Commit | Line | Data |
---|---|---|
696cb85d TC |
1 | #define IMAGER_NO_CONTEXT |
2 | ||
92bda632 TC |
3 | #include "imager.h" |
4 | #include "imageri.h" | |
02d1d628 AMH |
5 | |
6 | /* | |
7 | =head1 NAME | |
8 | ||
9 | image.c - implements most of the basic functions of Imager and much of the rest | |
10 | ||
11 | =head1 SYNOPSIS | |
12 | ||
13 | i_img *i; | |
14 | i_color *c; | |
15 | c = i_color_new(red, green, blue, alpha); | |
16 | ICL_DESTROY(c); | |
3c5a01b3 | 17 | i = i_img_8_new(); |
02d1d628 AMH |
18 | i_img_destroy(i); |
19 | // and much more | |
20 | ||
21 | =head1 DESCRIPTION | |
22 | ||
23 | image.c implements the basic functions to create and destroy image and | |
24 | color objects for Imager. | |
25 | ||
26 | =head1 FUNCTION REFERENCE | |
27 | ||
28 | Some of these functions are internal. | |
29 | ||
b8c2033e | 30 | =over |
02d1d628 AMH |
31 | |
32 | =cut | |
33 | */ | |
34 | ||
44d86483 TC |
35 | im_context_t (*im_get_context)(void) = NULL; |
36 | ||
02d1d628 AMH |
37 | #define XAXIS 0 |
38 | #define YAXIS 1 | |
142c26ff | 39 | #define XYAXIS 2 |
02d1d628 AMH |
40 | |
41 | #define minmax(a,b,i) ( ((a>=i)?a: ( (b<=i)?b:i )) ) | |
42 | ||
43 | /* Hack around an obscure linker bug on solaris - probably due to builtin gcc thingies */ | |
8d14daab | 44 | void i_linker_bug_fake(void) { ceil(1); } |
faa9b3e7 | 45 | |
bd8052a6 | 46 | /* |
d03fd5a4 | 47 | =item i_img_alloc() |
bd8052a6 TC |
48 | =category Image Implementation |
49 | ||
50 | Allocates a new i_img structure. | |
51 | ||
52 | When implementing a new image type perform the following steps in your | |
53 | image object creation function: | |
54 | ||
55 | =over | |
56 | ||
57 | =item 1. | |
58 | ||
59 | allocate the image with i_img_alloc(). | |
60 | ||
61 | =item 2. | |
62 | ||
63 | initialize any function pointers or other data as needed, you can | |
64 | overwrite the whole block if you need to. | |
65 | ||
66 | =item 3. | |
67 | ||
68 | initialize Imager's internal data by calling i_img_init() on the image | |
69 | object. | |
70 | ||
71 | =back | |
72 | ||
73 | =cut | |
74 | */ | |
75 | ||
76 | i_img * | |
696cb85d | 77 | im_img_alloc(pIMCTX) { |
bd8052a6 TC |
78 | return mymalloc(sizeof(i_img)); |
79 | } | |
80 | ||
81 | /* | |
d03fd5a4 | 82 | =item i_img_init(C<img>) |
bd8052a6 TC |
83 | =category Image Implementation |
84 | ||
5715f7c3 | 85 | Imager internal initialization of images. |
bd8052a6 | 86 | |
d03fd5a4 TC |
87 | Currently this does very little, in the future it may be used to |
88 | support threads, or color profiles. | |
bd8052a6 TC |
89 | |
90 | =cut | |
91 | */ | |
92 | ||
93 | void | |
696cb85d | 94 | im_img_init(pIMCTX, i_img *img) { |
bd8052a6 | 95 | img->im_data = NULL; |
696cb85d | 96 | img->context = aIMCTX; |
31a13473 | 97 | im_context_refinc(aIMCTX, "img_init"); |
bd8052a6 | 98 | } |
02d1d628 AMH |
99 | |
100 | /* | |
101 | =item ICL_new_internal(r, g, b, a) | |
102 | ||
103 | Return a new color object with values passed to it. | |
104 | ||
105 | r - red component (range: 0 - 255) | |
106 | g - green component (range: 0 - 255) | |
107 | b - blue component (range: 0 - 255) | |
108 | a - alpha component (range: 0 - 255) | |
109 | ||
110 | =cut | |
111 | */ | |
112 | ||
113 | i_color * | |
114 | ICL_new_internal(unsigned char r,unsigned char g,unsigned char b,unsigned char a) { | |
4cac9410 | 115 | i_color *cl = NULL; |
23d3b73e | 116 | dIMCTX; |
02d1d628 | 117 | |
23d3b73e | 118 | im_log((aIMCTX,1,"ICL_new_internal(r %d,g %d,b %d,a %d)\n", r, g, b, a)); |
02d1d628 | 119 | |
8ebac85f | 120 | if ( (cl=mymalloc(sizeof(i_color))) == NULL) im_fatal(aIMCTX, 2,"malloc() error\n"); |
4cac9410 AMH |
121 | cl->rgba.r = r; |
122 | cl->rgba.g = g; | |
123 | cl->rgba.b = b; | |
124 | cl->rgba.a = a; | |
23d3b73e | 125 | im_log((aIMCTX,1,"(%p) <- ICL_new_internal\n",cl)); |
02d1d628 AMH |
126 | return cl; |
127 | } | |
128 | ||
129 | ||
130 | /* | |
131 | =item ICL_set_internal(cl, r, g, b, a) | |
132 | ||
133 | Overwrite a color with new values. | |
134 | ||
135 | cl - pointer to color object | |
136 | r - red component (range: 0 - 255) | |
137 | g - green component (range: 0 - 255) | |
138 | b - blue component (range: 0 - 255) | |
139 | a - alpha component (range: 0 - 255) | |
140 | ||
141 | =cut | |
142 | */ | |
143 | ||
144 | i_color * | |
145 | ICL_set_internal(i_color *cl,unsigned char r,unsigned char g,unsigned char b,unsigned char a) { | |
23d3b73e TC |
146 | dIMCTX; |
147 | im_log((aIMCTX,1,"ICL_set_internal(cl* %p,r %d,g %d,b %d,a %d)\n",cl,r,g,b,a)); | |
02d1d628 AMH |
148 | if (cl == NULL) |
149 | if ( (cl=mymalloc(sizeof(i_color))) == NULL) | |
8ebac85f | 150 | im_fatal(aIMCTX, 2,"malloc() error\n"); |
02d1d628 AMH |
151 | cl->rgba.r=r; |
152 | cl->rgba.g=g; | |
153 | cl->rgba.b=b; | |
154 | cl->rgba.a=a; | |
23d3b73e | 155 | im_log((aIMCTX,1,"(%p) <- ICL_set_internal\n",cl)); |
02d1d628 AMH |
156 | return cl; |
157 | } | |
158 | ||
159 | ||
160 | /* | |
161 | =item ICL_add(dst, src, ch) | |
162 | ||
163 | Add src to dst inplace - dst is modified. | |
164 | ||
165 | dst - pointer to destination color object | |
166 | src - pointer to color object that is added | |
167 | ch - number of channels | |
168 | ||
169 | =cut | |
170 | */ | |
171 | ||
172 | void | |
173 | ICL_add(i_color *dst,i_color *src,int ch) { | |
174 | int tmp,i; | |
175 | for(i=0;i<ch;i++) { | |
176 | tmp=dst->channel[i]+src->channel[i]; | |
177 | dst->channel[i]= tmp>255 ? 255:tmp; | |
178 | } | |
179 | } | |
180 | ||
181 | /* | |
182 | =item ICL_info(cl) | |
183 | ||
184 | Dump color information to log - strictly for debugging. | |
185 | ||
186 | cl - pointer to color object | |
187 | ||
188 | =cut | |
189 | */ | |
190 | ||
191 | void | |
97ac0a96 | 192 | ICL_info(i_color const *cl) { |
23d3b73e TC |
193 | dIMCTX; |
194 | im_log((aIMCTX, 1,"i_color_info(cl* %p)\n",cl)); | |
195 | im_log((aIMCTX, 1,"i_color_info: (%d,%d,%d,%d)\n",cl->rgba.r,cl->rgba.g,cl->rgba.b,cl->rgba.a)); | |
02d1d628 AMH |
196 | } |
197 | ||
198 | /* | |
199 | =item ICL_DESTROY | |
200 | ||
201 | Destroy ancillary data for Color object. | |
202 | ||
203 | cl - pointer to color object | |
204 | ||
205 | =cut | |
206 | */ | |
207 | ||
208 | void | |
209 | ICL_DESTROY(i_color *cl) { | |
23d3b73e TC |
210 | dIMCTX; |
211 | im_log((aIMCTX, 1,"ICL_DESTROY(cl* %p)\n",cl)); | |
02d1d628 AMH |
212 | myfree(cl); |
213 | } | |
214 | ||
faa9b3e7 TC |
215 | /* |
216 | =item i_fcolor_new(double r, double g, double b, double a) | |
217 | ||
218 | =cut | |
219 | */ | |
220 | i_fcolor *i_fcolor_new(double r, double g, double b, double a) { | |
221 | i_fcolor *cl = NULL; | |
23d3b73e | 222 | dIMCTX; |
faa9b3e7 | 223 | |
23d3b73e | 224 | im_log((aIMCTX, 1,"i_fcolor_new(r %g,g %g,b %g,a %g)\n", r, g, b, a)); |
faa9b3e7 | 225 | |
8ebac85f | 226 | if ( (cl=mymalloc(sizeof(i_fcolor))) == NULL) im_fatal(aIMCTX, 2,"malloc() error\n"); |
faa9b3e7 TC |
227 | cl->rgba.r = r; |
228 | cl->rgba.g = g; | |
229 | cl->rgba.b = b; | |
230 | cl->rgba.a = a; | |
23d3b73e | 231 | im_log((aIMCTX, 1,"(%p) <- i_fcolor_new\n",cl)); |
faa9b3e7 TC |
232 | |
233 | return cl; | |
234 | } | |
235 | ||
236 | /* | |
237 | =item i_fcolor_destroy(i_fcolor *cl) | |
238 | ||
239 | =cut | |
240 | */ | |
241 | void i_fcolor_destroy(i_fcolor *cl) { | |
242 | myfree(cl); | |
243 | } | |
244 | ||
02d1d628 AMH |
245 | /* |
246 | =item i_img_exorcise(im) | |
247 | ||
248 | Free image data. | |
249 | ||
250 | im - Image pointer | |
251 | ||
252 | =cut | |
253 | */ | |
254 | ||
255 | void | |
256 | i_img_exorcise(i_img *im) { | |
23d3b73e TC |
257 | dIMCTXim(im); |
