Commit | Line | Data |
---|---|---|
92bda632 TC |
1 | #include "imager.h" |
2 | #include "imageri.h" | |
02d1d628 AMH |
3 | #include <stdlib.h> |
4 | #include <math.h> | |
5 | ||
6 | ||
7 | /* | |
8 | =head1 NAME | |
9 | ||
bea65b1f | 10 | filters.im - implements filters that operate on images |
02d1d628 AMH |
11 | |
12 | =head1 SYNOPSIS | |
13 | ||
14 | ||
15 | i_contrast(im, 0.8); | |
16 | i_hardinvert(im); | |
b6381851 | 17 | i_unsharp_mask(im, 2.0, 1.0); |
02d1d628 AMH |
18 | // and more |
19 | ||
20 | =head1 DESCRIPTION | |
21 | ||
22 | filters.c implements basic filters for Imager. These filters | |
23 | should be accessible from the filter interface as defined in | |
24 | the pod for Imager. | |
25 | ||
26 | =head1 FUNCTION REFERENCE | |
27 | ||
28 | Some of these functions are internal. | |
29 | ||
b8c2033e | 30 | =over |
02d1d628 AMH |
31 | |
32 | =cut | |
33 | */ | |
34 | ||
35 | ||
36 | ||
37 | ||
b2778574 AMH |
38 | /* |
39 | =item saturate(in) | |
40 | ||
41 | Clamps the input value between 0 and 255. (internal) | |
42 | ||
43 | in - input integer | |
44 | ||
45 | =cut | |
46 | */ | |
47 | ||
48 | static | |
49 | unsigned char | |
50 | saturate(int in) { | |
51 | if (in>255) { return 255; } | |
52 | else if (in>0) return in; | |
53 | return 0; | |
54 | } | |
02d1d628 AMH |
55 | |
56 | ||
57 | ||
58 | /* | |
59 | =item i_contrast(im, intensity) | |
60 | ||
61 | Scales the pixel values by the amount specified. | |
62 | ||
63 | im - image object | |
64 | intensity - scalefactor | |
65 | ||
66 | =cut | |
67 | */ | |
68 | ||
69 | void | |
70 | i_contrast(i_img *im, float intensity) { | |
71 | int x, y; | |
72 | unsigned char ch; | |
73 | unsigned int new_color; | |
74 | i_color rcolor; | |
75 | ||
76 | mm_log((1,"i_contrast(im %p, intensity %f)\n", im, intensity)); | |
77 | ||
78 | if(intensity < 0) return; | |
79 | ||
80 | for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) { | |
81 | i_gpix(im, x, y, &rcolor); | |
82 | ||
83 | for(ch = 0; ch < im->channels; ch++) { | |
84 | new_color = (unsigned int) rcolor.channel[ch]; | |
85 | new_color *= intensity; | |
86 | ||
87 | if(new_color > 255) { | |
88 | new_color = 255; | |
89 | } | |
90 | rcolor.channel[ch] = (unsigned char) new_color; | |
91 | } | |
92 | i_ppix(im, x, y, &rcolor); | |
93 | } | |
94 | } | |
95 | ||
96 | ||
97 | /* | |
98 | =item i_hardinvert(im) | |
99 | ||
100 | Inverts the pixel values of the input image. | |
101 | ||
102 | im - image object | |
103 | ||
104 | =cut | |
105 | */ | |
106 | ||
107 | void | |
108 | i_hardinvert(i_img *im) { | |
109 | int x, y; | |
bea65b1f TC |
110 | int ch; |
111 | int color_channels = i_img_color_channels(im); | |
112 | ||
113 | mm_log((1,"i_hardinvert(im %p)\n", im)); | |
02d1d628 | 114 | |
bea65b1f TC |
115 | #code im->bits <= 8 |
116 | IM_COLOR *row, *entry; | |
02d1d628 | 117 | |
e310e5f9 | 118 | /* always rooms to allocate a single line of i_color */ |
bea65b1f | 119 | row = mymalloc(sizeof(IM_COLOR) * im->xsize); /* checked 17feb2005 tonyc */ |
02d1d628 AMH |
120 | |
121 | for(y = 0; y < im->ysize; y++) { | |
bea65b1f | 122 | IM_GLIN(im, 0, im->xsize, y, row); |
92bda632 | 123 | entry = row; |
02d1d628 | 124 | for(x = 0; x < im->xsize; x++) { |
bea65b1f TC |
125 | for(ch = 0; ch < color_channels; ch++) { |
126 | entry->channel[ch] = IM_SAMPLE_MAX - entry->channel[ch]; | |
02d1d628 | 127 | } |
92bda632 | 128 | ++entry; |
02d1d628 | 129 | } |
bea65b1f | 130 | IM_PLIN(im, 0, im->xsize, y, row); |
02d1d628 | 131 | } |
92bda632 | 132 | myfree(row); |
bea65b1f | 133 | #/code |
02d1d628 AMH |
134 | } |
135 | ||
136 | ||
137 | ||
138 | /* | |
139 | =item i_noise(im, amount, type) | |
140 | ||
141 | Inverts the pixel values by the amount specified. | |
142 | ||
143 | im - image object | |
144 | amount - deviation in pixel values | |
145 | type - noise individual for each channel if true | |
146 | ||
147 | =cut | |
148 | */ | |
149 | ||
8a00cb26 | 150 | #ifdef WIN32 |
02d1d628 AMH |
151 | /* random() is non-ASCII, even if it is better than rand() */ |
152 | #define random() rand() | |
153 | #endif | |
154 | ||
155 | void | |
156 | i_noise(i_img *im, float amount, unsigned char type) { | |
157 | int x, y; | |
158 | unsigned char ch; | |
159 | int new_color; | |
160 | float damount = amount * 2; | |
161 | i_color rcolor; | |
162 | int color_inc = 0; | |
163 | ||
164 | mm_log((1,"i_noise(im %p, intensity %.2f\n", im, amount)); | |
165 | ||
166 | if(amount < 0) return; | |
167 | ||
168 | for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) { | |
169 | i_gpix(im, x, y, &rcolor); | |
170 | ||
171 | if(type == 0) { | |
172 | color_inc = (amount - (damount * ((float)random() / RAND_MAX))); | |
173 | } | |
174 | ||
175 | for(ch = 0; ch < im->channels; ch++) { | |
176 | new_color = (int) rcolor.channel[ch]; | |
177 | ||
178 | if(type != 0) { | |
179 | new_color += (amount - (damount * ((float)random() / RAND_MAX))); | |
180 | } else { | |
181 | new_color += color_inc; | |
182 | } | |
183 | ||
184 | if(new_color < 0) { | |
185 | new_color = 0; | |
186 | } | |
187 | if(new_color > 255) { | |
188 | new_color = 255; | |
189 | } | |
190 | ||
191 | rcolor.channel[ch] = (unsigned char) new_color; | |
192 | } | |
193 | ||
194 | i_ppix(im, x, y, &rcolor); | |
195 | } | |
196 | } | |
197 | ||
198 | ||
199 | /* | |
200 | =item i_noise(im, amount, type) | |
201 | ||
202 | Inverts the pixel values by the amount specified. | |
203 | ||
204 | im - image object | |
205 | amount - deviation in pixel values | |
206 | type - noise individual for each channel if true | |
207 | ||
208 | =cut | |
209 | */ | |
210 | ||
211 | ||
212 | /* | |
213 | =item i_applyimage(im, add_im, mode) | |
214 | ||
215 | Apply's an image to another image | |
216 | ||
217 | im - target image | |
218 | add_im - image that is applied to target | |
219 | mode - what method is used in applying: | |
220 | ||
221 | 0 Normal | |
222 | 1 Multiply | |
223 | 2 Screen | |
224 | 3 Overlay | |
225 | 4 Soft Light | |
226 | 5 Hard Light | |
227 | 6 Color dodge | |
228 | 7 Color Burn | |
229 | 8 Darker | |
230 | 9 Lighter | |
231 | 10 Add | |
232 | 11 Subtract | |
233 | 12 Difference | |
234 | 13 Exclusion | |
235 | ||
236 | =cut | |
237 | */ | |
238 | ||
239 | void i_applyimage(i_img *im, i_img *add_im, unsigned char mode) { | |
240 | int x, y; | |
241 | int mx, my; | |
242 | ||
243 | mm_log((1, "i_applyimage(im %p, add_im %p, mode %d", im, add_im, mode)); | |
244 | ||
245 | mx = (add_im->xsize <= im->xsize) ? add_im->xsize : add_im->xsize; | |
246 | my = (add_im->ysize <= im->ysize) ? add_im->ysize : add_im->ysize; | |
247 | ||
248 | for(x = 0; x < mx; x++) { | |
249 | for(y = 0; y < my; y++) { | |
250 | } | |
251 | } | |
252 | } | |
253 | ||
254 | ||
255 | /* | |
256 | =item i_bumpmap(im, bump, channel, light_x, light_y, st) | |
257 | ||
258 | Makes a bumpmap on image im using the bump image as the elevation map. | |
259 | ||
260 | im - target image | |
261 | bump - image that contains the elevation info | |
262 | channel - to take the elevation information from | |
263 | light_x - x coordinate of light source | |
264 | light_y - y coordinate of light source | |
265 | st - length of shadow | |
266 | ||
267 | =cut | |
268 | */ | |
269 | ||
270 | void | |
271 | i_bumpmap(i_img *im, i_img *bump, int channel, int light_x, int light_y, int st) { | |
272 | int x, y, ch; | |
273 | int mx, my; | |
274 | i_color x1_color, y1_color, x2_color, y2_color, dst_color; | |
275 | double nX, nY; | |
276 | double tX, tY, tZ; | |
277 | double aX, aY, aL; | |
278 | double fZ; | |
279 | unsigned char px1, px2, py1, py2; | |
280 | ||
281 | i_img new_im; | |
282 | ||
283 | mm_log((1, "i_bumpmap(im %p, add_im %p, channel %d, light_x %d, light_y %d, st %d)\n", | |
284 | im, bump, channel, light_x, light_y, st)); | |
285 | ||
286 | ||
287 | if(channel >= bump->channels) { | |
288 | mm_log((1, "i_bumpmap: channel = %d while bump image only has %d channels\n", channel, bump->channels)); | |
289 | return; | |
290 | } | |
b2778574 | 291 | |
02d1d628 AMH |
292 | mx = (bump->xsize <= im->xsize) ? bump->xsize : im->xsize; |
293 | my = (bump->ysize <= im->ysize) ? bump->ysize : im->ysize; | |
294 | ||
295 | i_img_empty_ch(&new_im, im->xsize, im->ysize, im->channels); | |
b2778574 | 296 | |
02d1d628 AMH |
297 | aX = (light_x > (mx >> 1)) ? light_x : mx - light_x; |
298 | aY = (light_y > (my >> 1)) ? light_y : my - light_y; | |
299 | ||
300 | aL = sqrt((aX * aX) + (aY * aY)); | |
301 | ||
302 | for(y = 1; y < my - 1; y++) { | |
303 | for(x = 1; x < mx - 1; x++) { | |
304 | i_gpix(bump, x + st, y, &x1_color); | |
305 | i_gpix(bump, x, y + st, &y1_color); | |
306 | i_gpix(bump, x - st, y, &x2_color); | |
307 | i_gpix(bump, x, y - st, &y2_color); | |
308 | ||
309 | i_gpix(im, x, y, &dst_color); | |
310 | ||
311 | px1 = x1_color.channel[channel]; | |
312 | py1 = y1_color.channel[channel]; | |
313 | px2 = x2_color.channel[channel]; | |
314 | py2 = y2_color.channel[channel]; | |
315 | ||
316 | nX = px1 - px2; | |
317 | nY = py1 - py2; | |
318 | ||
319 | nX += 128; | |
320 | nY += 128; | |
321 | ||
322 | fZ = (sqrt((nX * nX) + (nY * nY)) / aL); | |
323 | ||
324 | tX = abs(x - light_x) / aL; | |
325 | tY = abs(y - light_y) / aL; | |
326 | ||
327 | tZ = 1 - (sqrt((tX * tX) + (tY * tY)) * fZ); | |
328 | ||
329 | if(tZ < 0) tZ = 0; | |
330 | if(tZ > 2) tZ = 2; | |
331 | ||
332 | for(ch = 0; ch < im->channels; ch++) | |
333 | dst_color.channel[ch] = (unsigned char) (float)(dst_color.channel[ch] * tZ); | |
334 | ||
335 | i_ppix(&new_im, x, y, &dst_color); | |
336 | } | |
337 | } | |
338 | ||
339 | i_copyto(im, &new_im, 0, 0, (int)im->xsize, (int)im->ysize, 0, 0); | |
340 | ||
341 | i_img_exorcise(&new_im); | |
