]>
Commit | Line | Data |
---|---|---|
696cb85d TC |
1 | #define IMAGER_NO_CONTEXT |
2 | ||
92bda632 TC |
3 | #include "imager.h" |
4 | #include "imageri.h" | |
02d1d628 AMH |
5 | |
6 | /* | |
7 | =head1 NAME | |
8 | ||
9 | image.c - implements most of the basic functions of Imager and much of the rest | |
10 | ||
11 | =head1 SYNOPSIS | |
12 | ||
13 | i_img *i; | |
14 | i_color *c; | |
15 | c = i_color_new(red, green, blue, alpha); | |
16 | ICL_DESTROY(c); | |
3c5a01b3 | 17 | i = i_img_8_new(); |
02d1d628 AMH |
18 | i_img_destroy(i); |
19 | // and much more | |
20 | ||
21 | =head1 DESCRIPTION | |
22 | ||
23 | image.c implements the basic functions to create and destroy image and | |
24 | color objects for Imager. | |
25 | ||
26 | =head1 FUNCTION REFERENCE | |
27 | ||
28 | Some of these functions are internal. | |
29 | ||
b8c2033e | 30 | =over |
02d1d628 AMH |
31 | |
32 | =cut | |
33 | */ | |
34 | ||
44d86483 TC |
35 | im_context_t (*im_get_context)(void) = NULL; |
36 | ||
02d1d628 AMH |
37 | #define XAXIS 0 |
38 | #define YAXIS 1 | |
142c26ff | 39 | #define XYAXIS 2 |
02d1d628 AMH |
40 | |
41 | #define minmax(a,b,i) ( ((a>=i)?a: ( (b<=i)?b:i )) ) | |
42 | ||
43 | /* Hack around an obscure linker bug on solaris - probably due to builtin gcc thingies */ | |
8d14daab | 44 | void i_linker_bug_fake(void) { ceil(1); } |
faa9b3e7 | 45 | |
bd8052a6 | 46 | /* |
abffffed TC |
47 | =item im_img_alloc(aIMCTX) |
48 | X<im_img_alloc API>X<i_img_alloc API> | |
bd8052a6 | 49 | =category Image Implementation |
abffffed TC |
50 | =synopsis i_img *im = im_img_alloc(aIMCTX); |
51 | =synopsis i_img *im = i_img_alloc(); | |
bd8052a6 TC |
52 | |
53 | Allocates a new i_img structure. | |
54 | ||
55 | When implementing a new image type perform the following steps in your | |
56 | image object creation function: | |
57 | ||
58 | =over | |
59 | ||
60 | =item 1. | |
61 | ||
62 | allocate the image with i_img_alloc(). | |
63 | ||
64 | =item 2. | |
65 | ||
66 | initialize any function pointers or other data as needed, you can | |
67 | overwrite the whole block if you need to. | |
68 | ||
69 | =item 3. | |
70 | ||
71 | initialize Imager's internal data by calling i_img_init() on the image | |
72 | object. | |
73 | ||
74 | =back | |
75 | ||
76 | =cut | |
77 | */ | |
78 | ||
79 | i_img * | |
696cb85d | 80 | im_img_alloc(pIMCTX) { |
bd8052a6 TC |
81 | return mymalloc(sizeof(i_img)); |
82 | } | |
83 | ||
84 | /* | |
abffffed TC |
85 | =item im_img_init(aIMCTX, image) |
86 | X<im_img_init API>X<i_img_init API> | |
bd8052a6 | 87 | =category Image Implementation |
abffffed TC |
88 | =synopsis im_img_init(aIMCTX, im); |
89 | =synopsis i_img_init(im); | |
bd8052a6 | 90 | |
5715f7c3 | 91 | Imager internal initialization of images. |
bd8052a6 | 92 | |
abffffed | 93 | See L</im_img_alloc(aIMCTX)> for more information. |
bd8052a6 TC |
94 | |
95 | =cut | |
96 | */ | |
97 | ||
98 | void | |
696cb85d | 99 | im_img_init(pIMCTX, i_img *img) { |
bd8052a6 | 100 | img->im_data = NULL; |
696cb85d | 101 | img->context = aIMCTX; |
31a13473 | 102 | im_context_refinc(aIMCTX, "img_init"); |
bd8052a6 | 103 | } |
02d1d628 AMH |
104 | |
105 | /* | |
106 | =item ICL_new_internal(r, g, b, a) | |
107 | ||
108 | Return a new color object with values passed to it. | |
109 | ||
110 | r - red component (range: 0 - 255) | |
111 | g - green component (range: 0 - 255) | |
112 | b - blue component (range: 0 - 255) | |
113 | a - alpha component (range: 0 - 255) | |
114 | ||
115 | =cut | |
116 | */ | |
117 | ||
118 | i_color * | |
119 | ICL_new_internal(unsigned char r,unsigned char g,unsigned char b,unsigned char a) { | |
4cac9410 | 120 | i_color *cl = NULL; |
23d3b73e | 121 | dIMCTX; |
02d1d628 | 122 | |
23d3b73e | 123 | im_log((aIMCTX,1,"ICL_new_internal(r %d,g %d,b %d,a %d)\n", r, g, b, a)); |
02d1d628 | 124 | |
8ebac85f | 125 | if ( (cl=mymalloc(sizeof(i_color))) == NULL) im_fatal(aIMCTX, 2,"malloc() error\n"); |
4cac9410 AMH |
126 | cl->rgba.r = r; |
127 | cl->rgba.g = g; | |
128 | cl->rgba.b = b; | |
129 | cl->rgba.a = a; | |
23d3b73e | 130 | im_log((aIMCTX,1,"(%p) <- ICL_new_internal\n",cl)); |
02d1d628 AMH |
131 | return cl; |
132 | } | |
133 | ||
134 | ||
135 | /* | |
136 | =item ICL_set_internal(cl, r, g, b, a) | |
137 | ||
138 | Overwrite a color with new values. | |
139 | ||
140 | cl - pointer to color object | |
141 | r - red component (range: 0 - 255) | |
142 | g - green component (range: 0 - 255) | |
143 | b - blue component (range: 0 - 255) | |
144 | a - alpha component (range: 0 - 255) | |
145 | ||
146 | =cut | |
147 | */ | |
148 | ||
149 | i_color * | |
150 | ICL_set_internal(i_color *cl,unsigned char r,unsigned char g,unsigned char b,unsigned char a) { | |
23d3b73e TC |
151 | dIMCTX; |
152 | im_log((aIMCTX,1,"ICL_set_internal(cl* %p,r %d,g %d,b %d,a %d)\n",cl,r,g,b,a)); | |
02d1d628 AMH |
153 | if (cl == NULL) |
154 | if ( (cl=mymalloc(sizeof(i_color))) == NULL) | |
8ebac85f | 155 | im_fatal(aIMCTX, 2,"malloc() error\n"); |
02d1d628 AMH |
156 | cl->rgba.r=r; |
157 | cl->rgba.g=g; | |
158 | cl->rgba.b=b; | |
159 | cl->rgba.a=a; | |
23d3b73e | 160 | im_log((aIMCTX,1,"(%p) <- ICL_set_internal\n",cl)); |
02d1d628 AMH |
161 | return cl; |
162 | } | |
163 | ||
164 | ||
165 | /* | |
166 | =item ICL_add(dst, src, ch) | |
167 | ||
168 | Add src to dst inplace - dst is modified. | |
169 | ||
170 | dst - pointer to destination color object | |
171 | src - pointer to color object that is added | |
172 | ch - number of channels | |
173 | ||
174 | =cut | |
175 | */ | |
176 | ||
177 | void | |
178 | ICL_add(i_color *dst,i_color *src,int ch) { | |
179 | int tmp,i; | |
180 | for(i=0;i<ch;i++) { | |
181 | tmp=dst->channel[i]+src->channel[i]; | |
182 | dst->channel[i]= tmp>255 ? 255:tmp; | |
183 | } | |
184 | } | |
185 | ||
186 | /* | |
187 | =item ICL_info(cl) | |
188 | ||
189 | Dump color information to log - strictly for debugging. | |
190 | ||
191 | cl - pointer to color object | |
192 | ||
193 | =cut | |
194 | */ | |
195 | ||
196 | void | |
97ac0a96 | 197 | ICL_info(i_color const *cl) { |
23d3b73e TC |
198 | dIMCTX; |
199 | im_log((aIMCTX, 1,"i_color_info(cl* %p)\n",cl)); | |
200 | im_log((aIMCTX, 1,"i_color_info: (%d,%d,%d,%d)\n",cl->rgba.r,cl->rgba.g,cl->rgba.b,cl->rgba.a)); | |
02d1d628 AMH |
201 | } |
202 | ||
203 | /* | |
204 | =item ICL_DESTROY | |
205 | ||
206 | Destroy ancillary data for Color object. | |
207 | ||
208 | cl - pointer to color object | |
209 | ||
210 | =cut | |
211 | */ | |
212 | ||
213 | void | |
214 | ICL_DESTROY(i_color *cl) { | |
23d3b73e TC |
215 | dIMCTX; |
216 | im_log((aIMCTX, 1,"ICL_DESTROY(cl* %p)\n",cl)); | |
02d1d628 AMH |
217 | myfree(cl); |
218 | } | |
219 | ||
faa9b3e7 TC |
220 | /* |
221 | =item i_fcolor_new(double r, double g, double b, double a) | |
222 | ||
223 | =cut | |
224 | */ | |
225 | i_fcolor *i_fcolor_new(double r, double g, double b, double a) { | |
226 | i_fcolor *cl = NULL; | |
23d3b73e | 227 | dIMCTX; |
faa9b3e7 | 228 | |
23d3b73e | 229 | im_log((aIMCTX, 1,"i_fcolor_new(r %g,g %g,b %g,a %g)\n", r, g, b, a)); |
faa9b3e7 | 230 | |
8ebac85f | 231 | if ( (cl=mymalloc(sizeof(i_fcolor))) == NULL) im_fatal(aIMCTX, 2,"malloc() error\n"); |
faa9b3e7 TC |
232 | cl->rgba.r = r; |
233 | cl->rgba.g = g; | |
234 | cl->rgba.b = b; | |
235 | cl->rgba.a = a; | |
23d3b73e | 236 | im_log((aIMCTX, 1,"(%p) <- i_fcolor_new\n",cl)); |
faa9b3e7 TC |
237 | |
238 | return cl; | |
239 | } | |
240 | ||
241 | /* | |
242 | =item i_fcolor_destroy(i_fcolor *cl) | |
243 | ||
244 | =cut | |
245 | */ | |
246 | void i_fcolor_destroy(i_fcolor *cl) { | |
247 | myfree(cl); | |
248 | } | |
249 | ||
02d1d628 AMH |
250 | /* |
251 | =item i_img_exorcise(im) | |
252 | ||
253 | Free image data. | |
254 | ||
255 | im - Image pointer | |
256 | ||
257 | =cut | |
258 | */ | |
259 | ||
260 | void | |
261 | i_img_exorcise(i_img *im) { | |
23d3b73e TC |
262 | dIMCTXim(im); |
263 | im_log((aIMCTX,1,"i_img_exorcise(im* %p)\n",im)); | |
faa9b3e7 TC |