258 | im_log((aIMCTX,1,"i_img_exorcise(im* %p)\n",im)); | |
faa9b3e7 TC |
259 | i_tags_destroy(&im->tags); |
260 | if (im->i_f_destroy) | |
261 | (im->i_f_destroy)(im); | |
262 | if (im->idata != NULL) { myfree(im->idata); } | |
263 | im->idata = NULL; | |
4cac9410 AMH |
264 | im->xsize = 0; |
265 | im->ysize = 0; | |
266 | im->channels = 0; | |
02d1d628 | 267 | |
02d1d628 AMH |
268 | im->ext_data=NULL; |
269 | } | |
270 | ||
271 | /* | |
5715f7c3 | 272 | =item i_img_destroy(C<img>) |
6cfee9d1 | 273 | =order 90 |
9167a5c6 TC |
274 | =category Image creation/destruction |
275 | =synopsis i_img_destroy(img) | |
02d1d628 | 276 | |
9167a5c6 | 277 | Destroy an image object |
02d1d628 AMH |
278 | |
279 | =cut | |
280 | */ | |
281 | ||
282 | void | |
283 | i_img_destroy(i_img *im) { | |
31a13473 | 284 | dIMCTXim(im); |
23d3b73e | 285 | im_log((aIMCTX, 1,"i_img_destroy(im %p)\n",im)); |
02d1d628 AMH |
286 | i_img_exorcise(im); |
287 | if (im) { myfree(im); } | |
31a13473 | 288 | im_context_refdec(aIMCTX, "img_destroy"); |
02d1d628 AMH |
289 | } |
290 | ||
291 | /* | |
292 | =item i_img_info(im, info) | |
293 | ||
92bda632 TC |
294 | =category Image |
295 | ||
02d1d628 AMH |
296 | Return image information |
297 | ||
298 | im - Image pointer | |
299 | info - pointer to array to return data | |
300 | ||
301 | info is an array of 4 integers with the following values: | |
302 | ||
303 | info[0] - width | |
304 | info[1] - height | |
305 | info[2] - channels | |
306 | info[3] - channel mask | |
307 | ||
308 | =cut | |
309 | */ | |
310 | ||
311 | ||
312 | void | |
8d14daab | 313 | i_img_info(i_img *im, i_img_dim *info) { |
23d3b73e TC |
314 | dIMCTXim(im); |
315 | im_log((aIMCTX,1,"i_img_info(im %p)\n",im)); | |
02d1d628 | 316 | if (im != NULL) { |
23d3b73e | 317 | im_log((aIMCTX,1,"i_img_info: xsize=%" i_DF " ysize=%" i_DF " channels=%d " |
8d14daab TC |
318 | "mask=%ud\n", |
319 | i_DFc(im->xsize), i_DFc(im->ysize), im->channels,im->ch_mask)); | |
23d3b73e | 320 | im_log((aIMCTX,1,"i_img_info: idata=%p\n",im->idata)); |
4cac9410 AMH |
321 | info[0] = im->xsize; |
322 | info[1] = im->ysize; | |
323 | info[2] = im->channels; | |
324 | info[3] = im->ch_mask; | |
02d1d628 | 325 | } else { |
4cac9410 AMH |
326 | info[0] = 0; |
327 | info[1] = 0; | |
328 | info[2] = 0; | |
329 | info[3] = 0; | |
02d1d628 AMH |
330 | } |
331 | } | |
332 | ||
333 | /* | |
5715f7c3 | 334 | =item i_img_setmask(C<im>, C<ch_mask>) |
6cfee9d1 | 335 | =category Image Information |
372ba12c | 336 | =synopsis // only channel 0 writable |
d5477d3d TC |
337 | =synopsis i_img_setmask(img, 0x01); |
338 | ||
5715f7c3 | 339 | Set the image channel mask for C<im> to C<ch_mask>. |
02d1d628 | 340 | |
6cfee9d1 TC |
341 | The image channel mask gives some control over which channels can be |
342 | written to in the image. | |
343 | ||
02d1d628 AMH |
344 | =cut |
345 | */ | |
346 | void | |
347 | i_img_setmask(i_img *im,int ch_mask) { im->ch_mask=ch_mask; } | |
348 | ||
349 | ||
350 | /* | |
5715f7c3 | 351 | =item i_img_getmask(C<im>) |
6cfee9d1 TC |
352 | =category Image Information |
353 | =synopsis int mask = i_img_getmask(img); | |
d5477d3d | 354 | |
5715f7c3 | 355 | Get the image channel mask for C<im>. |
02d1d628 AMH |
356 | |
357 | =cut | |
358 | */ | |
359 | int | |
360 | i_img_getmask(i_img *im) { return im->ch_mask; } | |
361 | ||
362 | /* | |
5715f7c3 | 363 | =item i_img_getchannels(C<im>) |
6cfee9d1 TC |
364 | =category Image Information |
365 | =synopsis int channels = i_img_getchannels(img); | |
d5477d3d | 366 | |
5715f7c3 | 367 | Get the number of channels in C<im>. |
02d1d628 AMH |
368 | |
369 | =cut | |
370 | */ | |
371 | int | |
372 | i_img_getchannels(i_img *im) { return im->channels; } | |
373 | ||
d5477d3d | 374 | /* |
5715f7c3 | 375 | =item i_img_get_width(C<im>) |
6cfee9d1 TC |
376 | =category Image Information |
377 | =synopsis i_img_dim width = i_img_get_width(im); | |
02d1d628 | 378 | |
d5477d3d TC |
379 | Returns the width in pixels of the image. |
380 | ||
381 | =cut | |
382 | */ | |
383 | i_img_dim | |
384 | i_img_get_width(i_img *im) { | |
385 | return im->xsize; | |
386 | } | |
387 | ||
388 | /* | |
5715f7c3 | 389 | =item i_img_get_height(C<im>) |
6cfee9d1 TC |
390 | =category Image Information |
391 | =synopsis i_img_dim height = i_img_get_height(im); | |
d5477d3d TC |
392 | |
393 | Returns the height in pixels of the image. | |
394 | ||
395 | =cut | |
396 | */ | |
397 | i_img_dim | |
398 | i_img_get_height(i_img *im) { | |
399 | return im->ysize; | |
400 | } | |
02d1d628 AMH |
401 | |
402 | /* | |
5715f7c3 | 403 | =item i_copyto_trans(C<im>, C<src>, C<x1>, C<y1>, C<x2>, C<y2>, C<tx>, C<ty>, C<trans>) |
02d1d628 | 404 | |
92bda632 TC |
405 | =category Image |
406 | ||
5715f7c3 TC |
407 | (C<x1>,C<y1>) (C<x2>,C<y2>) specifies the region to copy (in the |
408 | source coordinates) (C<tx>,C<ty>) specifies the upper left corner for | |
409 | the target image. pass NULL in C<trans> for non transparent i_colors. | |
02d1d628 AMH |
410 | |
411 | =cut | |
412 | */ | |
413 | ||
414 | void | |
8d14daab | 415 | i_copyto_trans(i_img *im,i_img *src,i_img_dim x1,i_img_dim y1,i_img_dim x2,i_img_dim y2,i_img_dim tx,i_img_dim ty,const i_color *trans) { |
02d1d628 | 416 | i_color pv; |
8d14daab TC |
417 | i_img_dim x,y,t,ttx,tty,tt; |
418 | int ch; | |
23d3b73e | 419 | dIMCTXim(im); |
02d1d628 | 420 | |
23d3b73e | 421 | im_log((aIMCTX, 1,"i_copyto_trans(im* %p,src %p, p1(" i_DFp "), p2(" i_DFp "), " |
8d14daab TC |
422 | "to(" i_DFp "), trans* %p)\n", |
423 | im, src, i_DFcp(x1, y1), i_DFcp(x2, y2), i_DFcp(tx, ty), trans)); | |
4cac9410 | 424 | |
02d1d628 AMH |
425 | if (x2<x1) { t=x1; x1=x2; x2=t; } |
426 | if (y2<y1) { t=y1; y1=y2; y2=t; } | |
427 | ||
428 | ttx=tx; | |
429 | for(x=x1;x<x2;x++) | |
430 | { | |
431 | tty=ty; | |
432 | for(y=y1;y<y2;y++) | |
433 | { | |
434 | i_gpix(src,x,y,&pv); | |
435 | if ( trans != NULL) | |
436 | { | |
437 | tt=0; | |
438 | for(ch=0;ch<im->channels;ch++) if (trans->channel[ch]!=pv.channel[ch]) tt++; | |
439 | if (tt) i_ppix(im,ttx,tty,&pv); | |
440 | } else i_ppix(im,ttx,tty,&pv); | |
441 | tty++; | |
442 | } | |
443 | ttx++; | |
444 | } | |
445 | } | |
446 | ||
02d1d628 | 447 | /* |
5715f7c3 | 448 | =item i_copy(source) |
92bda632 TC |
449 | |
450 | =category Image | |
451 | ||
5715f7c3 | 452 | Creates a new image that is a copy of the image C<source>. |
92bda632 TC |
453 | |
454 | Tags are not copied, only the image data. | |
02d1d628 | 455 | |
92bda632 | 456 | Returns: i_img * |
02d1d628 AMH |
457 | |
458 | =cut | |
459 | */ | |
460 | ||
92bda632 TC |
461 | i_img * |
462 | i_copy(i_img *src) { | |
8d14daab | 463 | i_img_dim y, y1, x1; |
23d3b73e | 464 | dIMCTXim(src); |
92bda632 TC |
465 | i_img *im = i_sametype(src, src->xsize, src->ysize); |
466 | ||
23d3b73e | 467 | im_log((aIMCTX,1,"i_copy(src %p)\n", src)); |
02d1d628 | 468 | |
92bda632 TC |
469 | if (!im) |
470 | return NULL; | |
02d1d628 | 471 | |
4cac9410 AMH |
472 | x1 = src->xsize; |
473 | y1 = src->ysize; | |
faa9b3e7 TC |
474 | if (src->type == i_direct_type) { |
475 | if (src->bits == i_8_bits) { | |
476 | i_color *pv; | |
faa9b3e7 TC |
477 | pv = mymalloc(sizeof(i_color) * x1); |
478 | ||
479 | for (y = 0; y < y1; ++y) { | |
480 | i_glin(src, 0, x1, y, pv); | |
481 | i_plin(im, 0, x1, y, pv); | |
482 | } | |
483 | myfree(pv); | |
484 | } | |
485 | else { | |
faa9b3e7 | 486 | i_fcolor *pv; |
af3c2450 | 487 | |
faa9b3e7 TC |
488 | pv = mymalloc(sizeof(i_fcolor) * x1); |
489 | for (y = 0; y < y1; ++y) { | |
490 | i_glinf(src, 0, x1, y, pv); | |