342 | } | |
343 | ||
344 | ||
345 | ||
b2778574 AMH |
346 | |
347 | typedef struct { | |
348 | float x,y,z; | |
349 | } fvec; | |
350 | ||
351 | ||
352 | static | |
353 | float | |
354 | dotp(fvec *a, fvec *b) { | |
355 | return a->x*b->x+a->y*b->y+a->z*b->z; | |
356 | } | |
357 | ||
358 | static | |
359 | void | |
360 | normalize(fvec *a) { | |
361 | double d = sqrt(dotp(a,a)); | |
362 | a->x /= d; | |
363 | a->y /= d; | |
364 | a->z /= d; | |
365 | } | |
366 | ||
367 | ||
368 | /* | |
369 | positive directions: | |
370 | ||
371 | x - right, | |
372 | y - down | |
373 | z - out of the plane | |
374 | ||
375 | I = Ia + Ip*( cd*Scol(N.L) + cs*(R.V)^n ) | |
376 | ||
377 | Here, the variables are: | |
378 | ||
379 | * Ia - ambient colour | |
380 | * Ip - intensity of the point light source | |
381 | * cd - diffuse coefficient | |
382 | * Scol - surface colour | |
383 | * cs - specular coefficient | |
384 | * n - objects shinyness | |
385 | * N - normal vector | |
386 | * L - lighting vector | |
387 | * R - reflection vector | |
388 | * V - vision vector | |
389 | ||
390 | static void fvec_dump(fvec *x) { | |
391 | printf("(%.2f %.2f %.2f)", x->x, x->y, x->z); | |
392 | } | |
393 | */ | |
394 | ||
395 | /* XXX: Should these return a code for success? */ | |
396 | ||
397 | ||
398 | ||
399 | ||
400 | /* | |
401 | =item i_bumpmap_complex(im, bump, channel, tx, ty, Lx, Ly, Lz, Ip, cd, cs, n, Ia, Il, Is) | |
402 | ||
403 | Makes a bumpmap on image im using the bump image as the elevation map. | |
404 | ||
405 | im - target image | |
406 | bump - image that contains the elevation info | |
407 | channel - to take the elevation information from | |
408 | tx - shift in x direction of where to start applying bumpmap | |
409 | ty - shift in y direction of where to start applying bumpmap | |
410 | Lx - x position/direction of light | |
411 | Ly - y position/direction of light | |
412 | Lz - z position/direction of light | |
413 | Ip - light intensity | |
414 | cd - diffuse coefficient | |
415 | cs - specular coefficient | |
416 | n - surface shinyness | |
417 | Ia - ambient colour | |
418 | Il - light colour | |
419 | Is - specular colour | |
420 | ||
421 | if z<0 then the L is taken to be the direction the light is shining in. Otherwise | |
422 | the L is taken to be the position of the Light, Relative to the image. | |
423 | ||
424 | =cut | |
425 | */ | |
426 | ||
427 | ||
428 | void | |
429 | i_bumpmap_complex(i_img *im, | |
430 | i_img *bump, | |
431 | int channel, | |
432 | int tx, | |
433 | int ty, | |
434 | float Lx, | |
435 | float Ly, | |
436 | float Lz, | |
437 | float cd, | |
438 | float cs, | |
439 | float n, | |
440 | i_color *Ia, | |
441 | i_color *Il, | |
442 | i_color *Is) { | |
443 | i_img new_im; | |
444 | ||
445 | int inflight; | |
446 | int x, y, ch; | |
447 | int mx, Mx, my, My; | |
448 | ||
449 | float cdc[MAXCHANNELS]; | |
450 | float csc[MAXCHANNELS]; | |
451 | ||
452 | i_color x1_color, y1_color, x2_color, y2_color; | |
453 | ||
454 | i_color Scol; /* Surface colour */ | |
455 | ||
456 | fvec L; /* Light vector */ | |
457 | fvec N; /* surface normal */ | |
458 | fvec R; /* Reflection vector */ | |
459 | fvec V; /* Vision vector */ | |
460 | ||
461 | mm_log((1, "i_bumpmap_complex(im %p, bump %p, channel %d, tx %d, ty %d, Lx %.2f, Ly %.2f, Lz %.2f, cd %.2f, cs %.2f, n %.2f, Ia %p, Il %p, Is %p)\n", | |
462 | im, bump, channel, tx, ty, Lx, Ly, Lz, cd, cs, n, Ia, Il, Is)); | |
463 | ||
464 | if (channel >= bump->channels) { | |
465 | mm_log((1, "i_bumpmap_complex: channel = %d while bump image only has %d channels\n", channel, bump->channels)); | |
466 | return; | |
467 | } | |
468 | ||
469 | for(ch=0; ch<im->channels; ch++) { | |
470 | cdc[ch] = (float)Il->channel[ch]*cd/255.f; | |
471 | csc[ch] = (float)Is->channel[ch]*cs/255.f; | |
472 | } | |
473 | ||
474 | mx = 1; | |
475 | my = 1; | |
476 | Mx = bump->xsize-1; | |
477 | My = bump->ysize-1; | |
478 | ||
479 | V.x = 0; | |
480 | V.y = 0; | |
481 | V.z = 1; | |
482 | ||
483 | if (Lz < 0) { /* Light specifies a direction vector, reverse it to get the vector from surface to light */ | |
484 | L.x = -Lx; | |
485 | L.y = -Ly; | |
486 | L.z = -Lz; | |
487 | normalize(&L); | |
488 | } else { /* Light is the position of the light source */ | |
489 | inflight = 0; | |
490 | L.x = -0.2; | |
491 | L.y = -0.4; | |
492 | L.z = 1; | |
493 | normalize(&L); | |
494 | } | |
495 | ||
496 | i_img_empty_ch(&new_im, im->xsize, im->ysize, im->channels); | |
497 | ||
498 | for(y = 0; y < im->ysize; y++) { | |
499 | for(x = 0; x < im->xsize; x++) { | |
500 | double dp1, dp2; | |
501 | double dx = 0, dy = 0; | |
502 | ||
503 | /* Calculate surface normal */ | |
504 | if (mx<x && x<Mx && my<y && y<My) { | |
505 | i_gpix(bump, x + 1, y, &x1_color); | |
506 | i_gpix(bump, x - 1, y, &x2_color); | |
507 | i_gpix(bump, x, y + 1, &y1_color); | |
508 | i_gpix(bump, x, y - 1, &y2_color); | |
509 | dx = x2_color.channel[channel] - x1_color.channel[channel]; | |
510 | dy = y2_color.channel[channel] - y1_color.channel[channel]; | |
511 | } else { | |
512 | dx = 0; | |
513 | dy = 0; | |
514 | } | |
515 | N.x = -dx * 0.015; | |
516 | N.y = -dy * 0.015; | |
517 | N.z = 1; | |
518 | normalize(&N); | |
519 | ||
520 | /* Calculate Light vector if needed */ | |
521 | if (Lz>=0) { | |
522 | L.x = Lx - x; | |
523 | L.y = Ly - y; | |
524 | L.z = Lz; | |
525 | normalize(&L); | |
526 | } | |
527 | ||
528 | dp1 = dotp(&L,&N); | |
529 | R.x = -L.x + 2*dp1*N.x; | |
530 | R.y = -L.y + 2*dp1*N.y; | |
531 | R.z = -L.z + 2*dp1*N.z; | |
532 | ||
533 | dp2 = dotp(&R,&V); | |
534 | ||
535 | dp1 = dp1<0 ?0 : dp1; | |
536 | dp2 = pow(dp2<0 ?0 : dp2,n); | |
537 | ||
538 | i_gpix(im, x, y, &Scol); | |
539 | ||
540 | for(ch = 0; ch < im->channels; ch++) | |
541 | Scol.channel[ch] = | |
542 | saturate( Ia->channel[ch] + cdc[ch]*Scol.channel[ch]*dp1 + csc[ch]*dp2 ); | |
543 | ||
544 | i_ppix(&new_im, x, y, &Scol); | |
545 | } | |
546 | } | |
547 | ||
548 | i_copyto(im, &new_im, 0, 0, (int)im->xsize, (int)im->ysize, 0, 0); | |
549 | i_img_exorcise(&new_im); | |
550 | } | |
551 | ||
552 | ||
02d1d628 AMH |
553 | /* |
554 | =item i_postlevels(im, levels) | |
555 | ||
556 | Quantizes Images to fewer levels. | |
557 | ||
558 | im - target image | |
559 | levels - number of levels | |
560 | ||
561 | =cut | |
562 | */ | |
563 | ||
564 | void | |
565 | i_postlevels(i_img *im, int levels) { | |
566 | int x, y, ch; | |
567 | float pv; | |
568 | int rv; | |
569 | float av; | |
570 | ||
571 | i_color rcolor; | |
572 | ||
573 | rv = (int) ((float)(256 / levels)); | |
574 | av = (float)levels; | |
575 | ||
576 | for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) { | |
577 | i_gpix(im, x, y, &rcolor); | |
578 | ||
579 | for(ch = 0; ch < im->channels; ch++) { | |
580 | pv = (((float)rcolor.channel[ch] / 255)) * av; | |
581 | pv = (int) ((int)pv * rv); | |
582 | ||
583 | if(pv < 0) pv = 0; | |
584 | else if(pv > 255) pv = 255; | |
585 | ||
586 | rcolor.channel[ch] = (unsigned char) pv; | |
587 | } | |
588 | i_ppix(im, x, y, &rcolor); | |
589 | } | |
590 | } | |
591 | ||
592 | ||
593 | /* | |
594 | =item i_mosaic(im, size) | |
595 | ||
596 | Makes an image looks like a mosaic with tilesize of size | |
597 | ||
598 | im - target image | |
599 | size - size of tiles | |
600 | ||
601 | =cut | |
602 | */ | |
603 | ||
604 | void | |
605 | i_mosaic(i_img *im, int size) { | |
606 | int x, y, ch; | |
607 | int lx, ly, z; | |
608 | long sqrsize; | |
609 | ||
610 | i_color rcolor; | |
611 | long col[256]; | |
612 | ||
613 | sqrsize = size * size; | |
614 | ||
615 | for(y = 0; y < im->ysize; y += size) for(x = 0; x < im->xsize; x += size) { | |
616 | for(z = 0; z < 256; z++) col[z] = 0; | |
617 | ||
618 | for(lx = 0; lx < size; lx++) { | |
619 | for(ly = 0; ly < size; ly++) { | |
620 | i_gpix(im, (x + lx), (y + ly), &rcolor); | |
621 | ||
622 | for(ch = 0; ch < im->channels; ch++) { | |
623 | col[ch] += rcolor.channel[ch]; | |
624 | } | |
625 | } | |
626 | } | |
627 | ||
628 | for(ch = 0; ch < im->channels; ch++) | |
629 | rcolor.channel[ch] = (int) ((float)col[ch] / sqrsize); | |
630 | ||
631 | ||
632 | for(lx = 0; lx < size; lx++) | |
633 | for(ly = 0; ly < size; ly++) | |
634 | i_ppix(im, (x + lx), (y + ly), &rcolor); | |
635 | ||
636 | } | |
637 | } | |
638 | ||
02d1d628 AMH |
639 | |
640 | /* | |
641 | =item i_watermark(im, wmark, tx, ty, pixdiff) | |
642 | ||
643 | Applies a watermark to the target image | |
644 | ||
645 | im - target image | |
646 | wmark - watermark image | |
647 | tx - x coordinate of where watermark should be applied | |
648 | ty - y coordinate of where watermark should be applied | |
649 | pixdiff - the magnitude of the watermark, controls how visible it is | |
650 | ||
651 | =cut | |
652 | */ | |
653 | ||
654 | void | |
655 | i_watermark(i_img *im, i_img *wmark, int tx, int ty, int pixdiff) { | |
656 | int vx, vy, ch; | |
657 | i_color val, wval; | |
658 | ||
985ffb60 AMH |
659 | int mx = wmark->xsize; |
660 | int my = wmark->ysize; | |
661 | ||
662 | for(vx=0;vx<mx;vx++) for(vy=0;vy<my;vy++) { | |
02d1d628 AMH |
663 | |
664 | i_gpix(im, tx+vx, ty+vy,&val ); | |
665 | i_gpix(wmark, vx, vy, &wval); | |
666 | ||
667 | for(ch=0;ch<im->channels;ch++) | |
668 | val.channel[ch] = saturate( val.channel[ch] + (pixdiff* (wval.channel[0]-128) )/128 ); | |
669 | ||
670 | i_ppix(im,tx+vx,ty+vy,&val); | |
671 | } | |
672 | } | |
673 | ||
674 | ||
675 | /* | |
676 | =item i_autolevels(im, lsat, usat, skew) | |
677 | ||
678 | Scales and translates each color such that it fills the range completely. | |
679 | Skew is not implemented yet - purpose is to control the color skew that can | |
680 | occur when changing the contrast. | |