264 | i_tags_destroy(&im->tags); |
265 | if (im->i_f_destroy) | |
266 | (im->i_f_destroy)(im); | |
267 | if (im->idata != NULL) { myfree(im->idata); } | |
268 | im->idata = NULL; | |
4cac9410 AMH |
269 | im->xsize = 0; |
270 | im->ysize = 0; | |
271 | im->channels = 0; | |
02d1d628 | 272 | |
02d1d628 AMH |
273 | im->ext_data=NULL; |
274 | } | |
275 | ||
276 | /* | |
5715f7c3 | 277 | =item i_img_destroy(C<img>) |
6cfee9d1 | 278 | =order 90 |
9167a5c6 TC |
279 | =category Image creation/destruction |
280 | =synopsis i_img_destroy(img) | |
02d1d628 | 281 | |
9167a5c6 | 282 | Destroy an image object |
02d1d628 AMH |
283 | |
284 | =cut | |
285 | */ | |
286 | ||
287 | void | |
288 | i_img_destroy(i_img *im) { | |
31a13473 | 289 | dIMCTXim(im); |
23d3b73e | 290 | im_log((aIMCTX, 1,"i_img_destroy(im %p)\n",im)); |
02d1d628 | 291 | i_img_exorcise(im); |
37fa578c | 292 | myfree(im); |
31a13473 | 293 | im_context_refdec(aIMCTX, "img_destroy"); |
02d1d628 AMH |
294 | } |
295 | ||
296 | /* | |
297 | =item i_img_info(im, info) | |
298 | ||
92bda632 TC |
299 | =category Image |
300 | ||
02d1d628 AMH |
301 | Return image information |
302 | ||
303 | im - Image pointer | |
304 | info - pointer to array to return data | |
305 | ||
306 | info is an array of 4 integers with the following values: | |
307 | ||
308 | info[0] - width | |
309 | info[1] - height | |
310 | info[2] - channels | |
311 | info[3] - channel mask | |
312 | ||
313 | =cut | |
314 | */ | |
315 | ||
316 | ||
317 | void | |
8d14daab | 318 | i_img_info(i_img *im, i_img_dim *info) { |
23d3b73e TC |
319 | dIMCTXim(im); |
320 | im_log((aIMCTX,1,"i_img_info(im %p)\n",im)); | |
6fa51f9c TC |
321 | |
322 | im_log((aIMCTX,1,"i_img_info: xsize=%" i_DF " ysize=%" i_DF " channels=%d " | |
323 | "mask=%ud\n", | |
324 | i_DFc(im->xsize), i_DFc(im->ysize), im->channels,im->ch_mask)); | |
325 | im_log((aIMCTX,1,"i_img_info: idata=%p\n",im->idata)); | |
326 | info[0] = im->xsize; | |
327 | info[1] = im->ysize; | |
328 | info[2] = im->channels; | |
329 | info[3] = im->ch_mask; | |
02d1d628 AMH |
330 | } |
331 | ||
332 | /* | |
5715f7c3 | 333 | =item i_img_setmask(C<im>, C<ch_mask>) |
6cfee9d1 | 334 | =category Image Information |
372ba12c | 335 | =synopsis // only channel 0 writable |
d5477d3d TC |
336 | =synopsis i_img_setmask(img, 0x01); |
337 | ||
5715f7c3 | 338 | Set the image channel mask for C<im> to C<ch_mask>. |
02d1d628 | 339 | |
6cfee9d1 TC |
340 | The image channel mask gives some control over which channels can be |
341 | written to in the image. | |
342 | ||
02d1d628 AMH |
343 | =cut |
344 | */ | |
345 | void | |
346 | i_img_setmask(i_img *im,int ch_mask) { im->ch_mask=ch_mask; } | |
347 | ||
348 | ||
349 | /* | |
5715f7c3 | 350 | =item i_img_getmask(C<im>) |
6cfee9d1 TC |
351 | =category Image Information |
352 | =synopsis int mask = i_img_getmask(img); | |
d5477d3d | 353 | |
5715f7c3 | 354 | Get the image channel mask for C<im>. |
02d1d628 AMH |
355 | |
356 | =cut | |
357 | */ | |
358 | int | |
359 | i_img_getmask(i_img *im) { return im->ch_mask; } | |
360 | ||
361 | /* | |
5715f7c3 | 362 | =item i_img_getchannels(C<im>) |
6cfee9d1 TC |
363 | =category Image Information |
364 | =synopsis int channels = i_img_getchannels(img); | |
d5477d3d | 365 | |
5715f7c3 | 366 | Get the number of channels in C<im>. |
02d1d628 AMH |
367 | |
368 | =cut | |
369 | */ | |
370 | int | |
371 | i_img_getchannels(i_img *im) { return im->channels; } | |
372 | ||
d5477d3d | 373 | /* |
5715f7c3 | 374 | =item i_img_get_width(C<im>) |
6cfee9d1 TC |
375 | =category Image Information |
376 | =synopsis i_img_dim width = i_img_get_width(im); | |
02d1d628 | 377 | |
d5477d3d TC |
378 | Returns the width in pixels of the image. |
379 | ||
380 | =cut | |
381 | */ | |
382 | i_img_dim | |
383 | i_img_get_width(i_img *im) { | |
384 | return im->xsize; | |
385 | } | |
386 | ||
387 | /* | |
5715f7c3 | 388 | =item i_img_get_height(C<im>) |
6cfee9d1 TC |
389 | =category Image Information |
390 | =synopsis i_img_dim height = i_img_get_height(im); | |
d5477d3d TC |
391 | |
392 | Returns the height in pixels of the image. | |
393 | ||
394 | =cut | |
395 | */ | |
396 | i_img_dim | |
397 | i_img_get_height(i_img *im) { | |
398 | return im->ysize; | |
399 | } | |
02d1d628 | 400 | |
35db02fc TC |
401 | /* |
402 | =item i_img_color_model(im) | |
403 | =category Image Information | |
404 | =synopsis i_color_model_t cm = i_img_color_model(im); | |
405 | ||
406 | Returns the color model for the image. | |
407 | ||
408 | A future version of Imager will allow for images with extra channels | |
409 | beyond gray/rgb and alpha. | |
410 | ||
411 | =cut | |
412 | */ | |
413 | i_color_model_t | |
414 | i_img_color_model(i_img *im) { | |
415 | return (i_color_model_t)im->channels; | |
416 | } | |
417 | ||
418 | /* | |
419 | =item i_img_alpha_channel(im, &channel) | |
420 | =category Image Information | |
421 | =synopsis int alpha_channel; | |
422 | =synopsis int has_alpha = i_img_alpha_channel(im, &alpha_channel); | |
423 | ||
424 | Work out the alpha channel for an image. | |
425 | ||
426 | If the image has an alpha channel, sets C<*channel> to the alpha | |
427 | channel index and returns non-zero. | |
428 | ||
429 | If the image has no alpha channel, returns zero and C<*channel> is not | |
430 | modified. | |
431 | ||
432 | C<channel> may be C<NULL>. | |
433 | ||
434 | =cut | |
435 | */ | |
436 | ||
437 | int | |
438 | i_img_alpha_channel(i_img *im, int *channel) { | |
439 | i_color_model_t model = i_img_color_model(im); | |
440 | switch (model) { | |
441 | case icm_gray_alpha: | |
442 | case icm_rgb_alpha: | |
443 | if (channel) *channel = (int)model - 1; | |
444 | return 1; | |
445 | ||
446 | default: | |
447 | return 0; | |
448 | } | |
449 | } | |
450 | ||
451 | /* | |
452 | =item i_img_color_channels(im) | |
453 | =category Image Information | |
454 | =synopsis int color_channels = i_img_color_channels(im); | |
455 | ||
456 | Returns the number of color channels in the image. For now this is | |
457 | always 1 (for grayscale) or 3 (for RGB) but may be 0 in some special | |
458 | cases in a future release of Imager. | |
459 | ||
460 | =cut | |
461 | */ | |
462 | ||
463 | int | |
464 | i_img_color_channels(i_img *im) { | |
465 | i_color_model_t model = i_img_color_model(im); | |
466 | switch (model) { | |
467 | case icm_gray_alpha: | |
468 | case icm_rgb_alpha: | |
469 | return (int)model - 1; | |
470 | ||
471 | case icm_gray: | |
472 | case icm_rgb: | |
473 | return (int)model; | |
474 | ||
475 | default: | |
476 | return 0; | |
477 | } | |
478 | } | |
479 | ||
02d1d628 | 480 | /* |
5715f7c3 | 481 | =item i_copyto_trans(C<im>, C<src>, C<x1>, C<y1>, C<x2>, C<y2>, C<tx>, C<ty>, C<trans>) |
02d1d628 | 482 | |
92bda632 TC |
483 | =category Image |
484 | ||
5715f7c3 TC |
485 | (C<x1>,C<y1>) (C<x2>,C<y2>) specifies the region to copy (in the |
486 | source coordinates) (C<tx>,C<ty>) specifies the upper left corner for | |
487 | the target image. pass NULL in C<trans> for non transparent i_colors. | |
02d1d628 AMH |
488 | |
489 | =cut | |
490 | */ | |
491 | ||
492 | void | |
8d14daab | 493 | i_copyto_trans(i_img *im,i_img *src,i_img_dim x1,i_img_dim y1,i_img_dim x2,i_img_dim y2,i_img_dim tx,i_img_dim ty,const i_color *trans) { |
02d1d628 | 494 | i_color pv; |
8d14daab TC |
495 | i_img_dim x,y,t,ttx,tty,tt; |
496 | int ch; | |
23d3b73e | 497 | dIMCTXim(im); |
02d1d628 | 498 | |
23d3b73e | 499 | im_log((aIMCTX, 1,"i_copyto_trans(im* %p,src %p, p1(" i_DFp "), p2(" i_DFp "), " |
8d14daab TC |
500 | "to(" i_DFp "), trans* %p)\n", |
501 | im, src, i_DFcp(x1, y1), i_DFcp(x2, y2), i_DFcp(tx, ty), trans)); | |
4cac9410 | 502 | |
02d1d628 AMH |
503 | if (x2<x1) { t=x1; x1=x2; x2=t; } |
504 | if (y2<y1) { t=y1; y1=y2; y2=t; } | |
505 | ||
506 | ttx=tx; | |
507 | for(x=x1;x<x2;x++) | |
508 | { | |
509 | tty=ty; | |
510 | for(y=y1;y<y2;y++) | |
511 | { | |
512 | i_gpix(src,x,y,&pv); | |
513 | if ( trans != NULL) | |