491 | i_plinf(im, 0, x1, y, pv); | |
492 | } | |
493 | myfree(pv); | |
494 | } | |
495 | } | |
496 | else { | |
faa9b3e7 TC |
497 | i_palidx *vals; |
498 | ||
faa9b3e7 TC |
499 | vals = mymalloc(sizeof(i_palidx) * x1); |
500 | for (y = 0; y < y1; ++y) { | |
501 | i_gpal(src, 0, x1, y, vals); | |
502 | i_ppal(im, 0, x1, y, vals); | |
503 | } | |
504 | myfree(vals); | |
02d1d628 | 505 | } |
92bda632 TC |
506 | |
507 | return im; | |
02d1d628 AMH |
508 | } |
509 | ||
8d14daab | 510 | /* |
02d1d628 | 511 | |
8d14daab | 512 | http://en.wikipedia.org/wiki/Lanczos_resampling |
142c26ff | 513 | |
8d14daab | 514 | */ |
142c26ff AMH |
515 | |
516 | static | |
02d1d628 AMH |
517 | float |
518 | Lanczos(float x) { | |
519 | float PIx, PIx2; | |
520 | ||
521 | PIx = PI * x; | |
522 | PIx2 = PIx / 2.0; | |
523 | ||
524 | if ((x >= 2.0) || (x <= -2.0)) return (0.0); | |
525 | else if (x == 0.0) return (1.0); | |
526 | else return(sin(PIx) / PIx * sin(PIx2) / PIx2); | |
527 | } | |
528 | ||
b4e32feb | 529 | |
02d1d628 AMH |
530 | /* |
531 | =item i_scaleaxis(im, value, axis) | |
532 | ||
533 | Returns a new image object which is I<im> scaled by I<value> along | |
534 | wither the x-axis (I<axis> == 0) or the y-axis (I<axis> == 1). | |
535 | ||
536 | =cut | |
537 | */ | |
538 | ||
539 | i_img* | |
8d14daab TC |
540 | i_scaleaxis(i_img *im, double Value, int Axis) { |
541 | i_img_dim hsize, vsize, i, j, k, l, lMax, iEnd, jEnd; | |
542 | i_img_dim LanczosWidthFactor; | |
543 | float *l0, *l1; | |
544 | double OldLocation; | |
545 | i_img_dim T; | |
546 | double t; | |
02d1d628 AMH |
547 | float F, PictureValue[MAXCHANNELS]; |
548 | short psave; | |
549 | i_color val,val1,val2; | |
550 | i_img *new_img; | |
95c08d71 TC |
551 | int has_alpha = i_img_has_alpha(im); |
552 | int color_chans = i_img_color_channels(im); | |
696cb85d | 553 | dIMCTXim(im); |
02d1d628 | 554 | |
de470892 | 555 | i_clear_error(); |
23d3b73e | 556 | im_log((aIMCTX, 1,"i_scaleaxis(im %p,Value %.2f,Axis %d)\n",im,Value,Axis)); |
02d1d628 AMH |
557 | |
558 | if (Axis == XAXIS) { | |
8d14daab | 559 | hsize = (i_img_dim)(0.5 + im->xsize * Value); |
1501d9b3 TC |
560 | if (hsize < 1) { |
561 | hsize = 1; | |
b0950e71 | 562 | Value = 1.0 / im->xsize; |
1501d9b3 | 563 | } |
02d1d628 AMH |
564 | vsize = im->ysize; |
565 | ||
566 | jEnd = hsize; | |
567 | iEnd = vsize; | |
02d1d628 AMH |
568 | } else { |
569 | hsize = im->xsize; | |
8d14daab | 570 | vsize = (i_img_dim)(0.5 + im->ysize * Value); |
07d70837 | 571 | |
1501d9b3 TC |
572 | if (vsize < 1) { |
573 | vsize = 1; | |
b0950e71 | 574 | Value = 1.0 / im->ysize; |
1501d9b3 TC |
575 | } |
576 | ||
02d1d628 AMH |
577 | jEnd = vsize; |
578 | iEnd = hsize; | |
02d1d628 AMH |
579 | } |
580 | ||
23d3b73e | 581 | new_img = i_img_8_new(hsize, vsize, im->channels); |
de470892 TC |
582 | if (!new_img) { |
583 | i_push_error(0, "cannot create output image"); | |
584 | return NULL; | |
585 | } | |
02d1d628 | 586 | |
0bcbaf60 | 587 | /* 1.4 is a magic number, setting it to 2 will cause rather blurred images */ |
8d14daab | 588 | LanczosWidthFactor = (Value >= 1) ? 1 : (i_img_dim) (1.4/Value); |
02d1d628 AMH |
589 | lMax = LanczosWidthFactor << 1; |
590 | ||
07d70837 AMH |
591 | l0 = mymalloc(lMax * sizeof(float)); |
592 | l1 = mymalloc(lMax * sizeof(float)); | |
02d1d628 AMH |
593 | |
594 | for (j=0; j<jEnd; j++) { | |
8d14daab TC |
595 | OldLocation = ((double) j) / Value; |
596 | T = (i_img_dim) (OldLocation); | |
597 | F = OldLocation - T; | |
02d1d628 | 598 | |
07d70837 | 599 | for (l = 0; l<lMax; l++) { |
02d1d628 | 600 | l0[lMax-l-1] = Lanczos(((float) (lMax-l-1) + F) / (float) LanczosWidthFactor); |
07d70837 AMH |
601 | l1[l] = Lanczos(((float) (l+1) - F) / (float) LanczosWidthFactor); |
602 | } | |
603 | ||
604 | /* Make sure filter is normalized */ | |
605 | t = 0.0; | |
606 | for(l=0; l<lMax; l++) { | |
607 | t+=l0[l]; | |
608 | t+=l1[l]; | |
02d1d628 | 609 | } |
8d14daab | 610 | t /= (double)LanczosWidthFactor; |
02d1d628 | 611 | |
07d70837 AMH |
612 | for(l=0; l<lMax; l++) { |
613 | l0[l] /= t; | |
614 | l1[l] /= t; | |
615 | } | |
616 | ||
617 | if (Axis == XAXIS) { | |
02d1d628 AMH |
618 | |
619 | for (i=0; i<iEnd; i++) { | |
620 | for (k=0; k<im->channels; k++) PictureValue[k] = 0.0; | |
0bcbaf60 | 621 | for (l=0; l<lMax; l++) { |
8d14daab TC |
622 | i_img_dim mx = T-lMax+l+1; |
623 | i_img_dim Mx = T+l+1; | |
0bcbaf60 AMH |
624 | mx = (mx < 0) ? 0 : mx; |
625 | Mx = (Mx >= im->xsize) ? im->xsize-1 : Mx; | |
626 | ||
627 | i_gpix(im, Mx, i, &val1); | |
628 | i_gpix(im, mx, i, &val2); | |
95c08d71 TC |
629 | |
630 | if (has_alpha) { | |
631 | i_sample_t alpha1 = val1.channel[color_chans]; | |
632 | i_sample_t alpha2 = val2.channel[color_chans]; | |
633 | for (k=0; k < color_chans; k++) { | |
634 | PictureValue[k] += l1[l] * val1.channel[k] * alpha1 / 255; | |
635 | PictureValue[k] += l0[lMax-l-1] * val2.channel[k] * alpha2 / 255; | |
636 | } | |
637 | PictureValue[color_chans] += l1[l] * val1.channel[color_chans]; | |
638 | PictureValue[color_chans] += l0[lMax-l-1] * val2.channel[color_chans]; | |
639 | } | |
640 | else { | |
641 | for (k=0; k<im->channels; k++) { | |
642 | PictureValue[k] += l1[l] * val1.channel[k]; | |
643 | PictureValue[k] += l0[lMax-l-1] * val2.channel[k]; | |
644 | } | |
645 | } | |
646 | } | |
647 | ||
648 | if (has_alpha) { | |
649 | float fa = PictureValue[color_chans] / LanczosWidthFactor; | |
650 | int alpha = minmax(0, 255, fa+0.5); | |
651 | if (alpha) { | |
652 | for (k = 0; k < color_chans; ++k) { | |
653 | psave = (short)(0.5+(PictureValue[k] / LanczosWidthFactor * 255 / fa)); | |
654 | val.channel[k]=minmax(0,255,psave); | |
655 | } | |
656 | val.channel[color_chans] = alpha; | |
657 | } | |
658 | else { | |
659 | /* zero alpha, so the pixel has no color */ | |
660 | for (k = 0; k < im->channels; ++k) | |
661 | val.channel[k] = 0; | |
02d1d628 AMH |
662 | } |
663 | } | |
95c08d71 TC |
664 | else { |
665 | for(k=0;k<im->channels;k++) { | |
666 | psave = (short)(0.5+(PictureValue[k] / LanczosWidthFactor)); | |
667 | val.channel[k]=minmax(0,255,psave); | |
668 | } | |
02d1d628 | 669 | } |
07d70837 | 670 | i_ppix(new_img, j, i, &val); |
02d1d628 AMH |
671 | } |
672 | ||
673 | } else { | |
674 | ||
675 | for (i=0; i<iEnd; i++) { | |
676 | for (k=0; k<im->channels; k++) PictureValue[k] = 0.0; | |
677 | for (l=0; l < lMax; l++) { | |
8d14daab TC |
678 | i_img_dim mx = T-lMax+l+1; |
679 | i_img_dim Mx = T+l+1; | |
0bcbaf60 AMH |
680 | mx = (mx < 0) ? 0 : mx; |
681 | Mx = (Mx >= im->ysize) ? im->ysize-1 : Mx; | |
682 | ||
683 | i_gpix(im, i, Mx, &val1); | |
684 | i_gpix(im, i, mx, &val2); | |
95c08d71 TC |
685 | if (has_alpha) { |
686 | i_sample_t alpha1 = val1.channel[color_chans]; | |
687 | i_sample_t alpha2 = val2.channel[color_chans]; | |
688 | for (k=0; k < color_chans; k++) { | |
689 | PictureValue[k] += l1[l] * val1.channel[k] * alpha1 / 255; | |
690 | PictureValue[k] += l0[lMax-l-1] * val2.channel[k] * alpha2 / 255; | |
691 | } | |
692 | PictureValue[color_chans] += l1[l] * val1.channel[color_chans]; | |
693 | PictureValue[color_chans] += l0[lMax-l-1] * val2.channel[color_chans]; | |
694 | } | |
695 | else { | |
696 | for (k=0; k<im->channels; k++) { | |
697 | PictureValue[k] += l1[l] * val1.channel[k]; | |
698 | PictureValue[k] += l0[lMax-l-1] * val2.channel[k]; | |
699 | } | |
02d1d628 AMH |
700 | } |
701 | } | |
95c08d71 TC |
702 | if (has_alpha) { |
703 | float fa = PictureValue[color_chans] / LanczosWidthFactor; | |
704 | int alpha = minmax(0, 255, fa+0.5); | |
705 | if (alpha) { | |
706 | for (k = 0; k < color_chans; ++k) { | |
