { | |
1801 | return v < 0 ? 0 : v > 1 ? 1 : v; | |
1802 | } | |
1803 | ||
1804 | /* | |
1805 | =item fount_r_sawtooth(v) | |
1806 | ||
1807 | Implements sawtooth repeats. Clamps negative values and uses fmod() | |
1808 | on others. | |
1809 | ||
1810 | =cut | |
1811 | */ | |
1812 | static double | |
1813 | fount_r_sawtooth(double v) { | |
1814 | return v < 0 ? 0 : fmod(v, 1.0); | |
1815 | } | |
1816 | ||
1817 | /* | |
1818 | =item fount_r_triangle(v) | |
1819 | ||
1820 | Implements triangle repeats. Clamps negative values, uses fmod to get | |
1821 | a range 0 through 2 and then adjusts values > 1. | |
1822 | ||
1823 | =cut | |
1824 | */ | |
1825 | static double | |
1826 | fount_r_triangle(double v) { | |
1827 | if (v < 0) | |
1828 | return 0; | |
1829 | else { | |
1830 | v = fmod(v, 2.0); | |
1831 | return v > 1.0 ? 2.0 - v : v; | |
1832 | } | |
1833 | } | |
1834 | ||
1835 | /* | |
1836 | =item fount_r_saw_both(v) | |
1837 | ||
1838 | Implements sawtooth repeats in the both postive and negative directions. | |
1839 | ||
1840 | Adjusts the value to be postive and then just uses fmod(). | |
1841 | ||
1842 | =cut | |
1843 | */ | |
1844 | static double | |
1845 | fount_r_saw_both(double v) { | |
1846 | if (v < 0) | |
1847 | v += 1+(int)(-v); | |
1848 | return fmod(v, 1.0); | |
1849 | } | |
1850 | ||
1851 | /* | |
1852 | =item fount_r_tri_both(v) | |
1853 | ||
1854 | Implements triangle repeats in the both postive and negative directions. | |
1855 | ||
1856 | Uses fmod on the absolute value, and then adjusts values > 1. | |
1857 | ||
1858 | =cut | |
1859 | */ | |
1860 | static double | |
1861 | fount_r_tri_both(double v) { | |
1862 | v = fmod(fabs(v), 2.0); | |
1863 | return v > 1.0 ? 2.0 - v : v; | |
1864 | } | |
1865 | ||
f1ac5027 TC |
1866 | /* |
1867 | =item fill_fountf(fill, x, y, width, channels, data) | |
1868 | ||
1869 | The fill function for fountain fills. | |
1870 | ||
1871 | =cut | |
1872 | */ | |
1873 | static void | |
1874 | fill_fountf(i_fill_t *fill, int x, int y, int width, int channels, | |
efdc2568 | 1875 | i_fcolor *data, i_fcolor *work) { |
f1ac5027 | 1876 | i_fill_fountain_t *f = (i_fill_fountain_t *)fill; |
efdc2568 TC |
1877 | |
1878 | if (fill->combinef) { | |
1879 | i_fcolor *wstart = work; | |
1880 | int count = width; | |
f1ac5027 | 1881 | |
efdc2568 TC |
1882 | while (width--) { |
1883 | i_fcolor c; | |
1884 | int got_one; | |
1885 | double v; | |
1886 | if (f->state.ssfunc) | |
1887 | got_one = f->state.ssfunc(&c, x, y, &f->state); | |
1888 | else | |
1889 | got_one = fount_getat(&c, x, y, &f->state); | |
1890 | ||
1891 | *work++ = c; | |
1892 | ||
1893 | ++x; | |
1894 | } | |
1895 | (fill->combinef)(data, wstart, channels, count); | |
1896 | } | |
1897 | else { | |
1898 | while (width--) { | |
1899 | i_fcolor c; | |
1900 | int got_one; | |
1901 | double v; | |
1902 | if (f->state.ssfunc) | |
1903 | got_one = f->state.ssfunc(&c, x, y, &f->state); | |
1904 | else | |
1905 | got_one = fount_getat(&c, x, y, &f->state); | |
1906 | ||
1907 | *data++ = c; | |
1908 | ||
1909 | ++x; | |
f1ac5027 | 1910 | } |
f1ac5027 TC |
1911 | } |
1912 | } | |
1913 | ||
1914 | /* | |
1915 | =item fount_fill_destroy(fill) | |
1916 | ||
1917 | =cut | |
1918 | */ | |
1919 | static void | |
1920 | fount_fill_destroy(i_fill_t *fill) { | |
1921 | i_fill_fountain_t *f = (i_fill_fountain_t *)fill; | |
1922 | fount_finish_state(&f->state); | |
1923 | } | |
1924 | ||
6607600c TC |
1925 | /* |
1926 | =back | |
1927 | ||
1928 | =head1 AUTHOR | |
1929 | ||
1930 | Arnar M. Hrafnkelsson <addi@umich.edu> | |
1931 | ||
1932 | Tony Cook <tony@develop-help.com> (i_fountain()) | |
1933 | ||
1934 | =head1 SEE ALSO | |
1935 | ||
1936 | Imager(3) | |
1937 | ||
1938 | =cut | |
1939 | */ |