514 | { | |
515 | tt=0; | |
516 | for(ch=0;ch<im->channels;ch++) if (trans->channel[ch]!=pv.channel[ch]) tt++; | |
517 | if (tt) i_ppix(im,ttx,tty,&pv); | |
518 | } else i_ppix(im,ttx,tty,&pv); | |
519 | tty++; | |
520 | } | |
521 | ttx++; | |
522 | } | |
523 | } | |
524 | ||
02d1d628 | 525 | /* |
5715f7c3 | 526 | =item i_copy(source) |
92bda632 TC |
527 | |
528 | =category Image | |
529 | ||
5715f7c3 | 530 | Creates a new image that is a copy of the image C<source>. |
92bda632 TC |
531 | |
532 | Tags are not copied, only the image data. | |
02d1d628 | 533 | |
92bda632 | 534 | Returns: i_img * |
02d1d628 AMH |
535 | |
536 | =cut | |
537 | */ | |
538 | ||
92bda632 TC |
539 | i_img * |
540 | i_copy(i_img *src) { | |
8d14daab | 541 | i_img_dim y, y1, x1; |
23d3b73e | 542 | dIMCTXim(src); |
92bda632 TC |
543 | i_img *im = i_sametype(src, src->xsize, src->ysize); |
544 | ||
23d3b73e | 545 | im_log((aIMCTX,1,"i_copy(src %p)\n", src)); |
02d1d628 | 546 | |
92bda632 TC |
547 | if (!im) |
548 | return NULL; | |
02d1d628 | 549 | |
4cac9410 AMH |
550 | x1 = src->xsize; |
551 | y1 = src->ysize; | |
faa9b3e7 TC |
552 | if (src->type == i_direct_type) { |
553 | if (src->bits == i_8_bits) { | |
554 | i_color *pv; | |
faa9b3e7 TC |
555 | pv = mymalloc(sizeof(i_color) * x1); |
556 | ||
557 | for (y = 0; y < y1; ++y) { | |
558 | i_glin(src, 0, x1, y, pv); | |
559 | i_plin(im, 0, x1, y, pv); | |
560 | } | |
561 | myfree(pv); | |
562 | } | |
563 | else { | |
faa9b3e7 | 564 | i_fcolor *pv; |
af3c2450 | 565 | |
faa9b3e7 TC |
566 | pv = mymalloc(sizeof(i_fcolor) * x1); |
567 | for (y = 0; y < y1; ++y) { | |
568 | i_glinf(src, 0, x1, y, pv); | |
569 | i_plinf(im, 0, x1, y, pv); | |
570 | } | |
571 | myfree(pv); | |
572 | } | |
573 | } | |
574 | else { | |
faa9b3e7 TC |
575 | i_palidx *vals; |
576 | ||
faa9b3e7 TC |
577 | vals = mymalloc(sizeof(i_palidx) * x1); |
578 | for (y = 0; y < y1; ++y) { | |
579 | i_gpal(src, 0, x1, y, vals); | |
580 | i_ppal(im, 0, x1, y, vals); | |
581 | } | |
582 | myfree(vals); | |
02d1d628 | 583 | } |
92bda632 TC |
584 | |
585 | return im; | |
02d1d628 AMH |
586 | } |
587 | ||
8d14daab | 588 | /* |
02d1d628 | 589 | |
8d14daab | 590 | http://en.wikipedia.org/wiki/Lanczos_resampling |
142c26ff | 591 | |
8d14daab | 592 | */ |
142c26ff AMH |
593 | |
594 | static | |
02d1d628 AMH |
595 | float |
596 | Lanczos(float x) { | |
597 | float PIx, PIx2; | |
598 | ||
599 | PIx = PI * x; | |
600 | PIx2 = PIx / 2.0; | |
601 | ||
602 | if ((x >= 2.0) || (x <= -2.0)) return (0.0); | |
603 | else if (x == 0.0) return (1.0); | |
604 | else return(sin(PIx) / PIx * sin(PIx2) / PIx2); | |
605 | } | |
606 | ||
b4e32feb | 607 | |
02d1d628 AMH |
608 | /* |
609 | =item i_scaleaxis(im, value, axis) | |
610 | ||
611 | Returns a new image object which is I<im> scaled by I<value> along | |
612 | wither the x-axis (I<axis> == 0) or the y-axis (I<axis> == 1). | |
613 | ||
614 | =cut | |
615 | */ | |
616 | ||
617 | i_img* | |
8d14daab TC |
618 | i_scaleaxis(i_img *im, double Value, int Axis) { |
619 | i_img_dim hsize, vsize, i, j, k, l, lMax, iEnd, jEnd; | |
620 | i_img_dim LanczosWidthFactor; | |
621 | float *l0, *l1; | |
622 | double OldLocation; | |
623 | i_img_dim T; | |
624 | double t; | |
02d1d628 AMH |
625 | float F, PictureValue[MAXCHANNELS]; |
626 | short psave; | |
627 | i_color val,val1,val2; | |
628 | i_img *new_img; | |
95c08d71 TC |
629 | int has_alpha = i_img_has_alpha(im); |
630 | int color_chans = i_img_color_channels(im); | |
696cb85d | 631 | dIMCTXim(im); |
02d1d628 | 632 | |
de470892 | 633 | i_clear_error(); |
23d3b73e | 634 | im_log((aIMCTX, 1,"i_scaleaxis(im %p,Value %.2f,Axis %d)\n",im,Value,Axis)); |
02d1d628 AMH |
635 | |
636 | if (Axis == XAXIS) { | |
8d14daab | 637 | hsize = (i_img_dim)(0.5 + im->xsize * Value); |
1501d9b3 TC |
638 | if (hsize < 1) { |
639 | hsize = 1; | |
b0950e71 | 640 | Value = 1.0 / im->xsize; |
1501d9b3 | 641 | } |
02d1d628 AMH |
642 | vsize = im->ysize; |
643 | ||
644 | jEnd = hsize; | |
645 | iEnd = vsize; | |
02d1d628 AMH |
646 | } else { |
647 | hsize = im->xsize; | |
8d14daab | 648 | vsize = (i_img_dim)(0.5 + im->ysize * Value); |
07d70837 | 649 | |
1501d9b3 TC |
650 | if (vsize < 1) { |
651 | vsize = 1; | |
b0950e71 | 652 | Value = 1.0 / im->ysize; |
1501d9b3 TC |
653 | } |
654 | ||
02d1d628 AMH |
655 | jEnd = vsize; |
656 | iEnd = hsize; | |
02d1d628 AMH |
657 | } |
658 | ||
23d3b73e | 659 | new_img = i_img_8_new(hsize, vsize, im->channels); |
de470892 TC |
660 | if (!new_img) { |
661 | i_push_error(0, "cannot create output image"); | |
662 | return NULL; | |
663 | } | |
02d1d628 | 664 | |
0bcbaf60 | 665 | /* 1.4 is a magic number, setting it to 2 will cause rather blurred images */ |
8d14daab | 666 | LanczosWidthFactor = (Value >= 1) ? 1 : (i_img_dim) (1.4/Value); |
02d1d628 AMH |
667 | lMax = LanczosWidthFactor << 1; |
668 | ||
07d70837 AMH |
669 | l0 = mymalloc(lMax * sizeof(float)); |
670 | l1 = mymalloc(lMax * sizeof(float)); | |
02d1d628 AMH |
671 | |
672 | for (j=0; j<jEnd; j++) { | |
8d14daab TC |
673 | OldLocation = ((double) j) / Value; |
674 | T = (i_img_dim) (OldLocation); | |
675 | F = OldLocation - T; | |
02d1d628 | 676 | |
07d70837 | 677 | for (l = 0; l<lMax; l++) { |
02d1d628 | 678 | l0[lMax-l-1] = Lanczos(((float) (lMax-l-1) + F) / (float) LanczosWidthFactor); |
07d70837 AMH |
679 | l1[l] = Lanczos(((float) (l+1) - F) / (float) LanczosWidthFactor); |
680 | } | |
681 | ||
682 | /* Make sure filter is normalized */ | |
683 | t = 0.0; | |
684 | for(l=0; l<lMax; l++) { | |
685 | t+=l0[l]; | |
686 | t+=l1[l]; | |
02d1d628 | 687 | } |
8d14daab | 688 | t /= (double)LanczosWidthFactor; |
02d1d628 | 689 | |
07d70837 AMH |
690 | for(l=0; l<lMax; l++) { |
691 | l0[l] /= t; | |
692 | l1[l] /= t; | |
693 | } | |
694 | ||
695 | if (Axis == XAXIS) { | |
02d1d628 AMH |
696 | |
697 | for (i=0; i<iEnd; i++) { | |
698 | for (k=0; k<im->channels; k++) PictureValue[k] = 0.0; | |
0bcbaf60 | 699 | for (l=0; l<lMax; l++) { |
8d14daab TC |
700 | i_img_dim mx = T-lMax+l+1; |
701 | i_img_dim Mx = T+l+1; | |
0bcbaf60 AMH |
702 | mx = (mx < 0) ? 0 : mx; |
703 | Mx = (Mx >= im->xsize) ? im->xsize-1 : Mx; | |
704 | ||
705 | i_gpix(im, Mx, i, &val1); | |
706 | i_gpix(im, mx, i, &val2); | |
95c08d71 TC |
707 | |
708 | if (has_alpha) { | |
709 | i_sample_t alpha1 = val1.channel[color_chans]; | |
710 | i_sample_t alpha2 = val2.channel[color_chans]; | |
711 | for (k=0; k < color_chans; k++) { | |
712 | PictureValue[k] += l1[l] * val1.channel[k] * alpha1 / 255; | |
713 | PictureValue[k] += l0[lMax-l-1] * val2.channel[k] * alpha2 / 255; | |
714 | } | |
715 | PictureValue[color_chans] += l1[l] * val1.channel[color_chans]; | |
716 | PictureValue[color_chans] += l0[lMax-l-1] * val2.channel[color_chans]; | |
717 | } | |
718 | else { | |
719 | for (k=0; k<im->channels; k++) { | |
720 | PictureValue[k] += l1[l] * val1.channel[k]; | |
721 | PictureValue[k] += l0[lMax-l-1] * val2.channel[k]; | |
722 | } | |
723 | } | |
724 | } | |
725 | ||
726 | if (has_alpha) { | |
727 | float fa = PictureValue[color_chans] / LanczosWidthFactor; | |
728 | int alpha = minmax(0, 255, fa+0.5); | |
729 | if (alpha) { | |
730 | for (k = 0; k < color_chans; ++k) { | |
731 | psave = (short)(0.5+(PictureValue[k] / LanczosWidthFactor * 255 / fa)); | |
732 | val.channel[k]=minmax(0,255,psave); | |
733 | } | |
734 | val.channel[color_chans] = alpha; | |
735 | } | |
736 | else { | |
737 | /* zero alpha, so the pixel has no color */ | |
738 | for (k = 0; k < im->channels; ++k) | |
739 | val.channel[k] = 0; | |
02d1d628 AMH |
740 | } |
741 | } | |
95c08d71 TC |
742 | else { |
743 | for(k=0;k<im->channels;k++) { | |
744 | psave = (short)(0.5+(PictureValue[k] / LanczosWidthFactor)); | |
745 | val.channel[k]=minmax(0,255,psave); | |
746 | } | |
02d1d628 | 747 | } |
07d70837 | 748 | i_ppix(new_img, j, i, &val); |
02d1d628 AMH |
749 | } |
750 | ||
751 | } else { | |
752 | ||
753 | for (i=0; i<iEnd; i++) { | |