707 | psave = (short)(0.5+(PictureValue[k] / LanczosWidthFactor * 255 / fa)); | |
708 | val.channel[k]=minmax(0,255,psave); | |
709 | } | |
710 | val.channel[color_chans] = alpha; | |
711 | } | |
712 | else { | |
713 | for (k = 0; k < im->channels; ++k) | |
714 | val.channel[k] = 0; | |
715 | } | |
716 | } | |
717 | else { | |
718 | for(k=0;k<im->channels;k++) { | |
719 | psave = (short)(0.5+(PictureValue[k] / LanczosWidthFactor)); | |
720 | val.channel[k]=minmax(0,255,psave); | |
721 | } | |
02d1d628 | 722 | } |
07d70837 | 723 | i_ppix(new_img, i, j, &val); |
02d1d628 AMH |
724 | } |
725 | ||
726 | } | |
727 | } | |
728 | myfree(l0); | |
729 | myfree(l1); | |
730 | ||
23d3b73e | 731 | im_log((aIMCTX, 1,"(%p) <- i_scaleaxis\n", new_img)); |
02d1d628 AMH |
732 | |
733 | return new_img; | |
734 | } | |
735 | ||
736 | ||
737 | /* | |
738 | =item i_scale_nn(im, scx, scy) | |
739 | ||
740 | Scale by using nearest neighbor | |
741 | Both axes scaled at the same time since | |
742 | nothing is gained by doing it in two steps | |
743 | ||
744 | =cut | |
745 | */ | |
746 | ||
747 | ||
748 | i_img* | |
8d14daab | 749 | i_scale_nn(i_img *im, double scx, double scy) { |
02d1d628 | 750 | |
8d14daab | 751 | i_img_dim nxsize,nysize,nx,ny; |
02d1d628 AMH |
752 | i_img *new_img; |
753 | i_color val; | |
696cb85d | 754 | dIMCTXim(im); |
02d1d628 | 755 | |
23d3b73e | 756 | im_log((aIMCTX, 1,"i_scale_nn(im %p,scx %.2f,scy %.2f)\n",im,scx,scy)); |
02d1d628 | 757 | |
8d14daab | 758 | nxsize = (i_img_dim) ((double) im->xsize * scx); |
1501d9b3 TC |
759 | if (nxsize < 1) { |
760 | nxsize = 1; | |
b3afeed5 | 761 | scx = 1.0 / im->xsize; |
1501d9b3 | 762 | } |
8d14daab | 763 | nysize = (i_img_dim) ((double) im->ysize * scy); |
1501d9b3 TC |
764 | if (nysize < 1) { |
765 | nysize = 1; | |
b3afeed5 | 766 | scy = 1.0 / im->ysize; |
1501d9b3 | 767 | } |
b3afeed5 | 768 | im_assert(scx != 0 && scy != 0); |
02d1d628 AMH |
769 | |
770 | new_img=i_img_empty_ch(NULL,nxsize,nysize,im->channels); | |
771 | ||
772 | for(ny=0;ny<nysize;ny++) for(nx=0;nx<nxsize;nx++) { | |
8d14daab | 773 | i_gpix(im,((double)nx)/scx,((double)ny)/scy,&val); |
02d1d628 AMH |
774 | i_ppix(new_img,nx,ny,&val); |
775 | } | |
776 | ||
23d3b73e | 777 | im_log((aIMCTX, 1,"(%p) <- i_scale_nn\n",new_img)); |
02d1d628 AMH |
778 | |
779 | return new_img; | |
780 | } | |
781 | ||
faa9b3e7 | 782 | /* |
5715f7c3 | 783 | =item i_sametype(C<im>, C<xsize>, C<ysize>) |
faa9b3e7 | 784 | |
9167a5c6 TC |
785 | =category Image creation/destruction |
786 | =synopsis i_img *img = i_sametype(src, width, height); | |
92bda632 | 787 | |
faa9b3e7 TC |
788 | Returns an image of the same type (sample size, channels, paletted/direct). |
789 | ||
790 | For paletted images the palette is copied from the source. | |
791 | ||
792 | =cut | |
793 | */ | |
794 | ||
696cb85d TC |
795 | i_img * |
796 | i_sametype(i_img *src, i_img_dim xsize, i_img_dim ysize) { | |
797 | dIMCTXim(src); | |
798 | ||
faa9b3e7 TC |
799 | if (src->type == i_direct_type) { |
800 | if (src->bits == 8) { | |
801 | return i_img_empty_ch(NULL, xsize, ysize, src->channels); | |
802 | } | |
af3c2450 | 803 | else if (src->bits == i_16_bits) { |
faa9b3e7 TC |
804 | return i_img_16_new(xsize, ysize, src->channels); |
805 | } | |
af3c2450 TC |
806 | else if (src->bits == i_double_bits) { |
807 | return i_img_double_new(xsize, ysize, src->channels); | |
808 | } | |
faa9b3e7 TC |
809 | else { |
810 | i_push_error(0, "Unknown image bits"); | |
811 | return NULL; | |
812 | } | |
813 | } | |
814 | else { | |
815 | i_color col; | |
816 | int i; | |
817 | ||
818 | i_img *targ = i_img_pal_new(xsize, ysize, src->channels, i_maxcolors(src)); | |
819 | for (i = 0; i < i_colorcount(src); ++i) { | |
820 | i_getcolors(src, i, &col, 1); | |
821 | i_addcolors(targ, &col, 1); | |
822 | } | |
823 | ||
824 | return targ; | |
825 | } | |
826 | } | |
02d1d628 | 827 | |
dff75dee | 828 | /* |
5715f7c3 | 829 | =item i_sametype_chans(C<im>, C<xsize>, C<ysize>, C<channels>) |
dff75dee | 830 | |
9167a5c6 TC |
831 | =category Image creation/destruction |
832 | =synopsis i_img *img = i_sametype_chans(src, width, height, channels); | |
92bda632 | 833 | |
dff75dee TC |
834 | Returns an image of the same type (sample size). |
835 | ||
836 | For paletted images the equivalent direct type is returned. | |
837 | ||
838 | =cut | |
839 | */ | |
840 | ||
696cb85d TC |
841 | i_img * |
842 | i_sametype_chans(i_img *src, i_img_dim xsize, i_img_dim ysize, int channels) { | |
843 | dIMCTXim(src); | |
844 | ||
dff75dee TC |
845 | if (src->bits == 8) { |
846 | return i_img_empty_ch(NULL, xsize, ysize, channels); | |
847 | } | |
848 | else if (src->bits == i_16_bits) { | |
849 | return i_img_16_new(xsize, ysize, channels); | |
850 | } | |
851 | else if (src->bits == i_double_bits) { | |
852 | return i_img_double_new(xsize, ysize, channels); | |
853 | } | |
854 | else { | |
855 | i_push_error(0, "Unknown image bits"); | |
856 | return NULL; | |
857 | } | |
858 | } | |
859 | ||
02d1d628 AMH |
860 | /* |
861 | =item i_transform(im, opx, opxl, opy, opyl, parm, parmlen) | |
862 | ||
863 | Spatially transforms I<im> returning a new image. | |
864 | ||
865 | opx for a length of opxl and opy for a length of opy are arrays of | |
866 | operators that modify the x and y positions to retreive the pixel data from. | |
867 | ||
868 | parm and parmlen define extra parameters that the operators may use. | |
869 | ||
870 | Note that this function is largely superseded by the more flexible | |
871 | L<transform.c/i_transform2>. | |
872 | ||
873 | Returns the new image. | |
874 | ||
875 | The operators for this function are defined in L<stackmach.c>. | |
876 | ||
877 | =cut | |
878 | */ | |
879 | i_img* | |
880 | i_transform(i_img *im, int *opx,int opxl,int *opy,int opyl,double parm[],int parmlen) { | |
881 | double rx,ry; | |
8d14daab | 882 | i_img_dim nxsize,nysize,nx,ny; |
02d1d628 AMH |
883 | i_img *new_img; |
884 | i_color val; | |
696cb85d | 885 | dIMCTXim(im); |
02d1d628 | 886 | |
23d3b73e | 887 | im_log((aIMCTX, 1,"i_transform(im %p, opx %p, opxl %d, opy %p, opyl %d, parm %p, parmlen %d)\n",im,opx,opxl,opy,opyl,parm,parmlen)); |
02d1d628 AMH |
888 | |
889 | nxsize = im->xsize; | |
890 | nysize = im->ysize ; | |
891 | ||
892 | new_img=i_img_empty_ch(NULL,nxsize,nysize,im->channels); | |
893 | /* fprintf(stderr,"parm[2]=%f\n",parm[2]); */ | |
894 | for(ny=0;ny<nysize;ny++) for(nx=0;nx<nxsize;nx++) { | |
895 | /* parm[parmlen-2]=(double)nx; | |
896 | parm[parmlen-1]=(double)ny; */ | |
897 | ||
898 | parm[0]=(double)nx; | |
899 | parm[1]=(double)ny; | |
900 | ||
901 | /* fprintf(stderr,"(%d,%d) ->",nx,ny); */ | |
b33c08f8 TC |
902 | rx=i_op_run(opx,opxl,parm,parmlen); |
903 | ry=i_op_run(opy,opyl,parm,parmlen); | |
02d1d628 AMH |
904 | /* fprintf(stderr,"(%f,%f)\n",rx,ry); */ |
905 | i_gpix(im,rx,ry,&val); | |
906 | i_ppix(new_img,nx,ny,&val); | |
907 | } | |
908 | ||
23d3b73e | 909 | im_log((aIMCTX, 1,"(%p) <- i_transform\n",new_img)); |
02d1d628 AMH |
910 | return new_img; |
911 | } | |
912 | ||
913 | /* | |
914 | =item i_img_diff(im1, im2) | |
915 | ||
916 | Calculates the sum of the squares of the differences between | |
917 | correspoding channels in two images. | |
918 | ||
919 | If the images are not the same size then only the common area is | |
920 | compared, hence even if images are different sizes this function | |
921 | can return zero. | |
922 | ||
923 | =cut | |
924 | */ | |
e41cfe8f | 925 | |
02d1d628 AMH |
926 | float |
927 | i_img_diff(i_img *im1,i_img *im2) { | |
8d14daab TC |