681 | ||
682 | im - target image | |
683 | lsat - fraction of pixels that will be truncated at the lower end of the spectrum | |
684 | usat - fraction of pixels that will be truncated at the higher end of the spectrum | |
685 | skew - not used yet | |
686 | ||
687 | =cut | |
688 | */ | |
689 | ||
690 | void | |
691 | i_autolevels(i_img *im, float lsat, float usat, float skew) { | |
692 | i_color val; | |
693 | int i, x, y, rhist[256], ghist[256], bhist[256]; | |
694 | int rsum, rmin, rmax; | |
695 | int gsum, gmin, gmax; | |
696 | int bsum, bmin, bmax; | |
697 | int rcl, rcu, gcl, gcu, bcl, bcu; | |
698 | ||
699 | mm_log((1,"i_autolevels(im %p, lsat %f,usat %f,skew %f)\n", im, lsat,usat,skew)); | |
700 | ||
701 | rsum=gsum=bsum=0; | |
702 | for(i=0;i<256;i++) rhist[i]=ghist[i]=bhist[i] = 0; | |
703 | /* create histogram for each channel */ | |
704 | for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) { | |
705 | i_gpix(im, x, y, &val); | |
706 | rhist[val.channel[0]]++; | |
707 | ghist[val.channel[1]]++; | |
708 | bhist[val.channel[2]]++; | |
709 | } | |
710 | ||
711 | for(i=0;i<256;i++) { | |
712 | rsum+=rhist[i]; | |
713 | gsum+=ghist[i]; | |
714 | bsum+=bhist[i]; | |
715 | } | |
716 | ||
717 | rmin = gmin = bmin = 0; | |
718 | rmax = gmax = bmax = 255; | |
719 | ||
720 | rcu = rcl = gcu = gcl = bcu = bcl = 0; | |
721 | ||
722 | for(i=0; i<256; i++) { | |
723 | rcl += rhist[i]; if ( (rcl<rsum*lsat) ) rmin=i; | |
724 | rcu += rhist[255-i]; if ( (rcu<rsum*usat) ) rmax=255-i; | |
725 | ||
726 | gcl += ghist[i]; if ( (gcl<gsum*lsat) ) gmin=i; | |
727 | gcu += ghist[255-i]; if ( (gcu<gsum*usat) ) gmax=255-i; | |
728 | ||
729 | bcl += bhist[i]; if ( (bcl<bsum*lsat) ) bmin=i; | |
730 | bcu += bhist[255-i]; if ( (bcu<bsum*usat) ) bmax=255-i; | |
731 | } | |
732 | ||
733 | for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) { | |
734 | i_gpix(im, x, y, &val); | |
735 | val.channel[0]=saturate((val.channel[0]-rmin)*255/(rmax-rmin)); | |
736 | val.channel[1]=saturate((val.channel[1]-gmin)*255/(gmax-gmin)); | |
737 | val.channel[2]=saturate((val.channel[2]-bmin)*255/(bmax-bmin)); | |
738 | i_ppix(im, x, y, &val); | |
739 | } | |
740 | } | |
741 | ||
742 | /* | |
743 | =item Noise(x,y) | |
744 | ||
745 | Pseudo noise utility function used to generate perlin noise. (internal) | |
746 | ||
747 | x - x coordinate | |
748 | y - y coordinate | |
749 | ||
750 | =cut | |
751 | */ | |
752 | ||
753 | static | |
754 | float | |
755 | Noise(int x, int y) { | |
756 | int n = x + y * 57; | |
757 | n = (n<<13) ^ n; | |
758 | return ( 1.0 - ( (n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824.0); | |
759 | } | |
760 | ||
761 | /* | |
762 | =item SmoothedNoise1(x,y) | |
763 | ||
764 | Pseudo noise utility function used to generate perlin noise. (internal) | |
765 | ||
766 | x - x coordinate | |
767 | y - y coordinate | |
768 | ||
769 | =cut | |
770 | */ | |
771 | ||
772 | static | |
773 | float | |
774 | SmoothedNoise1(float x, float y) { | |
775 | float corners = ( Noise(x-1, y-1)+Noise(x+1, y-1)+Noise(x-1, y+1)+Noise(x+1, y+1) ) / 16; | |
776 | float sides = ( Noise(x-1, y) +Noise(x+1, y) +Noise(x, y-1) +Noise(x, y+1) ) / 8; | |
777 | float center = Noise(x, y) / 4; | |
778 | return corners + sides + center; | |
779 | } | |
780 | ||
781 | ||
782 | /* | |
783 | =item G_Interpolate(a, b, x) | |
784 | ||
785 | Utility function used to generate perlin noise. (internal) | |
786 | ||
787 | =cut | |
788 | */ | |
789 | ||
790 | static | |
791 | float C_Interpolate(float a, float b, float x) { | |
792 | /* float ft = x * 3.1415927; */ | |
793 | float ft = x * PI; | |
794 | float f = (1 - cos(ft)) * .5; | |
795 | return a*(1-f) + b*f; | |
796 | } | |
797 | ||
798 | ||
799 | /* | |
800 | =item InterpolatedNoise(x, y) | |
801 | ||
802 | Utility function used to generate perlin noise. (internal) | |
803 | ||
804 | =cut | |
805 | */ | |
806 | ||
807 | static | |
808 | float | |
809 | InterpolatedNoise(float x, float y) { | |
810 | ||
811 | int integer_X = x; | |
812 | float fractional_X = x - integer_X; | |
813 | int integer_Y = y; | |
814 | float fractional_Y = y - integer_Y; | |
815 | ||
816 | float v1 = SmoothedNoise1(integer_X, integer_Y); | |
817 | float v2 = SmoothedNoise1(integer_X + 1, integer_Y); | |
818 | float v3 = SmoothedNoise1(integer_X, integer_Y + 1); | |
819 | float v4 = SmoothedNoise1(integer_X + 1, integer_Y + 1); | |
820 | ||
821 | float i1 = C_Interpolate(v1 , v2 , fractional_X); | |
822 | float i2 = C_Interpolate(v3 , v4 , fractional_X); | |
823 | ||
824 | return C_Interpolate(i1 , i2 , fractional_Y); | |
825 | } | |
826 | ||
827 | ||
828 | ||
829 | /* | |
830 | =item PerlinNoise_2D(x, y) | |
831 | ||
832 | Utility function used to generate perlin noise. (internal) | |
833 | ||
834 | =cut | |
835 | */ | |
836 | ||
837 | static | |
838 | float | |
839 | PerlinNoise_2D(float x, float y) { | |
840 | int i,frequency; | |
841 | float amplitude; | |
842 | float total = 0; | |
843 | int Number_Of_Octaves=6; | |
844 | int n = Number_Of_Octaves - 1; | |
845 | ||
846 | for(i=0;i<n;i++) { | |
847 | frequency = 2*i; | |
848 | amplitude = PI; | |
849 | total = total + InterpolatedNoise(x * frequency, y * frequency) * amplitude; | |
850 | } | |
851 | ||
852 | return total; | |
853 | } | |
854 | ||
855 | ||
856 | /* | |
857 | =item i_radnoise(im, xo, yo, rscale, ascale) | |
858 | ||
859 | Perlin-like radial noise. | |
860 | ||
861 | im - target image | |
862 | xo - x coordinate of center | |
863 | yo - y coordinate of center | |
864 | rscale - radial scale | |
865 | ascale - angular scale | |
866 | ||
867 | =cut | |
868 | */ | |
869 | ||
870 | void | |
871 | i_radnoise(i_img *im, int xo, int yo, float rscale, float ascale) { | |
872 | int x, y, ch; | |
873 | i_color val; | |
874 | unsigned char v; | |
875 | float xc, yc, r; | |
876 | double a; | |
877 | ||
878 | for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) { | |
879 | xc = (float)x-xo+0.5; | |
880 | yc = (float)y-yo+0.5; | |
881 | r = rscale*sqrt(xc*xc+yc*yc)+1.2; | |
882 | a = (PI+atan2(yc,xc))*ascale; | |
883 | v = saturate(128+100*(PerlinNoise_2D(a,r))); | |
884 | /* v=saturate(120+12*PerlinNoise_2D(xo+(float)x/scale,yo+(float)y/scale)); Good soft marble */ | |
885 | for(ch=0; ch<im->channels; ch++) val.channel[ch]=v; | |
886 | i_ppix(im, x, y, &val); | |
887 | } | |
888 | } | |
889 | ||
890 | ||
891 | /* | |
892 | =item i_turbnoise(im, xo, yo, scale) | |
893 | ||
894 | Perlin-like 2d noise noise. | |
895 | ||
896 | im - target image | |
897 | xo - x coordinate translation | |
898 | yo - y coordinate translation | |
899 | scale - scale of noise | |
900 | ||
901 | =cut | |
902 | */ | |
903 | ||
904 | void | |
905 | i_turbnoise(i_img *im, float xo, float yo, float scale) { | |
906 | int x,y,ch; | |
907 | unsigned char v; | |
908 | i_color val; | |
909 | ||
910 | for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) { | |
911 | /* v=saturate(125*(1.0+PerlinNoise_2D(xo+(float)x/scale,yo+(float)y/scale))); */ | |
912 | v = saturate(120*(1.0+sin(xo+(float)x/scale+PerlinNoise_2D(xo+(float)x/scale,yo+(float)y/scale)))); | |
913 | for(ch=0; ch<im->channels; ch++) val.channel[ch] = v; | |
914 | i_ppix(im, x, y, &val); | |
915 | } | |
916 | } | |
917 | ||
918 | ||
919 | ||
920 | /* | |
921 | =item i_gradgen(im, num, xo, yo, ival, dmeasure) | |
922 | ||
923 | Gradient generating function. | |
924 | ||
925 | im - target image | |
926 | num - number of points given | |
927 | xo - array of x coordinates | |
928 | yo - array of y coordinates | |
929 | ival - array of i_color objects | |
930 | dmeasure - distance measure to be used. | |
931 | 0 = Euclidean | |
932 | 1 = Euclidean squared | |
933 | 2 = Manhattan distance | |
934 | ||
935 | =cut | |
936 | */ | |
937 | ||
938 | ||
939 | void | |
940 | i_gradgen(i_img *im, int num, int *xo, int *yo, i_color *ival, int dmeasure) { | |
941 | ||
942 | i_color val; | |
943 | int p, x, y, ch; | |
944 | int channels = im->channels; | |
945 | int xsize = im->xsize; | |
946 | int ysize = im->ysize; | |
f0960b14 | 947 | int bytes; |
02d1d628 AMH |
948 | |
949 | float *fdist; | |
950 | ||
951 | mm_log((1,"i_gradgen(im %p, num %d, xo %p, yo %p, ival %p, dmeasure %d)\n", im, num, xo, yo, ival, dmeasure)); | |
952 | ||
953 | for(p = 0; p<num; p++) { | |
954 | mm_log((1,"i_gradgen: (%d, %d)\n", xo[p], yo[p])); | |
955 | ICL_info(&ival[p]); | |
956 | } | |
957 | ||
f0960b14 TC |
958 | /* on the systems I have sizeof(float) == sizeof(int) and thus |
959 | this would be same size as the arrays xo and yo point at, but this | |
960 | may not be true for other systems | |
961 | ||
962 | since the arrays here are caller controlled, I assume that on | |
963 | overflow is a programming error rather than an end-user error, so | |
964 | calling exit() is justified. | |
965 | */ | |
966 | bytes = sizeof(float) * num; | |
967 | if (bytes / num != sizeof(float)) { | |
968 | fprintf(stderr, "integer overflow calculating memory allocation"); | |
969 | exit(1); | |
970 | } | |
971 | fdist = mymalloc( bytes ); /* checked 14jul05 tonyc */ | |
02d1d628 AMH |
972 | |
973 | for(y = 0; y<ysize; y++) for(x = 0; x<xsize; x++) { | |
974 | float cs = 0; | |
975 | float csd = 0; | |
976 | for(p = 0; p<num; p++) { | |
977 | int xd = x-xo[p]; | |
978 | int yd = y-yo[p]; | |
979 | switch (dmeasure) { | |
980 | case 0: /* euclidean */ | |
981 | fdist[p] = sqrt(xd*xd + yd*yd); /* euclidean distance */ | |
982 | break; | |
983 | case 1: /* euclidean squared */ | |
984 | fdist[p] = xd*xd + yd*yd; /* euclidean distance */ | |
985 | break; | |
986 | case 2: /* euclidean squared */ | |
b33c08f8 | 987 | fdist[p] = i_max(xd*xd, yd*yd); /* manhattan distance */ |