754 | for (k=0; k<im->channels; k++) PictureValue[k] = 0.0; | |
755 | for (l=0; l < lMax; l++) { | |
8d14daab TC |
756 | i_img_dim mx = T-lMax+l+1; |
757 | i_img_dim Mx = T+l+1; | |
0bcbaf60 AMH |
758 | mx = (mx < 0) ? 0 : mx; |
759 | Mx = (Mx >= im->ysize) ? im->ysize-1 : Mx; | |
760 | ||
761 | i_gpix(im, i, Mx, &val1); | |
762 | i_gpix(im, i, mx, &val2); | |
95c08d71 TC |
763 | if (has_alpha) { |
764 | i_sample_t alpha1 = val1.channel[color_chans]; | |
765 | i_sample_t alpha2 = val2.channel[color_chans]; | |
766 | for (k=0; k < color_chans; k++) { | |
767 | PictureValue[k] += l1[l] * val1.channel[k] * alpha1 / 255; | |
768 | PictureValue[k] += l0[lMax-l-1] * val2.channel[k] * alpha2 / 255; | |
769 | } | |
770 | PictureValue[color_chans] += l1[l] * val1.channel[color_chans]; | |
771 | PictureValue[color_chans] += l0[lMax-l-1] * val2.channel[color_chans]; | |
772 | } | |
773 | else { | |
774 | for (k=0; k<im->channels; k++) { | |
775 | PictureValue[k] += l1[l] * val1.channel[k]; | |
776 | PictureValue[k] += l0[lMax-l-1] * val2.channel[k]; | |
777 | } | |
02d1d628 AMH |
778 | } |
779 | } | |
95c08d71 TC |
780 | if (has_alpha) { |
781 | float fa = PictureValue[color_chans] / LanczosWidthFactor; | |
782 | int alpha = minmax(0, 255, fa+0.5); | |
783 | if (alpha) { | |
784 | for (k = 0; k < color_chans; ++k) { | |
785 | psave = (short)(0.5+(PictureValue[k] / LanczosWidthFactor * 255 / fa)); | |
786 | val.channel[k]=minmax(0,255,psave); | |
787 | } | |
788 | val.channel[color_chans] = alpha; | |
789 | } | |
790 | else { | |
791 | for (k = 0; k < im->channels; ++k) | |
792 | val.channel[k] = 0; | |
793 | } | |
794 | } | |
795 | else { | |
796 | for(k=0;k<im->channels;k++) { | |
797 | psave = (short)(0.5+(PictureValue[k] / LanczosWidthFactor)); | |
798 | val.channel[k]=minmax(0,255,psave); | |
799 | } | |
02d1d628 | 800 | } |
07d70837 | 801 | i_ppix(new_img, i, j, &val); |
02d1d628 AMH |
802 | } |
803 | ||
804 | } | |
805 | } | |
806 | myfree(l0); | |
807 | myfree(l1); | |
808 | ||
23d3b73e | 809 | im_log((aIMCTX, 1,"(%p) <- i_scaleaxis\n", new_img)); |
02d1d628 AMH |
810 | |
811 | return new_img; | |
812 | } | |
813 | ||
814 | ||
815 | /* | |
816 | =item i_scale_nn(im, scx, scy) | |
817 | ||
818 | Scale by using nearest neighbor | |
819 | Both axes scaled at the same time since | |
820 | nothing is gained by doing it in two steps | |
821 | ||
822 | =cut | |
823 | */ | |
824 | ||
825 | ||
826 | i_img* | |
8d14daab | 827 | i_scale_nn(i_img *im, double scx, double scy) { |
02d1d628 | 828 | |
8d14daab | 829 | i_img_dim nxsize,nysize,nx,ny; |
02d1d628 AMH |
830 | i_img *new_img; |
831 | i_color val; | |
696cb85d | 832 | dIMCTXim(im); |
02d1d628 | 833 | |
23d3b73e | 834 | im_log((aIMCTX, 1,"i_scale_nn(im %p,scx %.2f,scy %.2f)\n",im,scx,scy)); |
02d1d628 | 835 | |
8d14daab | 836 | nxsize = (i_img_dim) ((double) im->xsize * scx); |
1501d9b3 TC |
837 | if (nxsize < 1) { |
838 | nxsize = 1; | |
b3afeed5 | 839 | scx = 1.0 / im->xsize; |
1501d9b3 | 840 | } |
8d14daab | 841 | nysize = (i_img_dim) ((double) im->ysize * scy); |
1501d9b3 TC |
842 | if (nysize < 1) { |
843 | nysize = 1; | |
b3afeed5 | 844 | scy = 1.0 / im->ysize; |
1501d9b3 | 845 | } |
b3afeed5 | 846 | im_assert(scx != 0 && scy != 0); |
02d1d628 AMH |
847 | |
848 | new_img=i_img_empty_ch(NULL,nxsize,nysize,im->channels); | |
849 | ||
850 | for(ny=0;ny<nysize;ny++) for(nx=0;nx<nxsize;nx++) { | |
8d14daab | 851 | i_gpix(im,((double)nx)/scx,((double)ny)/scy,&val); |
02d1d628 AMH |
852 | i_ppix(new_img,nx,ny,&val); |
853 | } | |
854 | ||
23d3b73e | 855 | im_log((aIMCTX, 1,"(%p) <- i_scale_nn\n",new_img)); |
02d1d628 AMH |
856 | |
857 | return new_img; | |
858 | } | |
859 | ||
faa9b3e7 | 860 | /* |
5715f7c3 | 861 | =item i_sametype(C<im>, C<xsize>, C<ysize>) |
faa9b3e7 | 862 | |
9167a5c6 TC |
863 | =category Image creation/destruction |
864 | =synopsis i_img *img = i_sametype(src, width, height); | |
92bda632 | 865 | |
faa9b3e7 TC |
866 | Returns an image of the same type (sample size, channels, paletted/direct). |
867 | ||
868 | For paletted images the palette is copied from the source. | |
869 | ||
870 | =cut | |
871 | */ | |
872 | ||
696cb85d TC |
873 | i_img * |
874 | i_sametype(i_img *src, i_img_dim xsize, i_img_dim ysize) { | |
875 | dIMCTXim(src); | |
876 | ||
faa9b3e7 TC |
877 | if (src->type == i_direct_type) { |
878 | if (src->bits == 8) { | |
879 | return i_img_empty_ch(NULL, xsize, ysize, src->channels); | |
880 | } | |
af3c2450 | 881 | else if (src->bits == i_16_bits) { |
faa9b3e7 TC |
882 | return i_img_16_new(xsize, ysize, src->channels); |
883 | } | |
af3c2450 TC |
884 | else if (src->bits == i_double_bits) { |
885 | return i_img_double_new(xsize, ysize, src->channels); | |
886 | } | |
faa9b3e7 TC |
887 | else { |
888 | i_push_error(0, "Unknown image bits"); | |
889 | return NULL; | |
890 | } | |
891 | } | |
892 | else { | |
893 | i_color col; | |
894 | int i; | |
895 | ||
896 | i_img *targ = i_img_pal_new(xsize, ysize, src->channels, i_maxcolors(src)); | |
897 | for (i = 0; i < i_colorcount(src); ++i) { | |
898 | i_getcolors(src, i, &col, 1); | |
899 | i_addcolors(targ, &col, 1); | |
900 | } | |
901 | ||
902 | return targ; | |
903 | } | |
904 | } | |
02d1d628 | 905 | |
dff75dee | 906 | /* |
5715f7c3 | 907 | =item i_sametype_chans(C<im>, C<xsize>, C<ysize>, C<channels>) |
dff75dee | 908 | |
9167a5c6 TC |
909 | =category Image creation/destruction |
910 | =synopsis i_img *img = i_sametype_chans(src, width, height, channels); | |
92bda632 | 911 | |
dff75dee TC |
912 | Returns an image of the same type (sample size). |
913 | ||
914 | For paletted images the equivalent direct type is returned. | |
915 | ||
916 | =cut | |
917 | */ | |
918 | ||
696cb85d TC |
919 | i_img * |
920 | i_sametype_chans(i_img *src, i_img_dim xsize, i_img_dim ysize, int channels) { | |
921 | dIMCTXim(src); | |
922 | ||
dff75dee TC |
923 | if (src->bits == 8) { |
924 | return i_img_empty_ch(NULL, xsize, ysize, channels); | |
925 | } | |
926 | else if (src->bits == i_16_bits) { | |
927 | return i_img_16_new(xsize, ysize, channels); | |
928 | } | |
929 | else if (src->bits == i_double_bits) { | |
930 | return i_img_double_new(xsize, ysize, channels); | |
931 | } | |
932 | else { | |
933 | i_push_error(0, "Unknown image bits"); | |
934 | return NULL; | |
935 | } | |
936 | } | |
937 | ||
02d1d628 AMH |
938 | /* |
939 | =item i_transform(im, opx, opxl, opy, opyl, parm, parmlen) | |
940 | ||
941 | Spatially transforms I<im> returning a new image. | |
942 | ||
943 | opx for a length of opxl and opy for a length of opy are arrays of | |
944 | operators that modify the x and y positions to retreive the pixel data from. | |
945 | ||
946 | parm and parmlen define extra parameters that the operators may use. | |
947 | ||
948 | Note that this function is largely superseded by the more flexible | |
949 | L<transform.c/i_transform2>. | |
950 | ||
951 | Returns the new image. | |
952 | ||
953 | The operators for this function are defined in L<stackmach.c>. | |
954 | ||
955 | =cut | |
956 | */ | |
957 | i_img* | |
958 | i_transform(i_img *im, int *opx,int opxl,int *opy,int opyl,double parm[],int parmlen) { | |
959 | double rx,ry; | |
8d14daab | 960 | i_img_dim nxsize,nysize,nx,ny; |
02d1d628 AMH |
961 | i_img *new_img; |
962 | i_color val; | |
696cb85d | 963 | dIMCTXim(im); |
02d1d628 | 964 | |
23d3b73e | 965 | im_log((aIMCTX, 1,"i_transform(im %p, opx %p, opxl %d, opy %p, opyl %d, parm %p, parmlen %d)\n",im,opx,opxl,opy,opyl,parm,parmlen)); |
02d1d628 AMH |
966 | |
967 | nxsize = im->xsize; | |
968 | nysize = im->ysize ; | |
969 | ||
970 | new_img=i_img_empty_ch(NULL,nxsize,nysize,im->channels); | |
971 | /* fprintf(stderr,"parm[2]=%f\n",parm[2]); */ | |
972 | for(ny=0;ny<nysize;ny++) for(nx=0;nx<nxsize;nx++) { | |
973 | /* parm[parmlen-2]=(double)nx; | |
974 | parm[parmlen-1]=(double)ny; */ | |
975 | ||
976 | parm[0]=(double)nx; | |
977 | parm[1]=(double)ny; | |
978 | ||