928 | i_img_dim x, y, xb, yb; |
929 | int ch, chb; | |
02d1d628 AMH |
930 | float tdiff; |
931 | i_color val1,val2; | |
696cb85d | 932 | dIMCTXim(im1); |
02d1d628 | 933 | |
23d3b73e | 934 | im_log((aIMCTX, 1,"i_img_diff(im1 %p,im2 %p)\n",im1,im2)); |
02d1d628 AMH |
935 | |
936 | xb=(im1->xsize<im2->xsize)?im1->xsize:im2->xsize; | |
937 | yb=(im1->ysize<im2->ysize)?im1->ysize:im2->ysize; | |
938 | chb=(im1->channels<im2->channels)?im1->channels:im2->channels; | |
939 | ||
23d3b73e | 940 | im_log((aIMCTX, 1,"i_img_diff: b=(" i_DFp ") chb=%d\n", |
8d14daab | 941 | i_DFcp(xb,yb), chb)); |
02d1d628 AMH |
942 | |
943 | tdiff=0; | |
944 | for(y=0;y<yb;y++) for(x=0;x<xb;x++) { | |
945 | i_gpix(im1,x,y,&val1); | |
946 | i_gpix(im2,x,y,&val2); | |
947 | ||
948 | for(ch=0;ch<chb;ch++) tdiff+=(val1.channel[ch]-val2.channel[ch])*(val1.channel[ch]-val2.channel[ch]); | |
949 | } | |
23d3b73e | 950 | im_log((aIMCTX, 1,"i_img_diff <- (%.2f)\n",tdiff)); |
02d1d628 AMH |
951 | return tdiff; |
952 | } | |
953 | ||
e41cfe8f TC |
954 | /* |
955 | =item i_img_diffd(im1, im2) | |
956 | ||
957 | Calculates the sum of the squares of the differences between | |
958 | correspoding channels in two images. | |
959 | ||
960 | If the images are not the same size then only the common area is | |
961 | compared, hence even if images are different sizes this function | |
962 | can return zero. | |
963 | ||
964 | This is like i_img_diff() but looks at floating point samples instead. | |
965 | ||
966 | =cut | |
967 | */ | |
968 | ||
969 | double | |
970 | i_img_diffd(i_img *im1,i_img *im2) { | |
8d14daab TC |
971 | i_img_dim x, y, xb, yb; |
972 | int ch, chb; | |
e41cfe8f TC |
973 | double tdiff; |
974 | i_fcolor val1,val2; | |
23d3b73e | 975 | dIMCTXim(im1); |
e41cfe8f | 976 | |
23d3b73e | 977 | im_log((aIMCTX, 1,"i_img_diffd(im1 %p,im2 %p)\n",im1,im2)); |
e41cfe8f TC |
978 | |
979 | xb=(im1->xsize<im2->xsize)?im1->xsize:im2->xsize; | |
980 | yb=(im1->ysize<im2->ysize)?im1->ysize:im2->ysize; | |
981 | chb=(im1->channels<im2->channels)?im1->channels:im2->channels; | |
982 | ||
23d3b73e | 983 | im_log((aIMCTX, 1,"i_img_diffd: b(" i_DFp ") chb=%d\n", |
8d14daab | 984 | i_DFcp(xb, yb), chb)); |
e41cfe8f TC |
985 | |
986 | tdiff=0; | |
987 | for(y=0;y<yb;y++) for(x=0;x<xb;x++) { | |
988 | i_gpixf(im1,x,y,&val1); | |
989 | i_gpixf(im2,x,y,&val2); | |
990 | ||
991 | for(ch=0;ch<chb;ch++) { | |
992 | double sdiff = val1.channel[ch]-val2.channel[ch]; | |
993 | tdiff += sdiff * sdiff; | |
994 | } | |
995 | } | |
23d3b73e | 996 | im_log((aIMCTX, 1,"i_img_diffd <- (%.2f)\n",tdiff)); |
e41cfe8f TC |
997 | |
998 | return tdiff; | |
999 | } | |
1000 | ||
4498c8bd TC |
1001 | int |
1002 | i_img_samef(i_img *im1,i_img *im2, double epsilon, char const *what) { | |
8d14daab TC |
1003 | i_img_dim x,y,xb,yb; |
1004 | int ch, chb; | |
4498c8bd | 1005 | i_fcolor val1,val2; |
23d3b73e | 1006 | dIMCTXim(im1); |
4498c8bd TC |
1007 | |
1008 | if (what == NULL) | |
1009 | what = "(null)"; | |
1010 | ||
23d3b73e | 1011 | im_log((aIMCTX,1,"i_img_samef(im1 %p,im2 %p, epsilon %g, what '%s')\n", im1, im2, epsilon, what)); |
4498c8bd TC |
1012 | |
1013 | xb=(im1->xsize<im2->xsize)?im1->xsize:im2->xsize; | |
1014 | yb=(im1->ysize<im2->ysize)?im1->ysize:im2->ysize; | |
1015 | chb=(im1->channels<im2->channels)?im1->channels:im2->channels; | |
1016 | ||
23d3b73e | 1017 | im_log((aIMCTX, 1,"i_img_samef: b(" i_DFp ") chb=%d\n", |
8d14daab | 1018 | i_DFcp(xb, yb), chb)); |
4498c8bd TC |
1019 | |
1020 | for(y = 0; y < yb; y++) { | |
1021 | for(x = 0; x < xb; x++) { | |
1022 | i_gpixf(im1, x, y, &val1); | |
1023 | i_gpixf(im2, x, y, &val2); | |
1024 | ||
1025 | for(ch = 0; ch < chb; ch++) { | |
1026 | double sdiff = val1.channel[ch] - val2.channel[ch]; | |
1027 | if (fabs(sdiff) > epsilon) { | |
23d3b73e | 1028 | im_log((aIMCTX, 1,"i_img_samef <- different %g @(" i_DFp ")\n", |
8d14daab | 1029 | sdiff, i_DFcp(x, y))); |
4498c8bd TC |
1030 | return 0; |
1031 | } | |
1032 | } | |
1033 | } | |
1034 | } | |
23d3b73e | 1035 | im_log((aIMCTX, 1,"i_img_samef <- same\n")); |
4498c8bd TC |
1036 | |
1037 | return 1; | |
1038 | } | |
1039 | ||
02d1d628 AMH |
1040 | /* just a tiny demo of haar wavelets */ |
1041 | ||
1042 | i_img* | |
1043 | i_haar(i_img *im) { | |
8d14daab TC |
1044 | i_img_dim mx,my; |
1045 | i_img_dim fx,fy; | |
1046 | i_img_dim x,y; | |
02d1d628 AMH |
1047 | int ch,c; |
1048 | i_img *new_img,*new_img2; | |
1049 | i_color val1,val2,dval1,dval2; | |
696cb85d | 1050 | dIMCTXim(im); |
02d1d628 AMH |
1051 | |
1052 | mx=im->xsize; | |
1053 | my=im->ysize; | |
1054 | fx=(mx+1)/2; | |
1055 | fy=(my+1)/2; | |
1056 | ||
1057 | ||
1058 | /* horizontal pass */ | |
1059 | ||
1060 | new_img=i_img_empty_ch(NULL,fx*2,fy*2,im->channels); | |
1061 | new_img2=i_img_empty_ch(NULL,fx*2,fy*2,im->channels); | |
1062 | ||
1063 | c=0; | |
1064 | for(y=0;y<my;y++) for(x=0;x<fx;x++) { | |
1065 | i_gpix(im,x*2,y,&val1); | |
1066 | i_gpix(im,x*2+1,y,&val2); | |
1067 | for(ch=0;ch<im->channels;ch++) { | |
1068 | dval1.channel[ch]=(val1.channel[ch]+val2.channel[ch])/2; | |
1069 | dval2.channel[ch]=(255+val1.channel[ch]-val2.channel[ch])/2; | |
1070 | } | |
1071 | i_ppix(new_img,x,y,&dval1); | |
1072 | i_ppix(new_img,x+fx,y,&dval2); | |
1073 | } | |
1074 | ||
1075 | for(y=0;y<fy;y++) for(x=0;x<mx;x++) { | |
1076 | i_gpix(new_img,x,y*2,&val1); | |
1077 | i_gpix(new_img,x,y*2+1,&val2); | |
1078 | for(ch=0;ch<im->channels;ch++) { | |
1079 | dval1.channel[ch]=(val1.channel[ch]+val2.channel[ch])/2; | |
1080 | dval2.channel[ch]=(255+val1.channel[ch]-val2.channel[ch])/2; | |
1081 | } | |
1082 | i_ppix(new_img2,x,y,&dval1); | |
1083 | i_ppix(new_img2,x,y+fy,&dval2); | |
1084 | } | |
1085 | ||
1086 | i_img_destroy(new_img); | |
1087 | return new_img2; | |
1088 | } | |
1089 | ||
1090 | /* | |
1091 | =item i_count_colors(im, maxc) | |
1092 | ||
1093 | returns number of colors or -1 | |
1094 | to indicate that it was more than max colors | |
1095 | ||
1096 | =cut | |
1097 | */ | |
fe622da1 TC |
1098 | /* This function has been changed and is now faster. It's using |
1099 | * i_gsamp instead of i_gpix */ | |
02d1d628 AMH |
1100 | int |
1101 | i_count_colors(i_img *im,int maxc) { | |
1102 | struct octt *ct; | |
8d14daab | 1103 | i_img_dim x,y; |
02d1d628 | 1104 | int colorcnt; |
fe622da1 TC |
1105 | int channels[3]; |
1106 | int *samp_chans; | |
1107 | i_sample_t * samp; | |
8d14daab TC |
1108 | i_img_dim xsize = im->xsize; |
1109 | i_img_dim ysize = im->ysize; | |
a60905e4 TC |
1110 | int samp_cnt = 3 * xsize; |
1111 | ||
fe622da1 TC |
1112 | if (im->channels >= 3) { |
1113 | samp_chans = NULL; | |
1114 | } | |
1115 | else { | |
1116 | channels[0] = channels[1] = channels[2] = 0; | |
1117 | samp_chans = channels; | |
02d1d628 | 1118 | } |
a60905e4 | 1119 | |
fe622da1 TC |
1120 | ct = octt_new(); |
1121 | ||
1122 | samp = (i_sample_t *) mymalloc( xsize * 3 * sizeof(i_sample_t)); | |
1123 | ||
1124 | colorcnt = 0; | |
1125 | for(y = 0; y < ysize; ) { | |
1126 | i_gsamp(im, 0, xsize, y++, samp, samp_chans, 3); | |
1127 | for(x = 0; x < samp_cnt; ) { | |
1128 | colorcnt += octt_add(ct, samp[x], samp[x+1], samp[x+2]); | |
1129 | x += 3; | |
1130 | if (colorcnt > maxc) { | |
1131 | octt_delete(ct); | |
1132 | return -1; | |
1133 | } | |
1134 | } | |
1135 | } | |
1136 | myfree(samp); | |
02d1d628 AMH |
1137 | octt_delete(ct); |
1138 | return colorcnt; | |
1139 | } | |
1140 | ||
fe622da1 TC |
1141 | /* sorts the array ra[0..n-1] into increasing order using heapsort algorithm |
1142 | * (adapted from the Numerical Recipes) | |
1143 | */ | |