02d1d628 AMH |
988 | break; |
989 | default: | |
b1e96952 | 990 | i_fatal(3,"i_gradgen: Unknown distance measure\n"); |
02d1d628 AMH |
991 | } |
992 | cs += fdist[p]; | |
993 | } | |
994 | ||
995 | csd = 1/((num-1)*cs); | |
996 | ||
997 | for(p = 0; p<num; p++) fdist[p] = (cs-fdist[p])*csd; | |
998 | ||
999 | for(ch = 0; ch<channels; ch++) { | |
1000 | int tres = 0; | |
1001 | for(p = 0; p<num; p++) tres += ival[p].channel[ch] * fdist[p]; | |
1002 | val.channel[ch] = saturate(tres); | |
1003 | } | |
1004 | i_ppix(im, x, y, &val); | |
1005 | } | |
a73aeb5f | 1006 | myfree(fdist); |
02d1d628 AMH |
1007 | |
1008 | } | |
1009 | ||
02d1d628 AMH |
1010 | void |
1011 | i_nearest_color_foo(i_img *im, int num, int *xo, int *yo, i_color *ival, int dmeasure) { | |
1012 | ||
a743c0a6 | 1013 | int p, x, y; |
02d1d628 AMH |
1014 | int xsize = im->xsize; |
1015 | int ysize = im->ysize; | |
1016 | ||
1017 | mm_log((1,"i_gradgen(im %p, num %d, xo %p, yo %p, ival %p, dmeasure %d)\n", im, num, xo, yo, ival, dmeasure)); | |
1018 | ||
1019 | for(p = 0; p<num; p++) { | |
1020 | mm_log((1,"i_gradgen: (%d, %d)\n", xo[p], yo[p])); | |
1021 | ICL_info(&ival[p]); | |
1022 | } | |
1023 | ||
1024 | for(y = 0; y<ysize; y++) for(x = 0; x<xsize; x++) { | |
1025 | int midx = 0; | |
1026 | float mindist = 0; | |
1027 | float curdist = 0; | |
1028 | ||
1029 | int xd = x-xo[0]; | |
1030 | int yd = y-yo[0]; | |
1031 | ||
1032 | switch (dmeasure) { | |
1033 | case 0: /* euclidean */ | |
1034 | mindist = sqrt(xd*xd + yd*yd); /* euclidean distance */ | |
1035 | break; | |
1036 | case 1: /* euclidean squared */ | |
1037 | mindist = xd*xd + yd*yd; /* euclidean distance */ | |
1038 | break; | |
1039 | case 2: /* euclidean squared */ | |
b33c08f8 | 1040 | mindist = i_max(xd*xd, yd*yd); /* manhattan distance */ |
02d1d628 AMH |
1041 | break; |
1042 | default: | |
b1e96952 | 1043 | i_fatal(3,"i_nearest_color: Unknown distance measure\n"); |
02d1d628 AMH |
1044 | } |
1045 | ||
1046 | for(p = 1; p<num; p++) { | |
1047 | xd = x-xo[p]; | |
1048 | yd = y-yo[p]; | |
1049 | switch (dmeasure) { | |
1050 | case 0: /* euclidean */ | |
1051 | curdist = sqrt(xd*xd + yd*yd); /* euclidean distance */ | |
1052 | break; | |
1053 | case 1: /* euclidean squared */ | |
1054 | curdist = xd*xd + yd*yd; /* euclidean distance */ | |
1055 | break; | |
1056 | case 2: /* euclidean squared */ | |
b33c08f8 | 1057 | curdist = i_max(xd*xd, yd*yd); /* manhattan distance */ |
02d1d628 AMH |
1058 | break; |
1059 | default: | |
b1e96952 | 1060 | i_fatal(3,"i_nearest_color: Unknown distance measure\n"); |
02d1d628 AMH |
1061 | } |
1062 | if (curdist < mindist) { | |
1063 | mindist = curdist; | |
1064 | midx = p; | |
1065 | } | |
1066 | } | |
1067 | i_ppix(im, x, y, &ival[midx]); | |
1068 | } | |
1069 | } | |
1070 | ||
f0960b14 TC |
1071 | /* |
1072 | =item i_nearest_color(im, num, xo, yo, oval, dmeasure) | |
1073 | ||
1074 | This wasn't document - quoth Addi: | |
1075 | ||
1076 | An arty type of filter | |
1077 | ||
1078 | FIXME: check IRC logs for actual text. | |
1079 | ||
1080 | Inputs: | |
1081 | ||
1082 | =over | |
1083 | ||
1084 | =item * | |
1085 | ||
1086 | i_img *im - image to render on. | |
1087 | ||
1088 | =item * | |
1089 | ||
1090 | int num - number of points/colors in xo, yo, oval | |
1091 | ||
1092 | =item * | |
1093 | ||
1094 | int *xo - array of I<num> x positions | |
1095 | ||
1096 | =item * | |
1097 | ||
1098 | int *yo - array of I<num> y positions | |
1099 | ||
1100 | =item * | |
1101 | ||
1102 | i_color *oval - array of I<num> colors | |
1103 | ||
1104 | xo, yo, oval correspond to each other, the point xo[i], yo[i] has a | |
1105 | color something like oval[i], at least closer to that color than other | |
1106 | points. | |
1107 | ||
1108 | =item * | |
1109 | ||
1110 | int dmeasure - how we measure the distance from some point P(x,y) to | |
1111 | any (xo[i], yo[i]). | |
1112 | ||
1113 | Valid values are: | |
1114 | ||
1115 | =over | |
1116 | ||
1117 | =item 0 | |
1118 | ||
1119 | euclidean distance: sqrt((x2-x1)**2 + (y2-y1)**2) | |
1120 | ||
1121 | =item 1 | |
1122 | ||
1123 | square of euclidean distance: ((x2-x1)**2 + (y2-y1)**2) | |
1124 | ||
1125 | =item 2 | |
1126 | ||
1127 | manhattan distance: max((y2-y1)**2, (x2-x1)**2) | |
1128 | ||
1129 | =back | |
1130 | ||
1131 | An invalid value causes an error exit (the program is aborted). | |
1132 | ||
1133 | =back | |
1134 | ||
1135 | =cut | |
1136 | */ | |
e310e5f9 TC |
1137 | |
1138 | int | |
02d1d628 AMH |
1139 | i_nearest_color(i_img *im, int num, int *xo, int *yo, i_color *oval, int dmeasure) { |
1140 | i_color *ival; | |
1141 | float *tval; | |
1142 | float c1, c2; | |
1143 | i_color val; | |
1144 | int p, x, y, ch; | |
02d1d628 AMH |
1145 | int xsize = im->xsize; |
1146 | int ysize = im->ysize; | |
1147 | int *cmatch; | |
e310e5f9 | 1148 | int ival_bytes, tval_bytes; |
02d1d628 | 1149 | |
f0960b14 | 1150 | mm_log((1,"i_nearest_color(im %p, num %d, xo %p, yo %p, oval %p, dmeasure %d)\n", im, num, xo, yo, oval, dmeasure)); |
02d1d628 | 1151 | |
e310e5f9 TC |
1152 | i_clear_error(); |
1153 | ||
1154 | if (num <= 0) { | |
1155 | i_push_error(0, "no points supplied to nearest_color filter"); | |
1156 | return 0; | |
1157 | } | |
1158 | ||
1159 | if (dmeasure < 0 || dmeasure > i_dmeasure_limit) { | |
1160 | i_push_error(0, "distance measure invalid"); | |
1161 | return 0; | |
1162 | } | |
1163 | ||
1164 | tval_bytes = sizeof(float)*num*im->channels; | |
1165 | if (tval_bytes / num != sizeof(float) * im->channels) { | |
1166 | i_push_error(0, "integer overflow calculating memory allocation"); | |
1167 | return 0; | |
1168 | } | |
1169 | ival_bytes = sizeof(i_color) * num; | |
1170 | if (ival_bytes / sizeof(i_color) != num) { | |
1171 | i_push_error(0, "integer overflow calculating memory allocation"); | |
1172 | return 0; | |
1173 | } | |
1174 | tval = mymalloc( tval_bytes ); /* checked 17feb2005 tonyc */ | |
1175 | ival = mymalloc( ival_bytes ); /* checked 17feb2005 tonyc */ | |
1176 | cmatch = mymalloc( sizeof(int)*num ); /* checked 17feb2005 tonyc */ | |
02d1d628 AMH |
1177 | |
1178 | for(p = 0; p<num; p++) { | |
1179 | for(ch = 0; ch<im->channels; ch++) tval[ p * im->channels + ch] = 0; | |
1180 | cmatch[p] = 0; | |
1181 | } | |
1182 | ||
1183 | ||
1184 | for(y = 0; y<ysize; y++) for(x = 0; x<xsize; x++) { | |
1185 | int midx = 0; | |
1186 | float mindist = 0; | |
1187 | float curdist = 0; | |
1188 | ||
1189 | int xd = x-xo[0]; | |
1190 | int yd = y-yo[0]; | |
1191 | ||
1192 | switch (dmeasure) { | |
1193 | case 0: /* euclidean */ | |
1194 | mindist = sqrt(xd*xd + yd*yd); /* euclidean distance */ | |
1195 | break; | |
1196 | case 1: /* euclidean squared */ | |
1197 | mindist = xd*xd + yd*yd; /* euclidean distance */ | |
1198 | break; | |
e310e5f9 | 1199 | case 2: /* manhatten distance */ |
b33c08f8 | 1200 | mindist = i_max(xd*xd, yd*yd); /* manhattan distance */ |
02d1d628 AMH |
1201 | break; |
1202 | default: | |
b1e96952 | 1203 | i_fatal(3,"i_nearest_color: Unknown distance measure\n"); |
02d1d628 AMH |
1204 | } |
1205 | ||
1206 | for(p = 1; p<num; p++) { | |
1207 | xd = x-xo[p]; | |
1208 | yd = y-yo[p]; | |
1209 | switch (dmeasure) { | |
1210 | case 0: /* euclidean */ | |
1211 | curdist = sqrt(xd*xd + yd*yd); /* euclidean distance */ | |
1212 | break; | |
1213 | case 1: /* euclidean squared */ | |
1214 | curdist = xd*xd + yd*yd; /* euclidean distance */ | |
1215 | break; | |
1216 | case 2: /* euclidean squared */ | |
b33c08f8 | 1217 | curdist = i_max(xd*xd, yd*yd); /* manhattan distance */ |
02d1d628 AMH |
1218 | break; |
1219 | default: | |
b1e96952 | 1220 | i_fatal(3,"i_nearest_color: Unknown distance measure\n"); |
02d1d628 AMH |
1221 | } |
1222 | if (curdist < mindist) { | |
1223 | mindist = curdist; | |
1224 | midx = p; | |
1225 | } | |
1226 | } | |
1227 | ||
1228 | cmatch[midx]++; | |
1229 | i_gpix(im, x, y, &val); | |
1230 | c2 = 1.0/(float)(cmatch[midx]); | |
1231 | c1 = 1.0-c2; | |
1232 | ||
02d1d628 | 1233 | for(ch = 0; ch<im->channels; ch++) |
f0960b14 TC |
1234 | tval[midx*im->channels + ch] = |
1235 | c1*tval[midx*im->channels + ch] + c2 * (float) val.channel[ch]; | |
3bb1c1f3 | 1236 | |
02d1d628 AMH |
1237 | } |
1238 | ||
f0960b14 TC |
1239 | for(p = 0; p<num; p++) for(ch = 0; ch<im->channels; ch++) |
1240 | ival[p].channel[ch] = tval[p*im->channels + ch]; | |
02d1d628 AMH |
1241 | |
1242 | i_nearest_color_foo(im, num, xo, yo, ival, dmeasure); | |
e310e5f9 TC |
1243 | |
1244 | return 1; | |
02d1d628 | 1245 | } |
6607600c | 1246 | |
b6381851 TC |
1247 | /* |
1248 | =item i_unsharp_mask(im, stddev, scale) | |
1249 | ||
1250 | Perform an usharp mask, which is defined as subtracting the blurred | |
1251 | image from double the original. | |
1252 | ||
1253 | =cut | |
1254 | */ | |
e310e5f9 TC |
1255 | |
1256 | void | |
1257 | i_unsharp_mask(i_img *im, double stddev, double scale) { | |
92bda632 | 1258 | i_img *copy; |
b6381851 TC |
1259 | int x, y, ch; |
1260 | ||
1261 | if (scale < 0) | |
1262 | return; | |
1263 | /* it really shouldn't ever be more than 1.0, but maybe ... */ | |
1264 | if (scale > 100) | |
1265 | scale = 100; | |
1266 | ||
92bda632 TC |
1267 | copy = i_copy(im); |
1268 | i_gaussian(copy, stddev); | |
b6381851 | 1269 | if (im->bits == i_8_bits) { |
e310e5f9 TC |
1270 | i_color *blur = mymalloc(im->xsize * sizeof(i_color)); /* checked 17feb2005 tonyc */ |
1271 | i_color *out = mymalloc(im->xsize * sizeof(i_color)); /* checked 17feb2005 tonyc */ | |
b6381851 TC |
1272 | |
1273 | for (y = 0; y < im->ysize; ++y) { | |
92bda632 | 1274 | i_glin(copy, 0, copy->xsize, y, blur); |
b6381851 TC |
1275 | i_glin(im, 0, im->xsize, y, out); |
1276 | for (x = 0; x < im->xsize; ++x) { | |