979 | /* fprintf(stderr,"(%d,%d) ->",nx,ny); */ | |
b33c08f8 TC |
980 | rx=i_op_run(opx,opxl,parm,parmlen); |
981 | ry=i_op_run(opy,opyl,parm,parmlen); | |
02d1d628 AMH |
982 | /* fprintf(stderr,"(%f,%f)\n",rx,ry); */ |
983 | i_gpix(im,rx,ry,&val); | |
984 | i_ppix(new_img,nx,ny,&val); | |
985 | } | |
986 | ||
23d3b73e | 987 | im_log((aIMCTX, 1,"(%p) <- i_transform\n",new_img)); |
02d1d628 AMH |
988 | return new_img; |
989 | } | |
990 | ||
991 | /* | |
992 | =item i_img_diff(im1, im2) | |
993 | ||
994 | Calculates the sum of the squares of the differences between | |
995 | correspoding channels in two images. | |
996 | ||
997 | If the images are not the same size then only the common area is | |
998 | compared, hence even if images are different sizes this function | |
999 | can return zero. | |
1000 | ||
1001 | =cut | |
1002 | */ | |
e41cfe8f | 1003 | |
02d1d628 AMH |
1004 | float |
1005 | i_img_diff(i_img *im1,i_img *im2) { | |
8d14daab TC |
1006 | i_img_dim x, y, xb, yb; |
1007 | int ch, chb; | |
02d1d628 AMH |
1008 | float tdiff; |
1009 | i_color val1,val2; | |
696cb85d | 1010 | dIMCTXim(im1); |
02d1d628 | 1011 | |
23d3b73e | 1012 | im_log((aIMCTX, 1,"i_img_diff(im1 %p,im2 %p)\n",im1,im2)); |
02d1d628 AMH |
1013 | |
1014 | xb=(im1->xsize<im2->xsize)?im1->xsize:im2->xsize; | |
1015 | yb=(im1->ysize<im2->ysize)?im1->ysize:im2->ysize; | |
1016 | chb=(im1->channels<im2->channels)?im1->channels:im2->channels; | |
1017 | ||
23d3b73e | 1018 | im_log((aIMCTX, 1,"i_img_diff: b=(" i_DFp ") chb=%d\n", |
8d14daab | 1019 | i_DFcp(xb,yb), chb)); |
02d1d628 AMH |
1020 | |
1021 | tdiff=0; | |
1022 | for(y=0;y<yb;y++) for(x=0;x<xb;x++) { | |
1023 | i_gpix(im1,x,y,&val1); | |
1024 | i_gpix(im2,x,y,&val2); | |
1025 | ||
1026 | for(ch=0;ch<chb;ch++) tdiff+=(val1.channel[ch]-val2.channel[ch])*(val1.channel[ch]-val2.channel[ch]); | |
1027 | } | |
23d3b73e | 1028 | im_log((aIMCTX, 1,"i_img_diff <- (%.2f)\n",tdiff)); |
02d1d628 AMH |
1029 | return tdiff; |
1030 | } | |
1031 | ||
e41cfe8f TC |
1032 | /* |
1033 | =item i_img_diffd(im1, im2) | |
1034 | ||
1035 | Calculates the sum of the squares of the differences between | |
1036 | correspoding channels in two images. | |
1037 | ||
1038 | If the images are not the same size then only the common area is | |
1039 | compared, hence even if images are different sizes this function | |
1040 | can return zero. | |
1041 | ||
1042 | This is like i_img_diff() but looks at floating point samples instead. | |
1043 | ||
1044 | =cut | |
1045 | */ | |
1046 | ||
1047 | double | |
1048 | i_img_diffd(i_img *im1,i_img *im2) { | |
8d14daab TC |
1049 | i_img_dim x, y, xb, yb; |
1050 | int ch, chb; | |
e41cfe8f TC |
1051 | double tdiff; |
1052 | i_fcolor val1,val2; | |
23d3b73e | 1053 | dIMCTXim(im1); |
e41cfe8f | 1054 | |
23d3b73e | 1055 | im_log((aIMCTX, 1,"i_img_diffd(im1 %p,im2 %p)\n",im1,im2)); |
e41cfe8f TC |
1056 | |
1057 | xb=(im1->xsize<im2->xsize)?im1->xsize:im2->xsize; | |
1058 | yb=(im1->ysize<im2->ysize)?im1->ysize:im2->ysize; | |
1059 | chb=(im1->channels<im2->channels)?im1->channels:im2->channels; | |
1060 | ||
23d3b73e | 1061 | im_log((aIMCTX, 1,"i_img_diffd: b(" i_DFp ") chb=%d\n", |
8d14daab | 1062 | i_DFcp(xb, yb), chb)); |
e41cfe8f TC |
1063 | |
1064 | tdiff=0; | |
1065 | for(y=0;y<yb;y++) for(x=0;x<xb;x++) { | |
1066 | i_gpixf(im1,x,y,&val1); | |
1067 | i_gpixf(im2,x,y,&val2); | |
1068 | ||
1069 | for(ch=0;ch<chb;ch++) { | |
1070 | double sdiff = val1.channel[ch]-val2.channel[ch]; | |
1071 | tdiff += sdiff * sdiff; | |
1072 | } | |
1073 | } | |
23d3b73e | 1074 | im_log((aIMCTX, 1,"i_img_diffd <- (%.2f)\n",tdiff)); |
e41cfe8f TC |
1075 | |
1076 | return tdiff; | |
1077 | } | |
1078 | ||
4498c8bd TC |
1079 | int |
1080 | i_img_samef(i_img *im1,i_img *im2, double epsilon, char const *what) { | |
8d14daab TC |
1081 | i_img_dim x,y,xb,yb; |
1082 | int ch, chb; | |
4498c8bd | 1083 | i_fcolor val1,val2; |
23d3b73e | 1084 | dIMCTXim(im1); |
4498c8bd TC |
1085 | |
1086 | if (what == NULL) | |
1087 | what = "(null)"; | |
1088 | ||
23d3b73e | 1089 | im_log((aIMCTX,1,"i_img_samef(im1 %p,im2 %p, epsilon %g, what '%s')\n", im1, im2, epsilon, what)); |
4498c8bd TC |
1090 | |
1091 | xb=(im1->xsize<im2->xsize)?im1->xsize:im2->xsize; | |
1092 | yb=(im1->ysize<im2->ysize)?im1->ysize:im2->ysize; | |
1093 | chb=(im1->channels<im2->channels)?im1->channels:im2->channels; | |
1094 | ||
23d3b73e | 1095 | im_log((aIMCTX, 1,"i_img_samef: b(" i_DFp ") chb=%d\n", |
8d14daab | 1096 | i_DFcp(xb, yb), chb)); |
4498c8bd TC |
1097 | |
1098 | for(y = 0; y < yb; y++) { | |
1099 | for(x = 0; x < xb; x++) { | |
1100 | i_gpixf(im1, x, y, &val1); | |
1101 | i_gpixf(im2, x, y, &val2); | |
1102 | ||
1103 | for(ch = 0; ch < chb; ch++) { | |
1104 | double sdiff = val1.channel[ch] - val2.channel[ch]; | |
1105 | if (fabs(sdiff) > epsilon) { | |
23d3b73e | 1106 | im_log((aIMCTX, 1,"i_img_samef <- different %g @(" i_DFp ")\n", |
8d14daab | 1107 | sdiff, i_DFcp(x, y))); |
4498c8bd TC |
1108 | return 0; |
1109 | } | |
1110 | } | |
1111 | } | |
1112 | } | |
23d3b73e | 1113 | im_log((aIMCTX, 1,"i_img_samef <- same\n")); |
4498c8bd TC |
1114 | |
1115 | return 1; | |
1116 | } | |
1117 | ||
02d1d628 AMH |
1118 | /* just a tiny demo of haar wavelets */ |
1119 | ||
1120 | i_img* | |
1121 | i_haar(i_img *im) { | |
8d14daab TC |
1122 | i_img_dim mx,my; |
1123 | i_img_dim fx,fy; | |
1124 | i_img_dim x,y; | |
98747309 | 1125 | int ch; |
02d1d628 AMH |
1126 | i_img *new_img,*new_img2; |
1127 | i_color val1,val2,dval1,dval2; | |
696cb85d | 1128 | dIMCTXim(im); |
02d1d628 AMH |
1129 | |
1130 | mx=im->xsize; | |
1131 | my=im->ysize; | |
1132 | fx=(mx+1)/2; | |
1133 | fy=(my+1)/2; | |
1134 | ||
1135 | ||
1136 | /* horizontal pass */ | |
1137 | ||
1138 | new_img=i_img_empty_ch(NULL,fx*2,fy*2,im->channels); | |
1139 | new_img2=i_img_empty_ch(NULL,fx*2,fy*2,im->channels); | |
1140 | ||
02d1d628 AMH |
1141 | for(y=0;y<my;y++) for(x=0;x<fx;x++) { |
1142 | i_gpix(im,x*2,y,&val1); | |
1143 | i_gpix(im,x*2+1,y,&val2); | |
1144 | for(ch=0;ch<im->channels;ch++) { | |
1145 | dval1.channel[ch]=(val1.channel[ch]+val2.channel[ch])/2; | |
1146 | dval2.channel[ch]=(255+val1.channel[ch]-val2.channel[ch])/2; | |
1147 | } | |
1148 | i_ppix(new_img,x,y,&dval1); | |
1149 | i_ppix(new_img,x+fx,y,&dval2); | |
1150 | } | |
1151 | ||
1152 | for(y=0;y<fy;y++) for(x=0;x<mx;x++) { | |
1153 | i_gpix(new_img,x,y*2,&val1); | |
1154 | i_gpix(new_img,x,y*2+1,&val2); | |
1155 | for(ch=0;ch<im->channels;ch++) { | |
1156 | dval1.channel[ch]=(val1.channel[ch]+val2.channel[ch])/2; | |
1157 | dval2.channel[ch]=(255+val1.channel[ch]-val2.channel[ch])/2; | |
1158 | } | |
1159 | i_ppix(new_img2,x,y,&dval1); | |
1160 | i_ppix(new_img2,x,y+fy,&dval2); | |
1161 | } | |
1162 | ||
1163 | i_img_destroy(new_img); | |
1164 | return new_img2; | |
1165 | } | |
1166 | ||
1167 | /* | |
1168 | =item i_count_colors(im, maxc) | |
1169 | ||
1170 | returns number of colors or -1 | |
1171 | to indicate that it was more than max colors | |
1172 | ||
1173 | =cut | |
1174 | */ | |
fe622da1 TC |
1175 | /* This function has been changed and is now faster. It's using |
1176 | * i_gsamp instead of i_gpix */ | |
02d1d628 AMH |
1177 | int |
1178 | i_count_colors(i_img *im,int maxc) { | |
1179 | struct octt *ct; | |
8d14daab | 1180 | i_img_dim x,y; |
02d1d628 | 1181 | int colorcnt; |
fe622da1 TC |
1182 | int channels[3]; |
1183 | int *samp_chans; | |
1184 | i_sample_t * samp; | |
8d14daab TC |
1185 | i_img_dim xsize = im->xsize; |
1186 | i_img_dim ysize = im->ysize; | |
a60905e4 TC |
1187 | int samp_cnt = 3 * xsize; |
1188 | ||
fe622da1 TC |
1189 | if (im->channels >= 3) { |
1190 | samp_chans = NULL; | |
1191 | } | |
1192 | else { | |
1193 | channels[0] = channels[1] = channels[2] = 0; | |
1194 | samp_chans = channels; | |
02d1d628 | 1195 | } |
a60905e4 | 1196 | |
fe622da1 TC |
1197 | ct = octt_new(); |
1198 | ||
1199 | samp = (i_sample_t *) mymalloc( xsize * 3 * sizeof(i_sample_t)); | |
1200 | ||