1144 | /* Needed by get_anonymous_color_histo */ | |
a60905e4 TC |
1145 | static void |
1146 | hpsort(unsigned int n, unsigned *ra) { | |
fe622da1 TC |
1147 | unsigned int i, |
1148 | ir, | |
1149 | j, | |
1150 | l, | |
1151 | rra; | |
1152 | ||
1153 | if (n < 2) return; | |
1154 | l = n >> 1; | |
1155 | ir = n - 1; | |
1156 | for(;;) { | |
1157 | if (l > 0) { | |
1158 | rra = ra[--l]; | |
1159 | } | |
1160 | else { | |
1161 | rra = ra[ir]; | |
1162 | ra[ir] = ra[0]; | |
1163 | if (--ir == 0) { | |
1164 | ra[0] = rra; | |
1165 | break; | |
1166 | } | |
1167 | } | |
1168 | i = l; | |
1169 | j = 2 * l + 1; | |
1170 | while (j <= ir) { | |
1171 | if (j < ir && ra[j] < ra[j+1]) j++; | |
1172 | if (rra < ra[j]) { | |
1173 | ra[i] = ra[j]; | |
1174 | i = j; | |
1175 | j++; j <<= 1; j--; | |
1176 | } | |
1177 | else break; | |
1178 | } | |
1179 | ra[i] = rra; | |
1180 | } | |
1181 | } | |
1182 | ||
1183 | /* This function constructs an ordered list which represents how much the | |
1184 | * different colors are used. So for instance (100, 100, 500) means that one | |
1185 | * color is used for 500 pixels, another for 100 pixels and another for 100 | |
1186 | * pixels. It's tuned for performance. You might not like the way I've hardcoded | |
1187 | * the maxc ;-) and you might want to change the name... */ | |
1188 | /* Uses octt_histo */ | |
1189 | int | |
a60905e4 TC |
1190 | i_get_anonymous_color_histo(i_img *im, unsigned int **col_usage, int maxc) { |
1191 | struct octt *ct; | |
8d14daab | 1192 | i_img_dim x,y; |
a60905e4 TC |
1193 | int colorcnt; |
1194 | unsigned int *col_usage_it; | |
1195 | i_sample_t * samp; | |
1196 | int channels[3]; | |
1197 | int *samp_chans; | |
1198 | ||
8d14daab TC |
1199 | i_img_dim xsize = im->xsize; |
1200 | i_img_dim ysize = im->ysize; | |
a60905e4 TC |
1201 | int samp_cnt = 3 * xsize; |
1202 | ct = octt_new(); | |
1203 | ||
1204 | samp = (i_sample_t *) mymalloc( xsize * 3 * sizeof(i_sample_t)); | |
1205 | ||
1206 | if (im->channels >= 3) { | |
1207 | samp_chans = NULL; | |
1208 | } | |
1209 | else { | |
1210 | channels[0] = channels[1] = channels[2] = 0; | |
1211 | samp_chans = channels; | |
1212 | } | |
1213 | ||
1214 | colorcnt = 0; | |
1215 | for(y = 0; y < ysize; ) { | |
1216 | i_gsamp(im, 0, xsize, y++, samp, samp_chans, 3); | |
1217 | for(x = 0; x < samp_cnt; ) { | |
1218 | colorcnt += octt_add(ct, samp[x], samp[x+1], samp[x+2]); | |
1219 | x += 3; | |
1220 | if (colorcnt > maxc) { | |
1221 | octt_delete(ct); | |
1222 | return -1; | |
1223 | } | |
fe622da1 | 1224 | } |
a60905e4 TC |
1225 | } |
1226 | myfree(samp); | |
1227 | /* Now that we know the number of colours... */ | |
1228 | col_usage_it = *col_usage = (unsigned int *) mymalloc(colorcnt * sizeof(unsigned int)); | |
1229 | octt_histo(ct, &col_usage_it); | |
1230 | hpsort(colorcnt, *col_usage); | |
1231 | octt_delete(ct); | |
1232 | return colorcnt; | |
fe622da1 TC |
1233 | } |
1234 | ||
02d1d628 | 1235 | /* |
faa9b3e7 TC |
1236 | =back |
1237 | ||
faa9b3e7 TC |
1238 | =head2 Image method wrappers |
1239 | ||
1240 | These functions provide i_fsample_t functions in terms of their | |
1241 | i_sample_t versions. | |
1242 | ||
1243 | =over | |
1244 | ||
8d14daab | 1245 | =item i_ppixf_fp(i_img *im, i_img_dim x, i_img_dim y, i_fcolor *pix) |
faa9b3e7 TC |
1246 | |
1247 | =cut | |
1248 | */ | |
1249 | ||
8d14daab | 1250 | int i_ppixf_fp(i_img *im, i_img_dim x, i_img_dim y, const i_fcolor *pix) { |
faa9b3e7 TC |
1251 | i_color temp; |
1252 | int ch; | |
1253 | ||
1254 | for (ch = 0; ch < im->channels; ++ch) | |
1255 | temp.channel[ch] = SampleFTo8(pix->channel[ch]); | |
1256 | ||
1257 | return i_ppix(im, x, y, &temp); | |
1258 | } | |
1259 | ||
1260 | /* | |
8d14daab | 1261 | =item i_gpixf_fp(i_img *im, i_img_dim x, i_img_dim y, i_fcolor *pix) |
faa9b3e7 TC |
1262 | |
1263 | =cut | |
1264 | */ | |
8d14daab | 1265 | int i_gpixf_fp(i_img *im, i_img_dim x, i_img_dim y, i_fcolor *pix) { |
faa9b3e7 TC |
1266 | i_color temp; |
1267 | int ch; | |
1268 | ||
93eab01e | 1269 | if (i_gpix(im, x, y, &temp) == 0) { |
faa9b3e7 TC |
1270 | for (ch = 0; ch < im->channels; ++ch) |
1271 | pix->channel[ch] = Sample8ToF(temp.channel[ch]); | |
1272 | return 0; | |
1273 | } | |
1274 | else | |
1275 | return -1; | |
1276 | } | |
1277 | ||
1278 | /* | |
8d14daab | 1279 | =item i_plinf_fp(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, i_fcolor *pix) |
faa9b3e7 TC |
1280 | |
1281 | =cut | |
1282 | */ | |
8d14daab TC |
1283 | i_img_dim |
1284 | i_plinf_fp(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, const i_fcolor *pix) { | |
faa9b3e7 TC |
1285 | i_color *work; |
1286 | ||
1287 | if (y >= 0 && y < im->ysize && l < im->xsize && l >= 0) { | |
1288 | if (r > im->xsize) | |
1289 | r = im->xsize; | |
1290 | if (r > l) { | |
8d14daab TC |
1291 | i_img_dim ret; |
1292 | i_img_dim i; | |
1293 | int ch; | |
faa9b3e7 TC |
1294 | work = mymalloc(sizeof(i_color) * (r-l)); |
1295 | for (i = 0; i < r-l; ++i) { | |
1296 | for (ch = 0; ch < im->channels; ++ch) | |
1297 | work[i].channel[ch] = SampleFTo8(pix[i].channel[ch]); | |
1298 | } | |
1299 | ret = i_plin(im, l, r, y, work); | |
1300 | myfree(work); | |
1301 | ||
1302 | return ret; | |
1303 | } | |
1304 | else { | |
1305 | return 0; | |
1306 | } | |
1307 | } | |
1308 | else { | |
1309 | return 0; | |
1310 | } | |
1311 | } | |
1312 | ||
1313 | /* | |
8d14daab | 1314 | =item i_glinf_fp(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, i_fcolor *pix) |
faa9b3e7 TC |
1315 | |
1316 | =cut | |
1317 | */ | |
8d14daab TC |
1318 | i_img_dim |
1319 | i_glinf_fp(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, i_fcolor *pix) { | |
faa9b3e7 TC |
1320 | i_color *work; |
1321 | ||
1322 | if (y >= 0 && y < im->ysize && l < im->xsize && l >= 0) { | |
1323 | if (r > im->xsize) | |
1324 | r = im->xsize; | |
1325 | if (r > l) { | |
8d14daab TC |
1326 | i_img_dim ret; |
1327 | i_img_dim i; | |
1328 | int ch; | |
faa9b3e7 TC |
1329 | work = mymalloc(sizeof(i_color) * (r-l)); |
1330 | ret = i_plin(im, l, r, y, work); | |
1331 | for (i = 0; i < r-l; ++i) { | |
1332 | for (ch = 0; ch < im->channels; ++ch) | |
1333 | pix[i].channel[ch] = Sample8ToF(work[i].channel[ch]); | |
1334 | } | |
1335 | myfree(work); | |
1336 | ||
1337 | return ret; | |
1338 | } | |
1339 | else { | |
1340 | return 0; | |
1341 | } | |
1342 | } | |
1343 | else { | |
1344 | return 0; | |
1345 | } | |
1346 | } | |
1347 | ||
1348 | /* | |
8d14daab | 1349 | =item i_gsampf_fp(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, i_fsample_t *samp, int *chans, int chan_count) |
faa9b3e7 TC |
1350 | |
1351 | =cut | |
1352 | */ | |
8d14daab TC |
1353 | |
1354 | i_img_dim | |
1355 | i_gsampf_fp(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, i_fsample_t *samp, | |
18accb2a | 1356 | int const *chans, int chan_count) { |
faa9b3e7 TC |
1357 | i_sample_t *work; |
1358 | ||
1359 | if (y >= 0 && y < im->ysize && l < im->xsize && l >= 0) { | |
1360 | if (r > im->xsize) | |
1361 | r = im->xsize; | |
1362 | if (r > l) { | |
8d14daab TC |
1363 | i_img_dim ret; |
1364 | i_img_dim i; | |
faa9b3e7 TC |
1365 | work = mymalloc(sizeof(i_sample_t) * (r-l)); |
1366 | ret = i_gsamp(im, l, r, y, work, chans, chan_count); | |
1367 | for (i = 0; i < ret; ++i) { | |
1368 | samp[i] = Sample8ToF(work[i]); | |
1369 | } | |
1370 | myfree(work); | |
1371 | ||
1372 | return ret; | |
1373 | } | |
1374 | else { | |
1375 | return 0; | |
1376 | } | |
1377 | } | |
1378 | else { | |
1379 | return 0; | |
1380 | } | |
1381 | } | |
1382 | ||
1383 | /* | |
1384 | =back | |
1385 | ||
1386 | =head2 Palette wrapper functions | |