1277 | for (ch = 0; ch < im->channels; ++ch) { | |
1278 | /*int temp = out[x].channel[ch] + | |
1279 | scale * (out[x].channel[ch] - blur[x].channel[ch]);*/ | |
1280 | int temp = out[x].channel[ch] * 2 - blur[x].channel[ch]; | |
1281 | if (temp < 0) | |
1282 | temp = 0; | |
1283 | else if (temp > 255) | |
1284 | temp = 255; | |
1285 | out[x].channel[ch] = temp; | |
1286 | } | |
1287 | } | |
1288 | i_plin(im, 0, im->xsize, y, out); | |
1289 | } | |
1290 | ||
1291 | myfree(blur); | |
e310e5f9 | 1292 | myfree(out); |
b6381851 TC |
1293 | } |
1294 | else { | |
e310e5f9 TC |
1295 | i_fcolor *blur = mymalloc(im->xsize * sizeof(i_fcolor)); /* checked 17feb2005 tonyc */ |
1296 | i_fcolor *out = mymalloc(im->xsize * sizeof(i_fcolor)); /* checked 17feb2005 tonyc */ | |
b6381851 TC |
1297 | |
1298 | for (y = 0; y < im->ysize; ++y) { | |
92bda632 | 1299 | i_glinf(copy, 0, copy->xsize, y, blur); |
b6381851 TC |
1300 | i_glinf(im, 0, im->xsize, y, out); |
1301 | for (x = 0; x < im->xsize; ++x) { | |
1302 | for (ch = 0; ch < im->channels; ++ch) { | |
1303 | double temp = out[x].channel[ch] + | |
1304 | scale * (out[x].channel[ch] - blur[x].channel[ch]); | |
1305 | if (temp < 0) | |
1306 | temp = 0; | |
1307 | else if (temp > 1.0) | |
1308 | temp = 1.0; | |
1309 | out[x].channel[ch] = temp; | |
1310 | } | |
1311 | } | |
1312 | i_plinf(im, 0, im->xsize, y, out); | |
1313 | } | |
1314 | ||
1315 | myfree(blur); | |
e310e5f9 | 1316 | myfree(out); |
b6381851 | 1317 | } |
92bda632 | 1318 | i_img_destroy(copy); |
b6381851 TC |
1319 | } |
1320 | ||
dff75dee | 1321 | /* |
01b84320 | 1322 | =item i_diff_image(im1, im2, mindist) |
dff75dee TC |
1323 | |
1324 | Creates a new image that is transparent, except where the pixel in im2 | |
1325 | is different from im1, where it is the pixel from im2. | |
1326 | ||
1327 | The samples must differ by at least mindiff to be considered different. | |
1328 | ||
1329 | =cut | |
1330 | */ | |
1331 | ||
1332 | i_img * | |
01b84320 | 1333 | i_diff_image(i_img *im1, i_img *im2, double mindist) { |
dff75dee TC |
1334 | i_img *out; |
1335 | int outchans, diffchans; | |
1336 | int xsize, ysize; | |
dff75dee TC |
1337 | |
1338 | i_clear_error(); | |
1339 | if (im1->channels != im2->channels) { | |
1340 | i_push_error(0, "different number of channels"); | |
1341 | return NULL; | |
1342 | } | |
1343 | ||
1344 | outchans = diffchans = im1->channels; | |
1345 | if (outchans == 1 || outchans == 3) | |
1346 | ++outchans; | |
1347 | ||
b33c08f8 TC |
1348 | xsize = i_min(im1->xsize, im2->xsize); |
1349 | ysize = i_min(im1->ysize, im2->ysize); | |
dff75dee TC |
1350 | |
1351 | out = i_sametype_chans(im1, xsize, ysize, outchans); | |
1352 | ||
1353 | if (im1->bits == i_8_bits && im2->bits == i_8_bits) { | |
e310e5f9 TC |
1354 | i_color *line1 = mymalloc(xsize * sizeof(*line1)); /* checked 17feb2005 tonyc */ |
1355 | i_color *line2 = mymalloc(xsize * sizeof(*line1)); /* checked 17feb2005 tonyc */ | |
dff75dee TC |
1356 | i_color empty; |
1357 | int x, y, ch; | |
01b84320 | 1358 | int imindist = (int)mindist; |
dff75dee TC |
1359 | |
1360 | for (ch = 0; ch < MAXCHANNELS; ++ch) | |
1361 | empty.channel[ch] = 0; | |
1362 | ||
1363 | for (y = 0; y < ysize; ++y) { | |
1364 | i_glin(im1, 0, xsize, y, line1); | |
1365 | i_glin(im2, 0, xsize, y, line2); | |
35342ea0 TC |
1366 | if (outchans != diffchans) { |
1367 | /* give the output an alpha channel since it doesn't have one */ | |
1368 | for (x = 0; x < xsize; ++x) | |
1369 | line2[x].channel[diffchans] = 255; | |
1370 | } | |
dff75dee TC |
1371 | for (x = 0; x < xsize; ++x) { |
1372 | int diff = 0; | |
1373 | for (ch = 0; ch < diffchans; ++ch) { | |
1374 | if (line1[x].channel[ch] != line2[x].channel[ch] | |
01b84320 | 1375 | && abs(line1[x].channel[ch] - line2[x].channel[ch]) > imindist) { |
dff75dee TC |
1376 | diff = 1; |
1377 | break; | |
1378 | } | |
1379 | } | |
1380 | if (!diff) | |
1381 | line2[x] = empty; | |
1382 | } | |
1383 | i_plin(out, 0, xsize, y, line2); | |
1384 | } | |
1385 | myfree(line1); | |
e310e5f9 | 1386 | myfree(line2); |
dff75dee TC |
1387 | } |
1388 | else { | |
e310e5f9 TC |
1389 | i_fcolor *line1 = mymalloc(xsize * sizeof(*line1)); /* checked 17feb2005 tonyc */ |
1390 | i_fcolor *line2 = mymalloc(xsize * sizeof(*line2)); /* checked 17feb2005 tonyc */ | |
dff75dee TC |
1391 | i_fcolor empty; |
1392 | int x, y, ch; | |
01b84320 | 1393 | double dist = mindist / 255.0; |
dff75dee TC |
1394 | |
1395 | for (ch = 0; ch < MAXCHANNELS; ++ch) | |
1396 | empty.channel[ch] = 0; | |
1397 | ||
1398 | for (y = 0; y < ysize; ++y) { | |
1399 | i_glinf(im1, 0, xsize, y, line1); | |
1400 | i_glinf(im2, 0, xsize, y, line2); | |
35342ea0 TC |
1401 | if (outchans != diffchans) { |
1402 | /* give the output an alpha channel since it doesn't have one */ | |
1403 | for (x = 0; x < xsize; ++x) | |
1404 | line2[x].channel[diffchans] = 1.0; | |
1405 | } | |
dff75dee TC |
1406 | for (x = 0; x < xsize; ++x) { |
1407 | int diff = 0; | |
1408 | for (ch = 0; ch < diffchans; ++ch) { | |
1409 | if (line1[x].channel[ch] != line2[x].channel[ch] | |
01b84320 | 1410 | && fabs(line1[x].channel[ch] - line2[x].channel[ch]) > dist) { |
dff75dee TC |
1411 | diff = 1; |
1412 | break; | |
1413 | } | |
1414 | } | |
1415 | if (!diff) | |
1416 | line2[x] = empty; | |
1417 | } | |
1418 | i_plinf(out, 0, xsize, y, line2); | |
1419 | } | |
1420 | myfree(line1); | |
e310e5f9 | 1421 | myfree(line2); |
dff75dee TC |
1422 | } |
1423 | ||
1424 | return out; | |
1425 | } | |
1426 | ||
f1ac5027 | 1427 | struct fount_state; |
6607600c TC |
1428 | static double linear_fount_f(double x, double y, struct fount_state *state); |
1429 | static double bilinear_fount_f(double x, double y, struct fount_state *state); | |
1430 | static double radial_fount_f(double x, double y, struct fount_state *state); | |
1431 | static double square_fount_f(double x, double y, struct fount_state *state); | |
1432 | static double revolution_fount_f(double x, double y, | |
1433 | struct fount_state *state); | |
1434 | static double conical_fount_f(double x, double y, struct fount_state *state); | |
1435 | ||
1436 | typedef double (*fount_func)(double, double, struct fount_state *); | |
1437 | static fount_func fount_funcs[] = | |
1438 | { | |
1439 | linear_fount_f, | |
1440 | bilinear_fount_f, | |
1441 | radial_fount_f, | |
1442 | square_fount_f, | |
1443 | revolution_fount_f, | |
1444 | conical_fount_f, | |
1445 | }; | |
1446 | ||
1447 | static double linear_interp(double pos, i_fountain_seg *seg); | |
1448 | static double sine_interp(double pos, i_fountain_seg *seg); | |
1449 | static double sphereup_interp(double pos, i_fountain_seg *seg); | |
1450 | static double spheredown_interp(double pos, i_fountain_seg *seg); | |
1451 | typedef double (*fount_interp)(double pos, i_fountain_seg *seg); | |
1452 | static fount_interp fount_interps[] = | |
1453 | { | |
1454 | linear_interp, | |
1455 | linear_interp, | |
1456 | sine_interp, | |
1457 | sphereup_interp, | |
1458 | spheredown_interp, | |
1459 | }; | |
1460 | ||
1461 | static void direct_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg); | |
1462 | static void hue_up_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg); | |
1463 | static void hue_down_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg); | |
1464 | typedef void (*fount_cinterp)(i_fcolor *out, double pos, i_fountain_seg *seg); | |
1465 | static fount_cinterp fount_cinterps[] = | |
1466 | { | |
1467 | direct_cinterp, | |
1468 | hue_up_cinterp, | |
1469 | hue_down_cinterp, | |
1470 | }; | |
1471 | ||
1472 | typedef double (*fount_repeat)(double v); | |
1473 | static double fount_r_none(double v); | |
1474 | static double fount_r_sawtooth(double v); | |
1475 | static double fount_r_triangle(double v); | |
1476 | static double fount_r_saw_both(double v); | |
1477 | static double fount_r_tri_both(double v); | |
1478 | static fount_repeat fount_repeats[] = | |
1479 | { | |
1480 | fount_r_none, | |
1481 | fount_r_sawtooth, | |
1482 | fount_r_triangle, | |
1483 | fount_r_saw_both, | |
1484 | fount_r_tri_both, | |
1485 | }; | |
1486 | ||
f1ac5027 TC |
1487 | static int simple_ssample(i_fcolor *out, double x, double y, |
1488 | struct fount_state *state); | |
1489 | static int random_ssample(i_fcolor *out, double x, double y, | |
1490 | struct fount_state *state); | |
1491 | static int circle_ssample(i_fcolor *out, double x, double y, | |
1492 | struct fount_state *state); | |
1493 | typedef int (*fount_ssample)(i_fcolor *out, double x, double y, | |
1494 | struct fount_state *state); | |
6607600c TC |
1495 | static fount_ssample fount_ssamples[] = |
1496 | { | |
1497 | NULL, | |
1498 | simple_ssample, | |
1499 | random_ssample, | |
1500 | circle_ssample, | |
1501 | }; | |
1502 | ||
1503 | static int | |
f1ac5027 TC |
1504 | fount_getat(i_fcolor *out, double x, double y, struct fount_state *state); |
1505 | ||
1506 | /* | |
1507 | Keep state information used by each type of fountain fill | |
1508 | */ | |
1509 | struct fount_state { | |
1510 | /* precalculated for the equation of the line perpendicular to the line AB */ | |
1511 | double lA, lB, lC; | |
1512 | double AB; | |
1513 | double sqrtA2B2; | |
1514 | double mult; | |
1515 | double cos; | |
1516 | double sin; | |
1517 | double theta; | |
1518 | int xa, ya; | |
1519 | void *ssample_data; | |
1520 | fount_func ffunc; | |
1521 | fount_repeat rpfunc; | |
1522 | fount_ssample ssfunc; | |
1523 | double parm; | |
1524 | i_fountain_seg *segs; | |
1525 | int count; | |
1526 | }; | |
1527 | ||
1528 | static void | |
1529 | fount_init_state(struct fount_state *state, double xa, double ya, | |
1530 | double xb, double yb, i_fountain_type type, | |