1201 | colorcnt = 0; | |
1202 | for(y = 0; y < ysize; ) { | |
1203 | i_gsamp(im, 0, xsize, y++, samp, samp_chans, 3); | |
1204 | for(x = 0; x < samp_cnt; ) { | |
1205 | colorcnt += octt_add(ct, samp[x], samp[x+1], samp[x+2]); | |
1206 | x += 3; | |
4e3e50e4 TC |
1207 | if (colorcnt > maxc) { |
1208 | myfree(samp); | |
fe622da1 TC |
1209 | octt_delete(ct); |
1210 | return -1; | |
1211 | } | |
1212 | } | |
1213 | } | |
1214 | myfree(samp); | |
02d1d628 AMH |
1215 | octt_delete(ct); |
1216 | return colorcnt; | |
1217 | } | |
1218 | ||
fe622da1 TC |
1219 | /* sorts the array ra[0..n-1] into increasing order using heapsort algorithm |
1220 | * (adapted from the Numerical Recipes) | |
1221 | */ | |
1222 | /* Needed by get_anonymous_color_histo */ | |
a60905e4 TC |
1223 | static void |
1224 | hpsort(unsigned int n, unsigned *ra) { | |
fe622da1 TC |
1225 | unsigned int i, |
1226 | ir, | |
1227 | j, | |
1228 | l, | |
1229 | rra; | |
1230 | ||
1231 | if (n < 2) return; | |
1232 | l = n >> 1; | |
1233 | ir = n - 1; | |
1234 | for(;;) { | |
1235 | if (l > 0) { | |
1236 | rra = ra[--l]; | |
1237 | } | |
1238 | else { | |
1239 | rra = ra[ir]; | |
1240 | ra[ir] = ra[0]; | |
1241 | if (--ir == 0) { | |
1242 | ra[0] = rra; | |
1243 | break; | |
1244 | } | |
1245 | } | |
1246 | i = l; | |
1247 | j = 2 * l + 1; | |
1248 | while (j <= ir) { | |
1249 | if (j < ir && ra[j] < ra[j+1]) j++; | |
1250 | if (rra < ra[j]) { | |
1251 | ra[i] = ra[j]; | |
1252 | i = j; | |
1253 | j++; j <<= 1; j--; | |
1254 | } | |
1255 | else break; | |
1256 | } | |
1257 | ra[i] = rra; | |
1258 | } | |
1259 | } | |
1260 | ||
1261 | /* This function constructs an ordered list which represents how much the | |
1262 | * different colors are used. So for instance (100, 100, 500) means that one | |
1263 | * color is used for 500 pixels, another for 100 pixels and another for 100 | |
1264 | * pixels. It's tuned for performance. You might not like the way I've hardcoded | |
1265 | * the maxc ;-) and you might want to change the name... */ | |
1266 | /* Uses octt_histo */ | |
1267 | int | |
a60905e4 TC |
1268 | i_get_anonymous_color_histo(i_img *im, unsigned int **col_usage, int maxc) { |
1269 | struct octt *ct; | |
8d14daab | 1270 | i_img_dim x,y; |
a60905e4 TC |
1271 | int colorcnt; |
1272 | unsigned int *col_usage_it; | |
1273 | i_sample_t * samp; | |
1274 | int channels[3]; | |
1275 | int *samp_chans; | |
1276 | ||
8d14daab TC |
1277 | i_img_dim xsize = im->xsize; |
1278 | i_img_dim ysize = im->ysize; | |
a60905e4 TC |
1279 | int samp_cnt = 3 * xsize; |
1280 | ct = octt_new(); | |
1281 | ||
1282 | samp = (i_sample_t *) mymalloc( xsize * 3 * sizeof(i_sample_t)); | |
1283 | ||
1284 | if (im->channels >= 3) { | |
1285 | samp_chans = NULL; | |
1286 | } | |
1287 | else { | |
1288 | channels[0] = channels[1] = channels[2] = 0; | |
1289 | samp_chans = channels; | |
1290 | } | |
1291 | ||
1292 | colorcnt = 0; | |
1293 | for(y = 0; y < ysize; ) { | |
1294 | i_gsamp(im, 0, xsize, y++, samp, samp_chans, 3); | |
1295 | for(x = 0; x < samp_cnt; ) { | |
1296 | colorcnt += octt_add(ct, samp[x], samp[x+1], samp[x+2]); | |
1297 | x += 3; | |
1298 | if (colorcnt > maxc) { | |
0e265bc0 TC |
1299 | octt_delete(ct); |
1300 | myfree(samp); | |
a60905e4 TC |
1301 | return -1; |
1302 | } | |
fe622da1 | 1303 | } |
a60905e4 TC |
1304 | } |
1305 | myfree(samp); | |
1306 | /* Now that we know the number of colours... */ | |
1307 | col_usage_it = *col_usage = (unsigned int *) mymalloc(colorcnt * sizeof(unsigned int)); | |
1308 | octt_histo(ct, &col_usage_it); | |
1309 | hpsort(colorcnt, *col_usage); | |
1310 | octt_delete(ct); | |
1311 | return colorcnt; | |
fe622da1 TC |
1312 | } |
1313 | ||
02d1d628 | 1314 | /* |
faa9b3e7 TC |
1315 | =back |
1316 | ||
faa9b3e7 TC |
1317 | =head2 Image method wrappers |
1318 | ||
1319 | These functions provide i_fsample_t functions in terms of their | |
1320 | i_sample_t versions. | |
1321 | ||
1322 | =over | |
1323 | ||
8d14daab | 1324 | =item i_ppixf_fp(i_img *im, i_img_dim x, i_img_dim y, i_fcolor *pix) |
faa9b3e7 TC |
1325 | |
1326 | =cut | |
1327 | */ | |
1328 | ||
8d14daab | 1329 | int i_ppixf_fp(i_img *im, i_img_dim x, i_img_dim y, const i_fcolor *pix) { |
faa9b3e7 TC |
1330 | i_color temp; |
1331 | int ch; | |
1332 | ||
1333 | for (ch = 0; ch < im->channels; ++ch) | |
1334 | temp.channel[ch] = SampleFTo8(pix->channel[ch]); | |
1335 | ||
1336 | return i_ppix(im, x, y, &temp); | |
1337 | } | |
1338 | ||
1339 | /* | |
8d14daab | 1340 | =item i_gpixf_fp(i_img *im, i_img_dim x, i_img_dim y, i_fcolor *pix) |
faa9b3e7 TC |
1341 | |
1342 | =cut | |
1343 | */ | |
8d14daab | 1344 | int i_gpixf_fp(i_img *im, i_img_dim x, i_img_dim y, i_fcolor *pix) { |
faa9b3e7 TC |
1345 | i_color temp; |
1346 | int ch; | |
1347 | ||
93eab01e | 1348 | if (i_gpix(im, x, y, &temp) == 0) { |
faa9b3e7 TC |
1349 | for (ch = 0; ch < im->channels; ++ch) |
1350 | pix->channel[ch] = Sample8ToF(temp.channel[ch]); | |
1351 | return 0; | |
1352 | } | |
1353 | else | |
1354 | return -1; | |
1355 | } | |
1356 | ||
1357 | /* | |
8d14daab | 1358 | =item i_plinf_fp(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, i_fcolor *pix) |
faa9b3e7 TC |
1359 | |
1360 | =cut | |
1361 | */ | |
8d14daab TC |
1362 | i_img_dim |
1363 | i_plinf_fp(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, const i_fcolor *pix) { | |
faa9b3e7 TC |
1364 | i_color *work; |
1365 | ||
1366 | if (y >= 0 && y < im->ysize && l < im->xsize && l >= 0) { | |
1367 | if (r > im->xsize) | |
1368 | r = im->xsize; | |
1369 | if (r > l) { | |
8d14daab TC |
1370 | i_img_dim ret; |
1371 | i_img_dim i; | |
1372 | int ch; | |
faa9b3e7 TC |
1373 | work = mymalloc(sizeof(i_color) * (r-l)); |
1374 | for (i = 0; i < r-l; ++i) { | |
1375 | for (ch = 0; ch < im->channels; ++ch) | |
1376 | work[i].channel[ch] = SampleFTo8(pix[i].channel[ch]); | |
1377 | } | |
1378 | ret = i_plin(im, l, r, y, work); | |
1379 | myfree(work); | |
1380 | ||
1381 | return ret; | |
1382 | } | |
1383 | else { | |
1384 | return 0; | |
1385 | } | |
1386 | } | |
1387 | else { | |
1388 | return 0; | |
1389 | } | |
1390 | } | |
1391 | ||
1392 | /* | |
8d14daab | 1393 | =item i_glinf_fp(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, i_fcolor *pix) |
faa9b3e7 TC |
1394 | |
1395 | =cut | |
1396 | */ | |
8d14daab TC |
1397 | i_img_dim |
1398 | i_glinf_fp(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, i_fcolor *pix) { | |
faa9b3e7 TC |
1399 | i_color *work; |
1400 | ||
1401 | if (y >= 0 && y < im->ysize && l < im->xsize && l >= 0) { | |
1402 | if (r > im->xsize) | |
1403 | r = im->xsize; | |
1404 | if (r > l) { | |
8d14daab TC |
1405 | i_img_dim ret; |
1406 | i_img_dim i; | |
1407 | int ch; | |
faa9b3e7 TC |
1408 | work = mymalloc(sizeof(i_color) * (r-l)); |
1409 | ret = i_plin(im, l, r, y, work); | |
1410 | for (i = 0; i < r-l; ++i) { | |
1411 | for (ch = 0; ch < im->channels; ++ch) | |
1412 | pix[i].channel[ch] = Sample8ToF(work[i].channel[ch]); | |
1413 | } | |
1414 | myfree(work); | |
1415 | ||
1416 | return ret; | |
1417 | } | |
1418 | else { | |
1419 | return 0; | |
1420 | } | |
1421 | } | |
1422 | else { | |
1423 | return 0; | |
1424 | } | |
1425 | } | |
1426 | ||
1427 | /* | |
8d14daab | 1428 | =item i_gsampf_fp(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, i_fsample_t *samp, int *chans, int chan_count) |
faa9b3e7 TC |
1429 | |
1430 | =cut | |
1431 | */ | |
8d14daab TC |
1432 | |
1433 | i_img_dim | |
1434 | i_gsampf_fp(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, i_fsample_t *samp, | |
18accb2a | 1435 | int const *chans, int chan_count) { |
faa9b3e7 TC |
1436 | i_sample_t *work; |
1437 | ||
1438 | if (y >= 0 && y < im->ysize && l < im->xsize && l >= 0) { | |
1439 | if (r > im->xsize) | |
1440 | r = im->xsize; | |
1441 | if (r > l) { | |
8d14daab TC |
1442 | i_img_dim ret; |
1443 | i_img_dim i; | |
faa9b3e7 TC |
1444 | work = mymalloc(sizeof(i_sample_t) * (r-l)); |
1445 | ret = i_gsamp(im, l, r, y, work, chans, chan_count); | |