1387 | ||
1388 | Used for virtual images, these forward palette calls to a wrapped image, | |
1389 | assuming the wrapped image is the first pointer in the structure that | |
1390 | im->ext_data points at. | |
1391 | ||
1392 | =over | |
1393 | ||
97ac0a96 | 1394 | =item i_addcolors_forward(i_img *im, const i_color *colors, int count) |
faa9b3e7 TC |
1395 | |
1396 | =cut | |
1397 | */ | |
97ac0a96 | 1398 | int i_addcolors_forward(i_img *im, const i_color *colors, int count) { |
faa9b3e7 TC |
1399 | return i_addcolors(*(i_img **)im->ext_data, colors, count); |
1400 | } | |
1401 | ||
1402 | /* | |
1403 | =item i_getcolors_forward(i_img *im, int i, i_color *color, int count) | |
1404 | ||
1405 | =cut | |
1406 | */ | |
1407 | int i_getcolors_forward(i_img *im, int i, i_color *color, int count) { | |
1408 | return i_getcolors(*(i_img **)im->ext_data, i, color, count); | |
1409 | } | |
1410 | ||
1411 | /* | |
97ac0a96 | 1412 | =item i_setcolors_forward(i_img *im, int i, const i_color *color, int count) |
faa9b3e7 TC |
1413 | |
1414 | =cut | |
1415 | */ | |
97ac0a96 | 1416 | int i_setcolors_forward(i_img *im, int i, const i_color *color, int count) { |
faa9b3e7 TC |
1417 | return i_setcolors(*(i_img **)im->ext_data, i, color, count); |
1418 | } | |
1419 | ||
1420 | /* | |
1421 | =item i_colorcount_forward(i_img *im) | |
1422 | ||
1423 | =cut | |
1424 | */ | |
1425 | int i_colorcount_forward(i_img *im) { | |
1426 | return i_colorcount(*(i_img **)im->ext_data); | |
1427 | } | |
1428 | ||
1429 | /* | |
1430 | =item i_maxcolors_forward(i_img *im) | |
1431 | ||
1432 | =cut | |
1433 | */ | |
1434 | int i_maxcolors_forward(i_img *im) { | |
1435 | return i_maxcolors(*(i_img **)im->ext_data); | |
1436 | } | |
1437 | ||
1438 | /* | |
97ac0a96 | 1439 | =item i_findcolor_forward(i_img *im, const i_color *color, i_palidx *entry) |
faa9b3e7 TC |
1440 | |
1441 | =cut | |
1442 | */ | |
97ac0a96 | 1443 | int i_findcolor_forward(i_img *im, const i_color *color, i_palidx *entry) { |
faa9b3e7 TC |
1444 | return i_findcolor(*(i_img **)im->ext_data, color, entry); |
1445 | } | |
1446 | ||
1447 | /* | |
1448 | =back | |
1449 | ||
bd8052a6 TC |
1450 | =head2 Fallback handler |
1451 | ||
1452 | =over | |
1453 | ||
1454 | =item i_gsamp_bits_fb | |
1455 | ||
1456 | =cut | |
1457 | */ | |
1458 | ||
8d14daab TC |
1459 | i_img_dim |
1460 | i_gsamp_bits_fb(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, unsigned *samps, | |
bd8052a6 | 1461 | const int *chans, int chan_count, int bits) { |
696cb85d TC |
1462 | dIMCTXim(im); |
1463 | ||
bd8052a6 TC |
1464 | if (bits < 1 || bits > 32) { |
1465 | i_push_error(0, "Invalid bits, must be 1..32"); | |
1466 | return -1; | |
1467 | } | |
1468 | ||
1469 | if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) { | |
1470 | double scale; | |
8d14daab TC |
1471 | int ch; |
1472 | i_img_dim count, i, w; | |
bd8052a6 TC |
1473 | |
1474 | if (bits == 32) | |
1475 | scale = 4294967295.0; | |
1476 | else | |
1477 | scale = (double)(1 << bits) - 1; | |
1478 | ||
1479 | if (r > im->xsize) | |
1480 | r = im->xsize; | |
1481 | w = r - l; | |
1482 | count = 0; | |
1483 | ||
1484 | if (chans) { | |
1485 | /* make sure we have good channel numbers */ | |
1486 | for (ch = 0; ch < chan_count; ++ch) { | |
1487 | if (chans[ch] < 0 || chans[ch] >= im->channels) { | |
23d3b73e | 1488 | im_push_errorf(aIMCTX, 0, "No channel %d in this image", chans[ch]); |
bd8052a6 TC |
1489 | return -1; |
1490 | } | |
1491 | } | |
1492 | for (i = 0; i < w; ++i) { | |
1493 | i_fcolor c; | |
1494 | i_gpixf(im, l+i, y, &c); | |
1495 | for (ch = 0; ch < chan_count; ++ch) { | |
1496 | *samps++ = (unsigned)(c.channel[ch] * scale + 0.5); | |
1497 | ++count; | |
1498 | } | |
1499 | } | |
1500 | } | |
1501 | else { | |
1502 | if (chan_count <= 0 || chan_count > im->channels) { | |
1503 | i_push_error(0, "Invalid channel count"); | |
1504 | return -1; | |
1505 | } | |
1506 | for (i = 0; i < w; ++i) { | |
1507 | i_fcolor c; | |
1508 | i_gpixf(im, l+i, y, &c); | |
1509 | for (ch = 0; ch < chan_count; ++ch) { | |
1510 | *samps++ = (unsigned)(c.channel[ch] * scale + 0.5); | |
1511 | ++count; | |
1512 | } | |
1513 | } | |
1514 | } | |
1515 | ||
1516 | return count; | |
1517 | } | |
1518 | else { | |
1519 | i_push_error(0, "Image position outside of image"); | |
1520 | return -1; | |
1521 | } | |
1522 | } | |
1523 | ||
8b302e44 TC |
1524 | struct magic_entry { |
1525 | unsigned char *magic; | |
1526 | size_t magic_size; | |
1527 | char *name; | |
1528 | unsigned char *mask; | |
1529 | }; | |
1530 | ||
1531 | static int | |
1532 | test_magic(unsigned char *buffer, size_t length, struct magic_entry const *magic) { | |
8b302e44 TC |
1533 | if (length < magic->magic_size) |
1534 | return 0; | |
1535 | if (magic->mask) { | |
1536 | int i; | |
1537 | unsigned char *bufp = buffer, | |
1538 | *maskp = magic->mask, | |
1539 | *magicp = magic->magic; | |
e10bf46e | 1540 | |
8b302e44 TC |
1541 | for (i = 0; i < magic->magic_size; ++i) { |
1542 | int mask = *maskp == 'x' ? 0xFF : *maskp == ' ' ? 0 : *maskp; | |
1543 | ++maskp; | |
1544 | ||
1545 | if ((*bufp++ & mask) != (*magicp++ & mask)) | |
1546 | return 0; | |
1547 | } | |
1548 | ||
1549 | return 1; | |
1550 | } | |
1551 | else { | |
1552 | return !memcmp(magic->magic, buffer, magic->magic_size); | |
1553 | } | |
1554 | } | |
e10bf46e | 1555 | |
84e51293 AMH |
1556 | /* |
1557 | =item i_test_format_probe(io_glue *data, int length) | |
1558 | ||
676d5bb5 | 1559 | Check the beginning of the supplied file for a 'magic number' |
84e51293 AMH |
1560 | |
1561 | =cut | |
1562 | */ | |
e10bf46e | 1563 | |
db7a8754 TC |
1564 | #define FORMAT_ENTRY(magic, type) \ |
1565 | { (unsigned char *)(magic ""), sizeof(magic)-1, type } | |
8b302e44 | 1566 | #define FORMAT_ENTRY2(magic, type, mask) \ |
c0f79ae6 | 1567 | { (unsigned char *)(magic ""), sizeof(magic)-1, type, (unsigned char *)(mask) } |
ea1136fc TC |
1568 | |
1569 | const char * | |
1570 | i_test_format_probe(io_glue *data, int length) { | |
8b302e44 | 1571 | static const struct magic_entry formats[] = { |
db7a8754 TC |
1572 | FORMAT_ENTRY("\xFF\xD8", "jpeg"), |
1573 | FORMAT_ENTRY("GIF87a", "gif"), | |
1574 | FORMAT_ENTRY("GIF89a", "gif"), | |
1575 | FORMAT_ENTRY("MM\0*", "tiff"), | |
1576 | FORMAT_ENTRY("II*\0", "tiff"), | |
1577 | FORMAT_ENTRY("BM", "bmp"), | |
1578 | FORMAT_ENTRY("\x89PNG\x0d\x0a\x1a\x0a", "png"), | |
1579 | FORMAT_ENTRY("P1", "pnm"), | |
1580 | FORMAT_ENTRY("P2", "pnm"), | |
1581 | FORMAT_ENTRY("P3", "pnm"), | |
1582 | FORMAT_ENTRY("P4", "pnm"), | |
1583 | FORMAT_ENTRY("P5", "pnm"), | |
1584 | FORMAT_ENTRY("P6", "pnm"), | |
8b302e44 TC |
1585 | FORMAT_ENTRY("/* XPM", "xpm"), |
1586 | FORMAT_ENTRY("\x8aMNG", "mng"), | |
1587 | FORMAT_ENTRY("\x8aJNG", "jng"), | |
1588 | /* SGI RGB - with various possible parameters to avoid false positives | |
1589 | on similar files | |
1590 | values are: 2 byte magic, rle flags (0 or 1), bytes/sample (1 or 2) | |
1591 | */ | |
d5477d3d TC |
1592 | FORMAT_ENTRY("\x01\xDA\x00\x01", "sgi"), |
1593 | FORMAT_ENTRY("\x01\xDA\x00\x02", "sgi"), | |
1594 | FORMAT_ENTRY("\x01\xDA\x01\x01", "sgi"), | |
1595 | FORMAT_ENTRY("\x01\xDA\x01\x02", "sgi"), | |
8b302e44 TC |
1596 | |
1597 | FORMAT_ENTRY2("FORM ILBM", "ilbm", "xxxx xxxx"), | |
1598 | ||
1599 | /* different versions of PCX format | |
1600 | http://www.fileformat.info/format/pcx/ | |
1601 | */ | |
1602 | FORMAT_ENTRY("\x0A\x00\x01", "pcx"), | |
681d28fc | 1603 | FORMAT_ENTRY("\x0A\x02\x01", "pcx"), |
8b302e44 TC |
1604 | FORMAT_ENTRY("\x0A\x03\x01", "pcx"), |