1531 | i_fountain_repeat repeat, int combine, int super_sample, | |
1532 | double ssample_param, int count, i_fountain_seg *segs); | |
1533 | ||
1534 | static void | |
1535 | fount_finish_state(struct fount_state *state); | |
6607600c TC |
1536 | |
1537 | #define EPSILON (1e-6) | |
1538 | ||
1539 | /* | |
1540 | =item i_fountain(im, xa, ya, xb, yb, type, repeat, combine, super_sample, ssample_param, count, segs) | |
1541 | ||
1542 | Draws a fountain fill using A(xa, ya) and B(xb, yb) as reference points. | |
1543 | ||
1544 | I<type> controls how the reference points are used: | |
1545 | ||
1546 | =over | |
1547 | ||
1548 | =item i_ft_linear | |
1549 | ||
1550 | linear, where A is 0 and B is 1. | |
1551 | ||
1552 | =item i_ft_bilinear | |
1553 | ||
1554 | linear in both directions from A. | |
1555 | ||
1556 | =item i_ft_radial | |
1557 | ||
1558 | circular, where A is the centre of the fill, and B is a point | |
1559 | on the radius. | |
1560 | ||
1561 | =item i_ft_radial_square | |
1562 | ||
1563 | where A is the centre of the fill and B is the centre of | |
1564 | one side of the square. | |
1565 | ||
1566 | =item i_ft_revolution | |
1567 | ||
1568 | where A is the centre of the fill and B defines the 0/1.0 | |
1569 | angle of the fill. | |
1570 | ||
1571 | =item i_ft_conical | |
1572 | ||
1573 | similar to i_ft_revolution, except that the revolution goes in both | |
1574 | directions | |
1575 | ||
1576 | =back | |
1577 | ||
1578 | I<repeat> can be one of: | |
1579 | ||
1580 | =over | |
1581 | ||
1582 | =item i_fr_none | |
1583 | ||
1584 | values < 0 are treated as zero, values > 1 are treated as 1. | |
1585 | ||
1586 | =item i_fr_sawtooth | |
1587 | ||
1588 | negative values are treated as 0, positive values are modulo 1.0 | |
1589 | ||
1590 | =item i_fr_triangle | |
1591 | ||
1592 | negative values are treated as zero, if (int)value is odd then the value is treated as 1-(value | |
1593 | mod 1.0), otherwise the same as for sawtooth. | |
1594 | ||
1595 | =item i_fr_saw_both | |
1596 | ||
1597 | like i_fr_sawtooth, except that the sawtooth pattern repeats into | |
1598 | negative values. | |
1599 | ||
1600 | =item i_fr_tri_both | |
1601 | ||
1602 | Like i_fr_triangle, except that negative values are handled as their | |
1603 | absolute values. | |
1604 | ||
1605 | =back | |
1606 | ||
1607 | If combine is non-zero then non-opaque values are combined with the | |
1608 | underlying color. | |
1609 | ||
1610 | I<super_sample> controls super sampling, if any. At some point I'll | |
1611 | probably add a adaptive super-sampler. Current possible values are: | |
1612 | ||
1613 | =over | |
1614 | ||
1615 | =item i_fts_none | |
1616 | ||
1617 | No super-sampling is done. | |
1618 | ||
1619 | =item i_fts_grid | |
1620 | ||
1621 | A square grid of points withing the pixel are sampled. | |
1622 | ||
1623 | =item i_fts_random | |
1624 | ||
1625 | Random points within the pixel are sampled. | |
1626 | ||
1627 | =item i_fts_circle | |
1628 | ||
1629 | Points on the radius of a circle are sampled. This produces fairly | |
1630 | good results, but is fairly slow since sin() and cos() are evaluated | |
1631 | for each point. | |
1632 | ||
1633 | =back | |
1634 | ||
1635 | I<ssample_param> is intended to be roughly the number of points | |
1636 | sampled within the pixel. | |
1637 | ||
1638 | I<count> and I<segs> define the segments of the fill. | |
1639 | ||
1640 | =cut | |
1641 | ||
1642 | */ | |
1643 | ||
e310e5f9 | 1644 | int |
6607600c TC |
1645 | i_fountain(i_img *im, double xa, double ya, double xb, double yb, |
1646 | i_fountain_type type, i_fountain_repeat repeat, | |
1647 | int combine, int super_sample, double ssample_param, | |
1648 | int count, i_fountain_seg *segs) { | |
1649 | struct fount_state state; | |
6607600c | 1650 | int x, y; |
e310e5f9 | 1651 | i_fcolor *line = NULL; |
efdc2568 | 1652 | i_fcolor *work = NULL; |
e310e5f9 | 1653 | int line_bytes; |
f1ac5027 | 1654 | i_fountain_seg *my_segs; |
efdc2568 TC |
1655 | i_fill_combine_f combine_func = NULL; |
1656 | i_fill_combinef_f combinef_func = NULL; | |
1657 | ||
e310e5f9 TC |
1658 | i_clear_error(); |
1659 | ||
1660 | /* i_fountain() allocates floating colors even for 8-bit images, | |
1661 | so we need to do this check */ | |
1662 | line_bytes = sizeof(i_fcolor) * im->xsize; | |
1663 | if (line_bytes / sizeof(i_fcolor) != im->xsize) { | |
1664 | i_push_error(0, "integer overflow calculating memory allocation"); | |
1665 | return 0; | |
1666 | } | |
1667 | ||
1668 | line = mymalloc(line_bytes); /* checked 17feb2005 tonyc */ | |
1669 | ||
efdc2568 TC |
1670 | i_get_combine(combine, &combine_func, &combinef_func); |
1671 | if (combinef_func) | |
e310e5f9 | 1672 | work = mymalloc(line_bytes); /* checked 17feb2005 tonyc */ |
f1ac5027 TC |
1673 | |
1674 | fount_init_state(&state, xa, ya, xb, yb, type, repeat, combine, | |
e4330a7b | 1675 | super_sample, ssample_param, count, segs); |
f1ac5027 TC |
1676 | my_segs = state.segs; |
1677 | ||
1678 | for (y = 0; y < im->ysize; ++y) { | |
1679 | i_glinf(im, 0, im->xsize, y, line); | |
1680 | for (x = 0; x < im->xsize; ++x) { | |
1681 | i_fcolor c; | |
1682 | int got_one; | |
f1ac5027 TC |
1683 | if (super_sample == i_fts_none) |
1684 | got_one = fount_getat(&c, x, y, &state); | |
1685 | else | |
1686 | got_one = state.ssfunc(&c, x, y, &state); | |
1687 | if (got_one) { | |
efdc2568 TC |
1688 | if (combine) |
1689 | work[x] = c; | |
f1ac5027 TC |
1690 | else |
1691 | line[x] = c; | |
1692 | } | |
1693 | } | |
efdc2568 TC |
1694 | if (combine) |
1695 | combinef_func(line, work, im->channels, im->xsize); | |
f1ac5027 TC |
1696 | i_plinf(im, 0, im->xsize, y, line); |
1697 | } | |
1698 | fount_finish_state(&state); | |
a73aeb5f | 1699 | if (work) myfree(work); |
f1ac5027 | 1700 | myfree(line); |
e310e5f9 TC |
1701 | |
1702 | return 1; | |
f1ac5027 TC |
1703 | } |
1704 | ||
1705 | typedef struct { | |
1706 | i_fill_t base; | |
1707 | struct fount_state state; | |
1708 | } i_fill_fountain_t; | |
1709 | ||
1710 | static void | |
1711 | fill_fountf(i_fill_t *fill, int x, int y, int width, int channels, | |
43c5dacb | 1712 | i_fcolor *data); |
f1ac5027 TC |
1713 | static void |
1714 | fount_fill_destroy(i_fill_t *fill); | |
1715 | ||
9b1ec2b8 TC |
1716 | static i_fill_fountain_t |
1717 | fount_fill_proto = | |
1718 | { | |
1719 | { | |
1720 | NULL, | |
1721 | fill_fountf, | |
1722 | fount_fill_destroy | |
1723 | } | |
1724 | }; | |
1725 | ||
1726 | ||
f1ac5027 | 1727 | /* |
92bda632 TC |
1728 | =item i_new_fill_fount(xa, ya, xb, yb, type, repeat, combine, super_sample, ssample_param, count, segs) |
1729 | ||
1730 | =category Fills | |
1731 | =synopsis fill = i_new_fill_fount(0, 0, 100, 100, i_ft_linear, i_ft_linear, | |
1732 | =synopsis i_fr_triangle, 0, i_fts_grid, 9, 1, segs); | |
1733 | ||
f1ac5027 | 1734 | |
773bc121 TC |
1735 | Creates a new general fill which fills with a fountain fill. |
1736 | ||
f1ac5027 TC |
1737 | =cut |
1738 | */ | |
1739 | ||
1740 | i_fill_t * | |
1741 | i_new_fill_fount(double xa, double ya, double xb, double yb, | |
1742 | i_fountain_type type, i_fountain_repeat repeat, | |
1743 | int combine, int super_sample, double ssample_param, | |
1744 | int count, i_fountain_seg *segs) { | |
1745 | i_fill_fountain_t *fill = mymalloc(sizeof(i_fill_fountain_t)); | |
1746 | ||
9b1ec2b8 | 1747 | *fill = fount_fill_proto; |
efdc2568 TC |
1748 | if (combine) |
1749 | i_get_combine(combine, &fill->base.combine, &fill->base.combinef); | |
1750 | else { | |
1751 | fill->base.combine = NULL; | |
1752 | fill->base.combinef = NULL; | |
1753 | } | |
f1ac5027 TC |
1754 | fount_init_state(&fill->state, xa, ya, xb, yb, type, repeat, combine, |
1755 | super_sample, ssample_param, count, segs); | |
1756 | ||
1757 | return &fill->base; | |
1758 | } | |
1759 | ||
1760 | /* | |
1761 | =back | |
1762 | ||
1763 | =head1 INTERNAL FUNCTIONS | |
1764 | ||
1765 | =over | |
1766 | ||
1767 | =item fount_init_state(...) | |
1768 | ||
1769 | Used by both the fountain fill filter and the fountain fill. | |
1770 | ||
1771 | =cut | |
1772 | */ | |
1773 | ||
1774 | static void | |
1775 | fount_init_state(struct fount_state *state, double xa, double ya, | |
1776 | double xb, double yb, i_fountain_type type, | |
1777 | i_fountain_repeat repeat, int combine, int super_sample, | |
1778 | double ssample_param, int count, i_fountain_seg *segs) { | |
6607600c | 1779 | int i, j; |
d3d01aeb TC |
1780 | int bytes; |
1781 | i_fountain_seg *my_segs = mymalloc(sizeof(i_fountain_seg) * count); /* checked 2jul06 - duplicating original */ | |
f1ac5027 | 1782 | /*int have_alpha = im->channels == 2 || im->channels == 4;*/ |
f1ac5027 TC |
1783 | |
1784 | memset(state, 0, sizeof(*state)); | |
6607600c TC |
1785 | /* we keep a local copy that we can adjust for speed */ |
1786 | for (i = 0; i < count; ++i) { | |
1787 | i_fountain_seg *seg = my_segs + i; | |
1788 | ||
1789 | *seg = segs[i]; | |
4c033fd4 TC |
1790 | if (seg->type < 0 || seg->type >= i_fst_end) |
1791 | seg->type = i_fst_linear; | |
6607600c TC |
1792 | if (seg->color < 0 || seg->color >= i_fc_end) |
1793 | seg->color = i_fc_direct; | |
1794 | if (seg->color == i_fc_hue_up || seg->color == i_fc_hue_down) { | |
1795 | /* so we don't have to translate to HSV on each request, do it here */ | |
1796 | for (j = 0; j < 2; ++j) { | |
1797 | i_rgb_to_hsvf(seg->c+j); | |
1798 | } | |
1799 | if (seg->color == i_fc_hue_up) { | |
1800 | if (seg->c[1].channel[0] <= seg->c[0].channel[0]) | |
1801 | seg->c[1].channel[0] += 1.0; | |
1802 | } | |
1803 | else { | |
1804 | if (seg->c[0].channel[0] <= seg->c[0].channel[1]) | |
1805 | seg->c[0].channel[0] += 1.0; | |
1806 | } | |
1807 | } | |