1446 | for (i = 0; i < ret; ++i) { | |
1447 | samp[i] = Sample8ToF(work[i]); | |
1448 | } | |
1449 | myfree(work); | |
1450 | ||
1451 | return ret; | |
1452 | } | |
1453 | else { | |
1454 | return 0; | |
1455 | } | |
1456 | } | |
1457 | else { | |
1458 | return 0; | |
1459 | } | |
1460 | } | |
1461 | ||
1462 | /* | |
1463 | =back | |
1464 | ||
1465 | =head2 Palette wrapper functions | |
1466 | ||
1467 | Used for virtual images, these forward palette calls to a wrapped image, | |
1468 | assuming the wrapped image is the first pointer in the structure that | |
1469 | im->ext_data points at. | |
1470 | ||
1471 | =over | |
1472 | ||
97ac0a96 | 1473 | =item i_addcolors_forward(i_img *im, const i_color *colors, int count) |
faa9b3e7 TC |
1474 | |
1475 | =cut | |
1476 | */ | |
97ac0a96 | 1477 | int i_addcolors_forward(i_img *im, const i_color *colors, int count) { |
faa9b3e7 TC |
1478 | return i_addcolors(*(i_img **)im->ext_data, colors, count); |
1479 | } | |
1480 | ||
1481 | /* | |
1482 | =item i_getcolors_forward(i_img *im, int i, i_color *color, int count) | |
1483 | ||
1484 | =cut | |
1485 | */ | |
1486 | int i_getcolors_forward(i_img *im, int i, i_color *color, int count) { | |
1487 | return i_getcolors(*(i_img **)im->ext_data, i, color, count); | |
1488 | } | |
1489 | ||
1490 | /* | |
97ac0a96 | 1491 | =item i_setcolors_forward(i_img *im, int i, const i_color *color, int count) |
faa9b3e7 TC |
1492 | |
1493 | =cut | |
1494 | */ | |
97ac0a96 | 1495 | int i_setcolors_forward(i_img *im, int i, const i_color *color, int count) { |
faa9b3e7 TC |
1496 | return i_setcolors(*(i_img **)im->ext_data, i, color, count); |
1497 | } | |
1498 | ||
1499 | /* | |
1500 | =item i_colorcount_forward(i_img *im) | |
1501 | ||
1502 | =cut | |
1503 | */ | |
1504 | int i_colorcount_forward(i_img *im) { | |
1505 | return i_colorcount(*(i_img **)im->ext_data); | |
1506 | } | |
1507 | ||
1508 | /* | |
1509 | =item i_maxcolors_forward(i_img *im) | |
1510 | ||
1511 | =cut | |
1512 | */ | |
1513 | int i_maxcolors_forward(i_img *im) { | |
1514 | return i_maxcolors(*(i_img **)im->ext_data); | |
1515 | } | |
1516 | ||
1517 | /* | |
97ac0a96 | 1518 | =item i_findcolor_forward(i_img *im, const i_color *color, i_palidx *entry) |
faa9b3e7 TC |
1519 | |
1520 | =cut | |
1521 | */ | |
97ac0a96 | 1522 | int i_findcolor_forward(i_img *im, const i_color *color, i_palidx *entry) { |
faa9b3e7 TC |
1523 | return i_findcolor(*(i_img **)im->ext_data, color, entry); |
1524 | } | |
1525 | ||
1526 | /* | |
1527 | =back | |
1528 | ||
bd8052a6 TC |
1529 | =head2 Fallback handler |
1530 | ||
1531 | =over | |
1532 | ||
1533 | =item i_gsamp_bits_fb | |
1534 | ||
1535 | =cut | |
1536 | */ | |
1537 | ||
8d14daab TC |
1538 | i_img_dim |
1539 | i_gsamp_bits_fb(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, unsigned *samps, | |
bd8052a6 | 1540 | const int *chans, int chan_count, int bits) { |
696cb85d TC |
1541 | dIMCTXim(im); |
1542 | ||
bd8052a6 TC |
1543 | if (bits < 1 || bits > 32) { |
1544 | i_push_error(0, "Invalid bits, must be 1..32"); | |
1545 | return -1; | |
1546 | } | |
1547 | ||
1548 | if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) { | |
1549 | double scale; | |
8d14daab TC |
1550 | int ch; |
1551 | i_img_dim count, i, w; | |
bd8052a6 TC |
1552 | |
1553 | if (bits == 32) | |
1554 | scale = 4294967295.0; | |
1555 | else | |
1556 | scale = (double)(1 << bits) - 1; | |
1557 | ||
1558 | if (r > im->xsize) | |
1559 | r = im->xsize; | |
1560 | w = r - l; | |
1561 | count = 0; | |
1562 | ||
1563 | if (chans) { | |
1564 | /* make sure we have good channel numbers */ | |
1565 | for (ch = 0; ch < chan_count; ++ch) { | |
1566 | if (chans[ch] < 0 || chans[ch] >= im->channels) { | |
23d3b73e | 1567 | im_push_errorf(aIMCTX, 0, "No channel %d in this image", chans[ch]); |
bd8052a6 TC |
1568 | return -1; |
1569 | } | |
1570 | } | |
1571 | for (i = 0; i < w; ++i) { | |
1572 | i_fcolor c; | |
1573 | i_gpixf(im, l+i, y, &c); | |
1574 | for (ch = 0; ch < chan_count; ++ch) { | |
1575 | *samps++ = (unsigned)(c.channel[ch] * scale + 0.5); | |
1576 | ++count; | |
1577 | } | |
1578 | } | |
1579 | } | |
1580 | else { | |
1581 | if (chan_count <= 0 || chan_count > im->channels) { | |
1582 | i_push_error(0, "Invalid channel count"); | |
1583 | return -1; | |
1584 | } | |
1585 | for (i = 0; i < w; ++i) { | |
1586 | i_fcolor c; | |
1587 | i_gpixf(im, l+i, y, &c); | |
1588 | for (ch = 0; ch < chan_count; ++ch) { | |
1589 | *samps++ = (unsigned)(c.channel[ch] * scale + 0.5); | |
1590 | ++count; | |
1591 | } | |
1592 | } | |
1593 | } | |
1594 | ||
1595 | return count; | |
1596 | } | |
1597 | else { | |
1598 | i_push_error(0, "Image position outside of image"); | |
1599 | return -1; | |
1600 | } | |
1601 | } | |
1602 | ||
8b302e44 | 1603 | static int |
b7028a2e | 1604 | test_magic(unsigned char *buffer, size_t length, struct file_magic_entry const *magic) { |
8b302e44 TC |
1605 | if (length < magic->magic_size) |
1606 | return 0; | |
1607 | if (magic->mask) { | |
1608 | int i; | |
1609 | unsigned char *bufp = buffer, | |
1610 | *maskp = magic->mask, | |
1611 | *magicp = magic->magic; | |
e10bf46e | 1612 | |
8b302e44 TC |
1613 | for (i = 0; i < magic->magic_size; ++i) { |
1614 | int mask = *maskp == 'x' ? 0xFF : *maskp == ' ' ? 0 : *maskp; | |
1615 | ++maskp; | |
1616 | ||
1617 | if ((*bufp++ & mask) != (*magicp++ & mask)) | |
1618 | return 0; | |
1619 | } | |
1620 | ||
1621 | return 1; | |
1622 | } | |
1623 | else { | |
1624 | return !memcmp(magic->magic, buffer, magic->magic_size); | |
1625 | } | |
1626 | } | |
e10bf46e | 1627 | |
84e51293 AMH |
1628 | /* |
1629 | =item i_test_format_probe(io_glue *data, int length) | |
1630 | ||
676d5bb5 | 1631 | Check the beginning of the supplied file for a 'magic number' |
84e51293 AMH |
1632 | |
1633 | =cut | |
1634 | */ | |
e10bf46e | 1635 | |
db7a8754 TC |
1636 | #define FORMAT_ENTRY(magic, type) \ |
1637 | { (unsigned char *)(magic ""), sizeof(magic)-1, type } | |
8b302e44 | 1638 | #define FORMAT_ENTRY2(magic, type, mask) \ |
c0f79ae6 | 1639 | { (unsigned char *)(magic ""), sizeof(magic)-1, type, (unsigned char *)(mask) } |
ea1136fc TC |
1640 | |
1641 | const char * | |
b7028a2e TC |
1642 | im_test_format_probe(im_context_t ctx, io_glue *data, int length) { |
1643 | static const struct file_magic_entry formats[] = { | |
db7a8754 TC |
1644 | FORMAT_ENTRY("\xFF\xD8", "jpeg"), |
1645 | FORMAT_ENTRY("GIF87a", "gif"), | |
1646 | FORMAT_ENTRY("GIF89a", "gif"), | |
1647 | FORMAT_ENTRY("MM\0*", "tiff"), | |
1648 | FORMAT_ENTRY("II*\0", "tiff"), | |
1649 | FORMAT_ENTRY("BM", "bmp"), | |
1650 | FORMAT_ENTRY("\x89PNG\x0d\x0a\x1a\x0a", "png"), | |
1651 | FORMAT_ENTRY("P1", "pnm"), | |
1652 | FORMAT_ENTRY("P2", "pnm"), | |
1653 | FORMAT_ENTRY("P3", "pnm"), | |
1654 | FORMAT_ENTRY("P4", "pnm"), | |
1655 | FORMAT_ENTRY("P5", "pnm"), | |
1656 | FORMAT_ENTRY("P6", "pnm"), | |
8b302e44 TC |
1657 | FORMAT_ENTRY("/* XPM", "xpm"), |
1658 | FORMAT_ENTRY("\x8aMNG", "mng"), | |
1659 | FORMAT_ENTRY("\x8aJNG", "jng"), | |
1660 | /* SGI RGB - with various possible parameters to avoid false positives | |
1661 | on similar files | |
1662 | values are: 2 byte magic, rle flags (0 or 1), bytes/sample (1 or 2) | |
1663 | */ | |
d5477d3d TC |
1664 | FORMAT_ENTRY("\x01\xDA\x00\x01", "sgi"), |
1665 | FORMAT_ENTRY("\x01\xDA\x00\x02", "sgi"), | |
1666 | FORMAT_ENTRY("\x01\xDA\x01\x01", "sgi"), | |
1667 | FORMAT_ENTRY("\x01\xDA\x01\x02", "sgi"), | |
8b302e44 TC |
1668 | |
1669 | FORMAT_ENTRY2("FORM ILBM", "ilbm", "xxxx xxxx"), | |
1670 | ||
1671 | /* different versions of PCX format | |
1672 | http://www.fileformat.info/format/pcx/ | |
1673 | */ | |
1674 | FORMAT_ENTRY("\x0A\x00\x01", "pcx"), | |
681d28fc | 1675 | FORMAT_ENTRY("\x0A\x02\x01", "pcx"), |
8b302e44 TC |
1676 | FORMAT_ENTRY("\x0A\x03\x01", "pcx"), |
1677 | FORMAT_ENTRY("\x0A\x04\x01", "pcx"), | |
1678 | FORMAT_ENTRY("\x0A\x05\x01", "pcx"), | |
1679 | ||