1605 | FORMAT_ENTRY("\x0A\x04\x01", "pcx"), | |
1606 | FORMAT_ENTRY("\x0A\x05\x01", "pcx"), | |
1607 | ||
1608 | /* FITS - http://fits.gsfc.nasa.gov/ */ | |
1609 | FORMAT_ENTRY("SIMPLE =", "fits"), | |
1610 | ||
1611 | /* PSD - Photoshop */ | |
1612 | FORMAT_ENTRY("8BPS\x00\x01", "psd"), | |
1613 | ||
1614 | /* EPS - Encapsulated Postscript */ | |
1615 | /* only reading 18 chars, so we don't include the F in EPSF */ | |
1616 | FORMAT_ENTRY("%!PS-Adobe-2.0 EPS", "eps"), | |
681d28fc TC |
1617 | |
1618 | /* Utah RLE */ | |
1619 | FORMAT_ENTRY("\x52\xCC", "utah"), | |
33fc0c9e TC |
1620 | |
1621 | /* GZIP compressed, only matching deflate for now */ | |
1622 | FORMAT_ENTRY("\x1F\x8B\x08", "gzip"), | |
1623 | ||
1624 | /* bzip2 compressed */ | |
1625 | FORMAT_ENTRY("BZh", "bzip2"), | |
bca6a3d5 TC |
1626 | |
1627 | /* WEBP | |
1628 | http://code.google.com/speed/webp/docs/riff_container.html */ | |
1629 | FORMAT_ENTRY2("RIFF WEBP", "webp", "xxxx xxxx"), | |
1630 | ||
1631 | /* JPEG 2000 | |
1632 | This might match a little loosely */ | |
1633 | FORMAT_ENTRY("\x00\x00\x00\x0CjP \x0D\x0A\x87\x0A", "jp2"), | |
e10bf46e | 1634 | }; |
8b302e44 | 1635 | static const struct magic_entry more_formats[] = { |
681d28fc TC |
1636 | /* these were originally both listed as ico, but cur files can |
1637 | include hotspot information */ | |
1638 | FORMAT_ENTRY("\x00\x00\x01\x00", "ico"), /* Windows icon */ | |
1639 | FORMAT_ENTRY("\x00\x00\x02\x00", "cur"), /* Windows cursor */ | |
603dfac7 TC |
1640 | FORMAT_ENTRY2("\x00\x00\x00\x00\x00\x00\x00\x07", |
1641 | "xwd", " xxxx"), /* X Windows Dump */ | |
ea1136fc | 1642 | }; |
db7a8754 | 1643 | |
e10bf46e | 1644 | unsigned int i; |
db7a8754 | 1645 | unsigned char head[18]; |
84e51293 | 1646 | ssize_t rc; |
e10bf46e | 1647 | |
6d5c85a2 | 1648 | rc = i_io_peekn(data, head, 18); |
84e51293 | 1649 | if (rc == -1) return NULL; |
6d5c85a2 TC |
1650 | #if 0 |
1651 | { | |
1652 | int i; | |
1653 | fprintf(stderr, "%d bytes -", (int)rc); | |
1654 | for (i = 0; i < rc; ++i) | |
1655 | fprintf(stderr, " %02x", head[i]); | |
1656 | fprintf(stderr, "\n"); | |
1657 | } | |
1658 | #endif | |
e10bf46e AMH |
1659 | |
1660 | for(i=0; i<sizeof(formats)/sizeof(formats[0]); i++) { | |
8b302e44 TC |
1661 | struct magic_entry const *entry = formats + i; |
1662 | ||
1663 | if (test_magic(head, rc, entry)) | |
1664 | return entry->name; | |
e10bf46e AMH |
1665 | } |
1666 | ||
ea1136fc | 1667 | if ((rc == 18) && |
db7a8754 TC |
1668 | tga_header_verify(head)) |
1669 | return "tga"; | |
1670 | ||
ea1136fc | 1671 | for(i=0; i<sizeof(more_formats)/sizeof(more_formats[0]); i++) { |
8b302e44 TC |
1672 | struct magic_entry const *entry = more_formats + i; |
1673 | ||
1674 | if (test_magic(head, rc, entry)) | |
1675 | return entry->name; | |
ea1136fc TC |
1676 | } |
1677 | ||
1678 | return NULL; | |
e10bf46e AMH |
1679 | } |
1680 | ||
9c106321 TC |
1681 | /* |
1682 | =item i_img_is_monochrome(img, &zero_is_white) | |
1683 | ||
e5ee047b TC |
1684 | =category Image Information |
1685 | ||
9c106321 TC |
1686 | Tests an image to check it meets our monochrome tests. |
1687 | ||
1688 | The idea is that a file writer can use this to test where it should | |
e5ee047b TC |
1689 | write the image in whatever bi-level format it uses, eg. C<pbm> for |
1690 | C<pnm>. | |
9c106321 TC |
1691 | |
1692 | For performance of encoders we require monochrome images: | |
1693 | ||
1694 | =over | |
1695 | ||
1696 | =item * | |
e10bf46e | 1697 | |
9c106321 | 1698 | be paletted |
e10bf46e | 1699 | |
9c106321 TC |
1700 | =item * |
1701 | ||
e5ee047b TC |
1702 | have a palette of two colors, containing only C<(0,0,0)> and |
1703 | C<(255,255,255)> in either order. | |
9c106321 TC |
1704 | |
1705 | =back | |
1706 | ||
e5ee047b | 1707 | C<zero_is_white> is set to non-zero if the first palette entry is white. |
9c106321 TC |
1708 | |
1709 | =cut | |
1710 | */ | |
1711 | ||
1712 | int | |
1713 | i_img_is_monochrome(i_img *im, int *zero_is_white) { | |
1714 | if (im->type == i_palette_type | |
1715 | && i_colorcount(im) == 2) { | |
1716 | i_color colors[2]; | |
1717 | i_getcolors(im, 0, colors, 2); | |
1718 | if (im->channels == 3) { | |
1719 | if (colors[0].rgb.r == 255 && | |
1720 | colors[0].rgb.g == 255 && | |
1721 | colors[0].rgb.b == 255 && | |
1722 | colors[1].rgb.r == 0 && | |
1723 | colors[1].rgb.g == 0 && | |
1724 | colors[1].rgb.b == 0) { | |
bd8052a6 | 1725 | *zero_is_white = 1; |
9c106321 TC |
1726 | return 1; |
1727 | } | |
1728 | else if (colors[0].rgb.r == 0 && | |
1729 | colors[0].rgb.g == 0 && | |
1730 | colors[0].rgb.b == 0 && | |
1731 | colors[1].rgb.r == 255 && | |
1732 | colors[1].rgb.g == 255 && | |
1733 | colors[1].rgb.b == 255) { | |
bd8052a6 | 1734 | *zero_is_white = 0; |
9c106321 TC |
1735 | return 1; |
1736 | } | |
1737 | } | |
1738 | else if (im->channels == 1) { | |
1739 | if (colors[0].channel[0] == 255 && | |
bd8052a6 TC |
1740 | colors[1].channel[0] == 0) { |
1741 | *zero_is_white = 1; | |
9c106321 TC |
1742 | return 1; |
1743 | } | |
1744 | else if (colors[0].channel[0] == 0 && | |
bd8052a6 TC |
1745 | colors[1].channel[0] == 255) { |
1746 | *zero_is_white = 0; | |
9c106321 TC |
1747 | return 1; |
1748 | } | |
1749 | } | |
1750 | } | |
1751 | ||
1752 | *zero_is_white = 0; | |
1753 | return 0; | |
1754 | } | |
e10bf46e | 1755 | |
6e4af7d4 TC |
1756 | /* |
1757 | =item i_get_file_background(im, &bg) | |
1758 | ||
797a9f9c TC |
1759 | =category Files |
1760 | ||
6e4af7d4 TC |
1761 | Retrieve the file write background color tag from the image. |
1762 | ||
594f5933 TC |
1763 | If not present, C<bg> is set to black. |
1764 | ||
1765 | Returns 1 if the C<i_background> tag was found and valid. | |
6e4af7d4 TC |
1766 | |
1767 | =cut | |
1768 | */ | |
1769 | ||
594f5933 | 1770 | int |
6e4af7d4 | 1771 | i_get_file_background(i_img *im, i_color *bg) { |
594f5933 TC |
1772 | int result = i_tags_get_color(&im->tags, "i_background", 0, bg); |
1773 | if (!result) { | |
6e4af7d4 TC |
1774 | /* black default */ |
1775 | bg->channel[0] = bg->channel[1] = bg->channel[2] = 0; | |
1776 | } | |
1777 | /* always full alpha */ | |
1778 | bg->channel[3] = 255; | |
594f5933 TC |
1779 | |
1780 | return result; | |
6e4af7d4 TC |
1781 | } |
1782 | ||
fa90de94 TC |
1783 | /* |
1784 | =item i_get_file_backgroundf(im, &bg) | |
1785 | ||
797a9f9c TC |
1786 | =category Files |
1787 | ||
fa90de94 TC |
1788 | Retrieve the file write background color tag from the image as a |
1789 | floating point color. | |
1790 | ||
1791 | Implemented in terms of i_get_file_background(). | |
1792 | ||
594f5933 TC |
1793 | If not present, C<bg> is set to black. |
1794 | ||
1795 | Returns 1 if the C<i_background> tag was found and valid. | |
fa90de94 TC |
1796 | |
1797 | =cut | |
1798 | */ | |
1799 | ||
594f5933 | 1800 | int |
fa90de94 TC |
1801 | i_get_file_backgroundf(i_img *im, i_fcolor *fbg) { |
1802 | i_color bg; | |
594f5933 | 1803 | int result = i_get_file_background(im, &bg); |
fa90de94 TC |
1804 | fbg->rgba.r = Sample8ToF(bg.rgba.r); |
1805 | fbg->rgba.g = Sample8ToF(bg.rgba.g); | |
1806 | fbg->rgba.b = Sample8ToF(bg.rgba.b); | |
1807 | fbg->rgba.a = 1.0; | |
594f5933 TC |
1808 | |
1809 | return result; | |
fa90de94 TC |
1810 | } |
1811 | ||
02d1d628 AMH |
1812 | /* |
1813 | =back | |
1814 | ||
b8c2033e AMH |
1815 | =head1 AUTHOR |
1816 | ||
1817 | Arnar M. Hrafnkelsson <addi@umich.edu> | |
1818 | ||
8d14daab | 1819 | Tony Cook <tonyc@cpan.org> |
b8c2033e | 1820 | |
02d1d628 AMH |
1821 | =head1 SEE ALSO |
1822 | ||
1823 | L<Imager>, L<gif.c> | |
1824 | ||
1825 | =cut | |
1826 | */ |