1808 | /*printf("start %g mid %g end %g c0(%g,%g,%g,%g) c1(%g,%g,%g,%g) type %d color %d\n", | |
1809 | seg->start, seg->middle, seg->end, seg->c[0].channel[0], | |
1810 | seg->c[0].channel[1], seg->c[0].channel[2], seg->c[0].channel[3], | |
1811 | seg->c[1].channel[0], seg->c[1].channel[1], seg->c[1].channel[2], | |
1812 | seg->c[1].channel[3], seg->type, seg->color);*/ | |
1813 | ||
1814 | } | |
1815 | ||
1816 | /* initialize each engine */ | |
1817 | /* these are so common ... */ | |
f1ac5027 TC |
1818 | state->lA = xb - xa; |
1819 | state->lB = yb - ya; | |
1820 | state->AB = sqrt(state->lA * state->lA + state->lB * state->lB); | |
1821 | state->xa = xa; | |
1822 | state->ya = ya; | |
6607600c TC |
1823 | switch (type) { |
1824 | default: | |
1825 | type = i_ft_linear; /* make the invalid value valid */ | |
1826 | case i_ft_linear: | |
1827 | case i_ft_bilinear: | |
f1ac5027 TC |
1828 | state->lC = ya * ya - ya * yb + xa * xa - xa * xb; |
1829 | state->mult = 1; | |
1830 | state->mult = 1/linear_fount_f(xb, yb, state); | |
6607600c TC |
1831 | break; |
1832 | ||
1833 | case i_ft_radial: | |
f1ac5027 TC |
1834 | state->mult = 1.0 / sqrt((double)(xb-xa)*(xb-xa) |
1835 | + (double)(yb-ya)*(yb-ya)); | |
6607600c TC |
1836 | break; |
1837 | ||
1838 | case i_ft_radial_square: | |
f1ac5027 TC |
1839 | state->cos = state->lA / state->AB; |
1840 | state->sin = state->lB / state->AB; | |
1841 | state->mult = 1.0 / state->AB; | |
6607600c TC |
1842 | break; |
1843 | ||
1844 | case i_ft_revolution: | |
f1ac5027 TC |
1845 | state->theta = atan2(yb-ya, xb-xa); |
1846 | state->mult = 1.0 / (PI * 2); | |
6607600c TC |
1847 | break; |
1848 | ||
1849 | case i_ft_conical: | |
f1ac5027 TC |
1850 | state->theta = atan2(yb-ya, xb-xa); |
1851 | state->mult = 1.0 / PI; | |
6607600c TC |
1852 | break; |
1853 | } | |
f1ac5027 | 1854 | state->ffunc = fount_funcs[type]; |
6607600c | 1855 | if (super_sample < 0 |
290bdf77 | 1856 | || super_sample >= (int)(sizeof(fount_ssamples)/sizeof(*fount_ssamples))) { |
6607600c TC |
1857 | super_sample = 0; |
1858 | } | |
f1ac5027 | 1859 | state->ssample_data = NULL; |
6607600c TC |
1860 | switch (super_sample) { |
1861 | case i_fts_grid: | |
1862 | ssample_param = floor(0.5 + sqrt(ssample_param)); | |
d3d01aeb TC |
1863 | bytes = ssample_param * ssample_param * sizeof(i_fcolor); |
1864 | if (bytes / sizeof(i_fcolor) == ssample_param * ssample_param) { | |
1865 | state->ssample_data = mymalloc(sizeof(i_fcolor) * ssample_param * ssample_param); /* checked 1jul06 tonyc */ | |
1866 | } | |
1867 | else { | |
1868 | super_sample = i_fts_none; | |
1869 | } | |
6607600c TC |
1870 | break; |
1871 | ||
1872 | case i_fts_random: | |
1873 | case i_fts_circle: | |
1874 | ssample_param = floor(0.5+ssample_param); | |
d3d01aeb TC |
1875 | bytes = sizeof(i_fcolor) * ssample_param; |
1876 | if (bytes / sizeof(i_fcolor) == ssample_param) { | |
1877 | state->ssample_data = mymalloc(sizeof(i_fcolor) * ssample_param); | |
1878 | } | |
1879 | else { | |
1880 | super_sample = i_fts_none; | |
1881 | } | |
6607600c TC |
1882 | break; |
1883 | } | |
f1ac5027 TC |
1884 | state->parm = ssample_param; |
1885 | state->ssfunc = fount_ssamples[super_sample]; | |
6607600c TC |
1886 | if (repeat < 0 || repeat >= (sizeof(fount_repeats)/sizeof(*fount_repeats))) |
1887 | repeat = 0; | |
f1ac5027 TC |
1888 | state->rpfunc = fount_repeats[repeat]; |
1889 | state->segs = my_segs; | |
1890 | state->count = count; | |
6607600c TC |
1891 | } |
1892 | ||
f1ac5027 TC |
1893 | static void |
1894 | fount_finish_state(struct fount_state *state) { | |
1895 | if (state->ssample_data) | |
1896 | myfree(state->ssample_data); | |
1897 | myfree(state->segs); | |
1898 | } | |
6607600c | 1899 | |
6607600c | 1900 | |
f1ac5027 | 1901 | /* |
6607600c TC |
1902 | =item fount_getat(out, x, y, ffunc, rpfunc, state, segs, count) |
1903 | ||
1904 | Evaluates the fountain fill at the given point. | |
1905 | ||
1906 | This is called by both the non-super-sampling and super-sampling code. | |
1907 | ||
1908 | You might think that it would make sense to sample the fill parameter | |
1909 | instead, and combine those, but this breaks badly. | |
1910 | ||
1911 | =cut | |
1912 | */ | |
1913 | ||
1914 | static int | |
f1ac5027 TC |
1915 | fount_getat(i_fcolor *out, double x, double y, struct fount_state *state) { |
1916 | double v = (state->rpfunc)((state->ffunc)(x, y, state)); | |
6607600c TC |
1917 | int i; |
1918 | ||
1919 | i = 0; | |
f1ac5027 TC |
1920 | while (i < state->count |
1921 | && (v < state->segs[i].start || v > state->segs[i].end)) { | |
6607600c TC |
1922 | ++i; |
1923 | } | |
f1ac5027 TC |
1924 | if (i < state->count) { |
1925 | v = (fount_interps[state->segs[i].type])(v, state->segs+i); | |
1926 | (fount_cinterps[state->segs[i].color])(out, v, state->segs+i); | |
6607600c TC |
1927 | return 1; |
1928 | } | |
1929 | else | |
1930 | return 0; | |
1931 | } | |
1932 | ||
1933 | /* | |
1934 | =item linear_fount_f(x, y, state) | |
1935 | ||
1936 | Calculate the fill parameter for a linear fountain fill. | |
1937 | ||
1938 | Uses the point to line distance function, with some precalculation | |
1939 | done in i_fountain(). | |
1940 | ||
1941 | =cut | |
1942 | */ | |
1943 | static double | |
1944 | linear_fount_f(double x, double y, struct fount_state *state) { | |
1945 | return (state->lA * x + state->lB * y + state->lC) / state->AB * state->mult; | |
1946 | } | |
1947 | ||
1948 | /* | |
1949 | =item bilinear_fount_f(x, y, state) | |
1950 | ||
1951 | Calculate the fill parameter for a bi-linear fountain fill. | |
1952 | ||
1953 | =cut | |
1954 | */ | |
1955 | static double | |
1956 | bilinear_fount_f(double x, double y, struct fount_state *state) { | |
1957 | return fabs((state->lA * x + state->lB * y + state->lC) / state->AB * state->mult); | |
1958 | } | |
1959 | ||
1960 | /* | |
1961 | =item radial_fount_f(x, y, state) | |
1962 | ||
1963 | Calculate the fill parameter for a radial fountain fill. | |
1964 | ||
1965 | Simply uses the distance function. | |
1966 | ||
1967 | =cut | |
1968 | */ | |
1969 | static double | |
1970 | radial_fount_f(double x, double y, struct fount_state *state) { | |
1971 | return sqrt((double)(state->xa-x)*(state->xa-x) | |
1972 | + (double)(state->ya-y)*(state->ya-y)) * state->mult; | |
1973 | } | |
1974 | ||
1975 | /* | |
1976 | =item square_fount_f(x, y, state) | |
1977 | ||
1978 | Calculate the fill parameter for a square fountain fill. | |
1979 | ||
1980 | Works by rotating the reference co-ordinate around the centre of the | |
1981 | square. | |
1982 | ||
1983 | =cut | |
1984 | */ | |
1985 | static double | |
1986 | square_fount_f(double x, double y, struct fount_state *state) { | |
1987 | int xc, yc; /* centred on A */ | |
1988 | double xt, yt; /* rotated by theta */ | |
1989 | xc = x - state->xa; | |
1990 | yc = y - state->ya; | |
1991 | xt = fabs(xc * state->cos + yc * state->sin); | |
1992 | yt = fabs(-xc * state->sin + yc * state->cos); | |
1993 | return (xt > yt ? xt : yt) * state->mult; | |
1994 | } | |
1995 | ||
1996 | /* | |
1997 | =item revolution_fount_f(x, y, state) | |
1998 | ||
1999 | Calculates the fill parameter for the revolution fountain fill. | |
2000 | ||
2001 | =cut | |
2002 | */ | |
2003 | static double | |
2004 | revolution_fount_f(double x, double y, struct fount_state *state) { | |
2005 | double angle = atan2(y - state->ya, x - state->xa); | |
2006 | ||
2007 | angle -= state->theta; | |
2008 | if (angle < 0) { | |
2009 | angle = fmod(angle+ PI * 4, PI*2); | |
2010 | } | |
2011 | ||
2012 | return angle * state->mult; | |
2013 | } | |
2014 | ||
2015 | /* | |
2016 | =item conical_fount_f(x, y, state) | |
2017 | ||
2018 | Calculates the fill parameter for the conical fountain fill. | |
2019 | ||
2020 | =cut | |
2021 | */ | |
2022 | static double | |
2023 | conical_fount_f(double x, double y, struct fount_state *state) { | |
2024 | double angle = atan2(y - state->ya, x - state->xa); | |
2025 | ||
2026 | angle -= state->theta; | |
2027 | if (angle < -PI) | |
2028 | angle += PI * 2; | |
2029 | else if (angle > PI) | |
2030 | angle -= PI * 2; | |
2031 | ||
2032 | return fabs(angle) * state->mult; | |
2033 | } | |
2034 | ||
2035 | /* | |
2036 | =item linear_interp(pos, seg) | |
2037 | ||
2038 | Calculates linear interpolation on the fill parameter. Breaks the | |
2039 | segment into 2 regions based in the I<middle> value. | |
2040 | ||
2041 | =cut | |
2042 | */ | |
2043 | static double | |
2044 | linear_interp(double pos, i_fountain_seg *seg) { | |
2045 | if (pos < seg->middle) { | |
2046 | double len = seg->middle - seg->start; | |
2047 | if (len < EPSILON) | |
2048 | return 0.0; | |
2049 | else | |
2050 | return (pos - seg->start) / len / 2; | |
2051 | } | |
2052 | else { | |
2053 | double len = seg->end - seg->middle; | |
2054 | if (len < EPSILON) | |
2055 | return 1.0; | |
2056 | else | |
2057 | return 0.5 + (pos - seg->middle) / len / 2; | |
2058 | } | |
2059 | } | |
2060 | ||
2061 | /* | |
2062 | =item sine_interp(pos, seg) | |
2063 | ||
2064 | Calculates sine function interpolation on the fill parameter. | |
2065 | ||
2066 | =cut | |
2067 | */ | |
2068 | static double | |
2069 | sine_interp(double pos, i_fountain_seg *seg) { | |
2070 | /* I wonder if there's a simple way to smooth the transition for this */ | |
2071 | double work = linear_interp(pos, seg); | |
2072 | ||
2073 | return (1-cos(work * PI))/2; | |
2074 | } | |
2075 | ||
2076 | /* | |
2077 | =item sphereup_interp(pos, seg) | |
2078 | ||
2079 | Calculates spherical interpolation on the fill parameter, with the cusp | |
2080 | at the low-end. | |
2081 | ||
2082 | =cut | |
2083 | */ | |
2084 | static double | |
2085 | sphereup_interp(double pos, i_fountain_seg *seg) { | |