1680 | /* FITS - http://fits.gsfc.nasa.gov/ */ | |
1681 | FORMAT_ENTRY("SIMPLE =", "fits"), | |
1682 | ||
1683 | /* PSD - Photoshop */ | |
1684 | FORMAT_ENTRY("8BPS\x00\x01", "psd"), | |
1685 | ||
1686 | /* EPS - Encapsulated Postscript */ | |
1687 | /* only reading 18 chars, so we don't include the F in EPSF */ | |
1688 | FORMAT_ENTRY("%!PS-Adobe-2.0 EPS", "eps"), | |
681d28fc TC |
1689 | |
1690 | /* Utah RLE */ | |
1691 | FORMAT_ENTRY("\x52\xCC", "utah"), | |
33fc0c9e TC |
1692 | |
1693 | /* GZIP compressed, only matching deflate for now */ | |
1694 | FORMAT_ENTRY("\x1F\x8B\x08", "gzip"), | |
1695 | ||
1696 | /* bzip2 compressed */ | |
1697 | FORMAT_ENTRY("BZh", "bzip2"), | |
bca6a3d5 TC |
1698 | |
1699 | /* WEBP | |
1700 | http://code.google.com/speed/webp/docs/riff_container.html */ | |
1701 | FORMAT_ENTRY2("RIFF WEBP", "webp", "xxxx xxxx"), | |
1702 | ||
1703 | /* JPEG 2000 | |
1704 | This might match a little loosely */ | |
1705 | FORMAT_ENTRY("\x00\x00\x00\x0CjP \x0D\x0A\x87\x0A", "jp2"), | |
1facb357 TC |
1706 | |
1707 | /* FLIF - Free Lossless Image Format - https://flif.info/spec.html */ | |
1708 | FORMAT_ENTRY("FLIF", "flif") | |
e10bf46e | 1709 | }; |
b7028a2e | 1710 | static const struct file_magic_entry more_formats[] = { |
681d28fc TC |
1711 | /* these were originally both listed as ico, but cur files can |
1712 | include hotspot information */ | |
1713 | FORMAT_ENTRY("\x00\x00\x01\x00", "ico"), /* Windows icon */ | |
1714 | FORMAT_ENTRY("\x00\x00\x02\x00", "cur"), /* Windows cursor */ | |
603dfac7 TC |
1715 | FORMAT_ENTRY2("\x00\x00\x00\x00\x00\x00\x00\x07", |
1716 | "xwd", " xxxx"), /* X Windows Dump */ | |
ea1136fc | 1717 | }; |
db7a8754 | 1718 | |
e10bf46e | 1719 | unsigned int i; |
db7a8754 | 1720 | unsigned char head[18]; |
84e51293 | 1721 | ssize_t rc; |
e10bf46e | 1722 | |
6d5c85a2 | 1723 | rc = i_io_peekn(data, head, 18); |
84e51293 | 1724 | if (rc == -1) return NULL; |
6d5c85a2 TC |
1725 | #if 0 |
1726 | { | |
1727 | int i; | |
1728 | fprintf(stderr, "%d bytes -", (int)rc); | |
1729 | for (i = 0; i < rc; ++i) | |
1730 | fprintf(stderr, " %02x", head[i]); | |
1731 | fprintf(stderr, "\n"); | |
1732 | } | |
1733 | #endif | |
e10bf46e | 1734 | |
b7028a2e TC |
1735 | { |
1736 | im_file_magic *p = ctx->file_magic; | |
1737 | while (p) { | |
1738 | if (test_magic(head, rc, &p->m)) { | |
1739 | return p->m.name; | |
1740 | } | |
1741 | p = p->next; | |
1742 | } | |
1743 | } | |
1744 | ||
e10bf46e | 1745 | for(i=0; i<sizeof(formats)/sizeof(formats[0]); i++) { |
b7028a2e | 1746 | struct file_magic_entry const *entry = formats + i; |
8b302e44 TC |
1747 | |
1748 | if (test_magic(head, rc, entry)) | |
1749 | return entry->name; | |
e10bf46e AMH |
1750 | } |
1751 | ||
ea1136fc | 1752 | if ((rc == 18) && |
db7a8754 TC |
1753 | tga_header_verify(head)) |
1754 | return "tga"; | |
1755 | ||
ea1136fc | 1756 | for(i=0; i<sizeof(more_formats)/sizeof(more_formats[0]); i++) { |
b7028a2e | 1757 | struct file_magic_entry const *entry = more_formats + i; |
8b302e44 TC |
1758 | |
1759 | if (test_magic(head, rc, entry)) | |
1760 | return entry->name; | |
ea1136fc TC |
1761 | } |
1762 | ||
1763 | return NULL; | |
e10bf46e AMH |
1764 | } |
1765 | ||
9c106321 TC |
1766 | /* |
1767 | =item i_img_is_monochrome(img, &zero_is_white) | |
1768 | ||
e5ee047b TC |
1769 | =category Image Information |
1770 | ||
9c106321 TC |
1771 | Tests an image to check it meets our monochrome tests. |
1772 | ||
1773 | The idea is that a file writer can use this to test where it should | |
e5ee047b TC |
1774 | write the image in whatever bi-level format it uses, eg. C<pbm> for |
1775 | C<pnm>. | |
9c106321 TC |
1776 | |
1777 | For performance of encoders we require monochrome images: | |
1778 | ||
1779 | =over | |
1780 | ||
1781 | =item * | |
e10bf46e | 1782 | |
9c106321 | 1783 | be paletted |
e10bf46e | 1784 | |
9c106321 TC |
1785 | =item * |
1786 | ||
e5ee047b TC |
1787 | have a palette of two colors, containing only C<(0,0,0)> and |
1788 | C<(255,255,255)> in either order. | |
9c106321 TC |
1789 | |
1790 | =back | |
1791 | ||
e5ee047b | 1792 | C<zero_is_white> is set to non-zero if the first palette entry is white. |
9c106321 TC |
1793 | |
1794 | =cut | |
1795 | */ | |
1796 | ||
1797 | int | |
1798 | i_img_is_monochrome(i_img *im, int *zero_is_white) { | |
1799 | if (im->type == i_palette_type | |
1800 | && i_colorcount(im) == 2) { | |
1801 | i_color colors[2]; | |
eb7e48c9 TC |
1802 | if (!i_getcolors(im, 0, colors, 2)) |
1803 | return 0; | |
9c106321 TC |
1804 | if (im->channels == 3) { |
1805 | if (colors[0].rgb.r == 255 && | |
1806 | colors[0].rgb.g == 255 && | |
1807 | colors[0].rgb.b == 255 && | |
1808 | colors[1].rgb.r == 0 && | |
1809 | colors[1].rgb.g == 0 && | |
1810 | colors[1].rgb.b == 0) { | |
bd8052a6 | 1811 | *zero_is_white = 1; |
9c106321 TC |
1812 | return 1; |
1813 | } | |
1814 | else if (colors[0].rgb.r == 0 && | |
1815 | colors[0].rgb.g == 0 && | |
1816 | colors[0].rgb.b == 0 && | |
1817 | colors[1].rgb.r == 255 && | |
1818 | colors[1].rgb.g == 255 && | |
1819 | colors[1].rgb.b == 255) { | |
bd8052a6 | 1820 | *zero_is_white = 0; |
9c106321 TC |
1821 | return 1; |
1822 | } | |
1823 | } | |
1824 | else if (im->channels == 1) { | |
1825 | if (colors[0].channel[0] == 255 && | |
bd8052a6 TC |
1826 | colors[1].channel[0] == 0) { |
1827 | *zero_is_white = 1; | |
9c106321 TC |
1828 | return 1; |
1829 | } | |
1830 | else if (colors[0].channel[0] == 0 && | |
bd8052a6 TC |
1831 | colors[1].channel[0] == 255) { |
1832 | *zero_is_white = 0; | |
9c106321 TC |
1833 | return 1; |
1834 | } | |
1835 | } | |
1836 | } | |
1837 | ||
1838 | *zero_is_white = 0; | |
1839 | return 0; | |
1840 | } | |
e10bf46e | 1841 | |
6e4af7d4 TC |
1842 | /* |
1843 | =item i_get_file_background(im, &bg) | |
1844 | ||
797a9f9c TC |
1845 | =category Files |
1846 | ||
6e4af7d4 TC |
1847 | Retrieve the file write background color tag from the image. |
1848 | ||
594f5933 TC |
1849 | If not present, C<bg> is set to black. |
1850 | ||
1851 | Returns 1 if the C<i_background> tag was found and valid. | |
6e4af7d4 TC |
1852 | |
1853 | =cut | |
1854 | */ | |
1855 | ||
594f5933 | 1856 | int |
6e4af7d4 | 1857 | i_get_file_background(i_img *im, i_color *bg) { |
594f5933 TC |
1858 | int result = i_tags_get_color(&im->tags, "i_background", 0, bg); |
1859 | if (!result) { | |
6e4af7d4 TC |
1860 | /* black default */ |
1861 | bg->channel[0] = bg->channel[1] = bg->channel[2] = 0; | |
1862 | } | |
1863 | /* always full alpha */ | |
1864 | bg->channel[3] = 255; | |
594f5933 TC |
1865 | |
1866 | return result; | |
6e4af7d4 TC |
1867 | } |
1868 | ||
fa90de94 TC |
1869 | /* |
1870 | =item i_get_file_backgroundf(im, &bg) | |
1871 | ||
797a9f9c TC |
1872 | =category Files |
1873 | ||
fa90de94 TC |
1874 | Retrieve the file write background color tag from the image as a |
1875 | floating point color. | |
1876 | ||
1877 | Implemented in terms of i_get_file_background(). | |
1878 | ||
594f5933 TC |
1879 | If not present, C<bg> is set to black. |
1880 | ||
1881 | Returns 1 if the C<i_background> tag was found and valid. | |
fa90de94 TC |
1882 | |
1883 | =cut | |
1884 | */ | |
1885 | ||
594f5933 | 1886 | int |
fa90de94 TC |
1887 | i_get_file_backgroundf(i_img *im, i_fcolor *fbg) { |
1888 | i_color bg; | |
594f5933 | 1889 | int result = i_get_file_background(im, &bg); |
fa90de94 TC |
1890 | fbg->rgba.r = Sample8ToF(bg.rgba.r); |
1891 | fbg->rgba.g = Sample8ToF(bg.rgba.g); | |
1892 | fbg->rgba.b = Sample8ToF(bg.rgba.b); | |
1893 | fbg->rgba.a = 1.0; | |
594f5933 TC |
1894 | |
1895 | return result; | |
fa90de94 TC |
1896 | } |
1897 | ||
02d1d628 AMH |
1898 | /* |
1899 | =back | |
1900 | ||
b8c2033e AMH |
1901 | =head1 AUTHOR |
1902 | ||
1903 | Arnar M. Hrafnkelsson <addi@umich.edu> | |
1904 | ||
8d14daab | 1905 | Tony Cook <tonyc@cpan.org> |
b8c2033e | 1906 | |
02d1d628 AMH |
1907 | =head1 SEE ALSO |
1908 | ||
1909 | L<Imager>, L<gif.c> | |
1910 | ||
1911 | =cut | |
1912 | */ |