2086 | double work = linear_interp(pos, seg); | |
2087 | ||
2088 | return sqrt(1.0 - (1-work) * (1-work)); | |
2089 | } | |
2090 | ||
2091 | /* | |
2092 | =item spheredown_interp(pos, seg) | |
2093 | ||
2094 | Calculates spherical interpolation on the fill parameter, with the cusp | |
2095 | at the high-end. | |
2096 | ||
2097 | =cut | |
2098 | */ | |
2099 | static double | |
2100 | spheredown_interp(double pos, i_fountain_seg *seg) { | |
2101 | double work = linear_interp(pos, seg); | |
2102 | ||
2103 | return 1-sqrt(1.0 - work * work); | |
2104 | } | |
2105 | ||
2106 | /* | |
2107 | =item direct_cinterp(out, pos, seg) | |
2108 | ||
2109 | Calculates the fountain color based on direct scaling of the channels | |
2110 | of the color channels. | |
2111 | ||
2112 | =cut | |
2113 | */ | |
2114 | static void | |
2115 | direct_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg) { | |
2116 | int ch; | |
2117 | for (ch = 0; ch < MAXCHANNELS; ++ch) { | |
2118 | out->channel[ch] = seg->c[0].channel[ch] * (1 - pos) | |
2119 | + seg->c[1].channel[ch] * pos; | |
2120 | } | |
2121 | } | |
2122 | ||
2123 | /* | |
2124 | =item hue_up_cinterp(put, pos, seg) | |
2125 | ||
2126 | Calculates the fountain color based on scaling a HSV value. The hue | |
2127 | increases as the fill parameter increases. | |
2128 | ||
2129 | =cut | |
2130 | */ | |
2131 | static void | |
2132 | hue_up_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg) { | |
2133 | int ch; | |
2134 | for (ch = 0; ch < MAXCHANNELS; ++ch) { | |
2135 | out->channel[ch] = seg->c[0].channel[ch] * (1 - pos) | |
2136 | + seg->c[1].channel[ch] * pos; | |
2137 | } | |
2138 | i_hsv_to_rgbf(out); | |
2139 | } | |
2140 | ||
2141 | /* | |
2142 | =item hue_down_cinterp(put, pos, seg) | |
2143 | ||
2144 | Calculates the fountain color based on scaling a HSV value. The hue | |
2145 | decreases as the fill parameter increases. | |
2146 | ||
2147 | =cut | |
2148 | */ | |
2149 | static void | |
2150 | hue_down_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg) { | |
2151 | int ch; | |
2152 | for (ch = 0; ch < MAXCHANNELS; ++ch) { | |
2153 | out->channel[ch] = seg->c[0].channel[ch] * (1 - pos) | |
2154 | + seg->c[1].channel[ch] * pos; | |
2155 | } | |
2156 | i_hsv_to_rgbf(out); | |
2157 | } | |
2158 | ||
2159 | /* | |
2160 | =item simple_ssample(out, parm, x, y, state, ffunc, rpfunc, segs, count) | |
2161 | ||
2162 | Simple grid-based super-sampling. | |
2163 | ||
2164 | =cut | |
2165 | */ | |
2166 | static int | |
f1ac5027 | 2167 | simple_ssample(i_fcolor *out, double x, double y, struct fount_state *state) { |
6607600c TC |
2168 | i_fcolor *work = state->ssample_data; |
2169 | int dx, dy; | |
f1ac5027 | 2170 | int grid = state->parm; |
6607600c TC |
2171 | double base = -0.5 + 0.5 / grid; |
2172 | double step = 1.0 / grid; | |
2173 | int ch, i; | |
2174 | int samp_count = 0; | |
2175 | ||
2176 | for (dx = 0; dx < grid; ++dx) { | |
2177 | for (dy = 0; dy < grid; ++dy) { | |
2178 | if (fount_getat(work+samp_count, x + base + step * dx, | |
f1ac5027 | 2179 | y + base + step * dy, state)) { |
6607600c TC |
2180 | ++samp_count; |
2181 | } | |
2182 | } | |
2183 | } | |
2184 | for (ch = 0; ch < MAXCHANNELS; ++ch) { | |
2185 | out->channel[ch] = 0; | |
2186 | for (i = 0; i < samp_count; ++i) { | |
2187 | out->channel[ch] += work[i].channel[ch]; | |
2188 | } | |
2189 | /* we divide by 4 rather than samp_count since if there's only one valid | |
2190 | sample it should be mostly transparent */ | |
2191 | out->channel[ch] /= grid * grid; | |
2192 | } | |
2193 | return samp_count; | |
2194 | } | |
2195 | ||
2196 | /* | |
2197 | =item random_ssample(out, parm, x, y, state, ffunc, rpfunc, segs, count) | |
2198 | ||
2199 | Random super-sampling. | |
2200 | ||
2201 | =cut | |
2202 | */ | |
2203 | static int | |
f1ac5027 TC |
2204 | random_ssample(i_fcolor *out, double x, double y, |
2205 | struct fount_state *state) { | |
6607600c TC |
2206 | i_fcolor *work = state->ssample_data; |
2207 | int i, ch; | |
f1ac5027 | 2208 | int maxsamples = state->parm; |
6607600c TC |
2209 | double rand_scale = 1.0 / RAND_MAX; |
2210 | int samp_count = 0; | |
2211 | for (i = 0; i < maxsamples; ++i) { | |
2212 | if (fount_getat(work+samp_count, x - 0.5 + rand() * rand_scale, | |
f1ac5027 | 2213 | y - 0.5 + rand() * rand_scale, state)) { |
6607600c TC |
2214 | ++samp_count; |
2215 | } | |
2216 | } | |
2217 | for (ch = 0; ch < MAXCHANNELS; ++ch) { | |
2218 | out->channel[ch] = 0; | |
2219 | for (i = 0; i < samp_count; ++i) { | |
2220 | out->channel[ch] += work[i].channel[ch]; | |
2221 | } | |
2222 | /* we divide by maxsamples rather than samp_count since if there's | |
2223 | only one valid sample it should be mostly transparent */ | |
2224 | out->channel[ch] /= maxsamples; | |
2225 | } | |
2226 | return samp_count; | |
2227 | } | |
2228 | ||
2229 | /* | |
2230 | =item circle_ssample(out, parm, x, y, state, ffunc, rpfunc, segs, count) | |
2231 | ||
2232 | Super-sampling around the circumference of a circle. | |
2233 | ||
2234 | I considered saving the sin()/cos() values and transforming step-size | |
2235 | around the circle, but that's inaccurate, though it may not matter | |
2236 | much. | |
2237 | ||
2238 | =cut | |
2239 | */ | |
2240 | static int | |
f1ac5027 TC |
2241 | circle_ssample(i_fcolor *out, double x, double y, |
2242 | struct fount_state *state) { | |
6607600c TC |
2243 | i_fcolor *work = state->ssample_data; |
2244 | int i, ch; | |
f1ac5027 | 2245 | int maxsamples = state->parm; |
6607600c TC |
2246 | double angle = 2 * PI / maxsamples; |
2247 | double radius = 0.3; /* semi-random */ | |
2248 | int samp_count = 0; | |
2249 | for (i = 0; i < maxsamples; ++i) { | |
2250 | if (fount_getat(work+samp_count, x + radius * cos(angle * i), | |
f1ac5027 | 2251 | y + radius * sin(angle * i), state)) { |
6607600c TC |
2252 | ++samp_count; |
2253 | } | |
2254 | } | |
2255 | for (ch = 0; ch < MAXCHANNELS; ++ch) { | |
2256 | out->channel[ch] = 0; | |
2257 | for (i = 0; i < samp_count; ++i) { | |
2258 | out->channel[ch] += work[i].channel[ch]; | |
2259 | } | |
2260 | /* we divide by maxsamples rather than samp_count since if there's | |
2261 | only one valid sample it should be mostly transparent */ | |
2262 | out->channel[ch] /= maxsamples; | |
2263 | } | |
2264 | return samp_count; | |
2265 | } | |
2266 | ||
2267 | /* | |
2268 | =item fount_r_none(v) | |
2269 | ||
2270 | Implements no repeats. Simply clamps the fill value. | |
2271 | ||
2272 | =cut | |
2273 | */ | |
2274 | static double | |
2275 | fount_r_none(double v) { | |
2276 | return v < 0 ? 0 : v > 1 ? 1 : v; | |
2277 | } | |
2278 | ||
2279 | /* | |
2280 | =item fount_r_sawtooth(v) | |
2281 | ||
2282 | Implements sawtooth repeats. Clamps negative values and uses fmod() | |
2283 | on others. | |
2284 | ||
2285 | =cut | |
2286 | */ | |
2287 | static double | |
2288 | fount_r_sawtooth(double v) { | |
2289 | return v < 0 ? 0 : fmod(v, 1.0); | |
2290 | } | |
2291 | ||
2292 | /* | |
2293 | =item fount_r_triangle(v) | |
2294 | ||
2295 | Implements triangle repeats. Clamps negative values, uses fmod to get | |
2296 | a range 0 through 2 and then adjusts values > 1. | |
2297 | ||
2298 | =cut | |
2299 | */ | |
2300 | static double | |
2301 | fount_r_triangle(double v) { | |
2302 | if (v < 0) | |
2303 | return 0; | |
2304 | else { | |
2305 | v = fmod(v, 2.0); | |
2306 | return v > 1.0 ? 2.0 - v : v; | |
2307 | } | |
2308 | } | |
2309 | ||
2310 | /* | |
2311 | =item fount_r_saw_both(v) | |
2312 | ||
2313 | Implements sawtooth repeats in the both postive and negative directions. | |
2314 | ||
2315 | Adjusts the value to be postive and then just uses fmod(). | |
2316 | ||
2317 | =cut | |
2318 | */ | |
2319 | static double | |
2320 | fount_r_saw_both(double v) { | |
2321 | if (v < 0) | |
2322 | v += 1+(int)(-v); | |
2323 | return fmod(v, 1.0); | |
2324 | } | |
2325 | ||
2326 | /* | |
2327 | =item fount_r_tri_both(v) | |
2328 | ||
2329 | Implements triangle repeats in the both postive and negative directions. | |
2330 | ||
2331 | Uses fmod on the absolute value, and then adjusts values > 1. | |
2332 | ||
2333 | =cut | |
2334 | */ | |
2335 | static double | |
2336 | fount_r_tri_both(double v) { | |
2337 | v = fmod(fabs(v), 2.0); | |
2338 | return v > 1.0 ? 2.0 - v : v; | |
2339 | } | |
2340 | ||
f1ac5027 TC |
2341 | /* |
2342 | =item fill_fountf(fill, x, y, width, channels, data) | |
2343 | ||
2344 | The fill function for fountain fills. | |
2345 | ||
2346 | =cut | |
2347 | */ | |
2348 | static void | |
2349 | fill_fountf(i_fill_t *fill, int x, int y, int width, int channels, | |
43c5dacb | 2350 | i_fcolor *data) { |
f1ac5027 | 2351 | i_fill_fountain_t *f = (i_fill_fountain_t *)fill; |
efdc2568 | 2352 | |
43c5dacb TC |
2353 | while (width--) { |
2354 | i_fcolor c; | |
2355 | int got_one; | |
2356 | ||
2357 | if (f->state.ssfunc) | |
2358 | got_one = f->state.ssfunc(&c, x, y, &f->state); | |
2359 | else | |
2360 | got_one = fount_getat(&c, x, y, &f->state); | |
2361 | ||
2362 | *data++ = c; | |
2363 | ||
2364 | ++x; | |
f1ac5027 TC |
2365 | } |
2366 | } | |
2367 | ||
2368 | /* | |
2369 | =item fount_fill_destroy(fill) | |
2370 | ||
2371 | =cut | |
2372 | */ | |
2373 | static void | |
2374 | fount_fill_destroy(i_fill_t *fill) { | |
2375 | i_fill_fountain_t *f = (i_fill_fountain_t *)fill; | |
2376 | fount_finish_state(&f->state); | |
2377 | } | |
2378 | ||
6607600c TC |
2379 | /* |
2380 | =back | |
2381 | ||
2382 | =head1 AUTHOR | |
2383 | ||
2384 | Arnar M. Hrafnkelsson <addi@umich.edu> | |
2385 | ||
2386 | Tony Cook <tony@develop-help.com> (i_fountain()) | |
2387 | ||
2388 | =head1 SEE ALSO | |
2389 | ||
2390 | Imager(3) | |
2391 | ||
2392 | =cut | |
2393 | */ |