Commit | Line | Data |
---|---|---|
02d1d628 AMH |
1 | /* quant.c - provides general image quantization |
2 | currently only used by gif.c, but maybe we'll support producing | |
3 | 8-bit (or bigger indexed) png files at some point | |
4 | */ | |
92bda632 | 5 | #include "imager.h" |
02d1d628 AMH |
6 | |
7 | static void makemap_addi(i_quantize *, i_img **imgs, int count); | |
97c4effc | 8 | static void makemap_mediancut(i_quantize *, i_img **imgs, int count); |
02d1d628 AMH |
9 | |
10 | static | |
11 | void | |
12 | setcol(i_color *cl,unsigned char r,unsigned char g,unsigned char b,unsigned char a) { | |
13 | cl->rgba.r=r; | |
14 | cl->rgba.g=g; | |
15 | cl->rgba.b=b; | |
16 | cl->rgba.a=a; | |
17 | } | |
18 | ||
19 | ||
20 | ||
21 | /* make a colour map overwrites mc_existing/mc_count in quant Note | |
22 | that i_makemap will be called once for each image if mc_perimage is | |
23 | set and the format support multiple colour maps per image. | |
24 | ||
25 | This means we don't need any special processing at this level to | |
26 | handle multiple colour maps. | |
27 | */ | |
28 | ||
92bda632 TC |
29 | /* |
30 | =item i_quant_makemap(quant, imgs, count) | |
31 | ||
32 | =category Image quantization | |
33 | ||
34 | Analyzes the I<count> images in I<imgs> according to the rules in | |
35 | I<quant> to build a color map (optimal or not depending on | |
36 | quant->make_colors). | |
37 | ||
38 | =cut | |
39 | */ | |
40 | ||
02d1d628 | 41 | void |
92bda632 | 42 | i_quant_makemap(i_quantize *quant, i_img **imgs, int count) { |
97c4effc TC |
43 | |
44 | if (quant->translate == pt_giflib) { | |
45 | /* giflib does it's own color table generation */ | |
46 | /* previously we used giflib's quantizer, but it didn't handle multiple | |
47 | images, which made it hard to build a global color map | |
48 | We've implemented our own median cut code so we can ignore | |
49 | the giflib version */ | |
50 | makemap_mediancut(quant, imgs, count); | |
02d1d628 | 51 | return; |
97c4effc TC |
52 | } |
53 | ||
02d1d628 AMH |
54 | switch (quant->make_colors & mc_mask) { |
55 | case mc_none: | |
56 | /* use user's specified map */ | |
57 | break; | |
58 | case mc_web_map: | |
59 | { | |
60 | int r, g, b; | |
61 | int i = 0; | |
62 | for (r = 0; r < 256; r+=0x33) | |
63 | for (g = 0; g < 256; g+=0x33) | |
64 | for (b = 0; b < 256; b += 0x33) | |
b74d74ac | 65 | setcol(quant->mc_colors+i++, r, g, b, 255); |
02d1d628 AMH |
66 | quant->mc_count = i; |
67 | } | |
68 | break; | |
69 | ||
97c4effc TC |
70 | case mc_median_cut: |
71 | makemap_mediancut(quant, imgs, count); | |
72 | break; | |
73 | ||
02d1d628 AMH |
74 | case mc_addi: |
75 | default: | |
76 | makemap_addi(quant, imgs, count); | |
77 | break; | |
78 | } | |
79 | } | |
80 | ||
02d1d628 AMH |
81 | static void translate_closest(i_quantize *, i_img *, i_palidx *); |
82 | static void translate_errdiff(i_quantize *, i_img *, i_palidx *); | |
83 | static void translate_addi(i_quantize *, i_img *, i_palidx *); | |
84 | ||
92bda632 TC |
85 | /* |
86 | =item i_quant_translate(quant, img) | |
87 | ||
88 | =category Image quantization | |
89 | ||
90 | Quantize the image given the palette in quant. | |
91 | ||
92 | On success returns a pointer to a memory block of img->xsize * | |
93 | img->ysize i_palidx entries. | |
94 | ||
95 | On failure returns NULL. | |
02d1d628 | 96 | |
92bda632 TC |
97 | You should call myfree() on the returned block when you're done with |
98 | it. | |
99 | ||
100 | This function will fail if the supplied palette contains no colors. | |
101 | ||
102 | =cut | |
02d1d628 | 103 | */ |
92bda632 TC |
104 | i_palidx * |
105 | i_quant_translate(i_quantize *quant, i_img *img) { | |
2ff8ed30 | 106 | i_palidx *result; |
f771d0ec TC |
107 | int bytes; |
108 | ||
a73aeb5f | 109 | mm_log((1, "quant_translate(quant %p, img %p)\n", quant, img)); |
2ff8ed30 | 110 | |
1501d9b3 TC |
111 | /* there must be at least one color in the paletted (though even that |
112 | isn't very useful */ | |
113 | if (quant->mc_count == 0) { | |
114 | i_push_error(0, "no colors available for translation"); | |
115 | return NULL; | |
116 | } | |
117 | ||
f771d0ec TC |
118 | bytes = img->xsize * img->ysize; |
119 | if (bytes / img->ysize != img->xsize) { | |
120 | i_push_error(0, "integer overflow calculating memory allocation"); | |
121 | return NULL; | |
122 | } | |
123 | result = mymalloc(bytes); | |
2ff8ed30 | 124 | |
02d1d628 | 125 | switch (quant->translate) { |
02d1d628 | 126 | case pt_closest: |
97c4effc | 127 | case pt_giflib: |
02d1d628 AMH |
128 | translate_closest(quant, img, result); |
129 | break; | |
a73aeb5f | 130 | |
02d1d628 AMH |
131 | case pt_errdiff: |
132 | translate_errdiff(quant, img, result); | |
133 | break; | |
a73aeb5f | 134 | |
02d1d628 AMH |
135 | case pt_perturb: |
136 | default: | |
137 | translate_addi(quant, img, result); | |
138 | break; | |
139 | } | |
a73aeb5f | 140 | |
02d1d628 AMH |
141 | return result; |
142 | } | |
143 | ||
02d1d628 AMH |
144 | static void translate_closest(i_quantize *quant, i_img *img, i_palidx *out) { |
145 | quant->perturb = 0; | |
146 | translate_addi(quant, img, out); | |
147 | } | |
148 | ||
149 | #define PWR2(x) ((x)*(x)) | |
150 | ||
151 | typedef int (*cmpfunc)(const void*, const void*); | |
152 | ||
153 | typedef struct { | |
154 | unsigned char r,g,b; | |
36e67d0b TC |
155 | char fixed; |
156 | char used; | |
02d1d628 AMH |
157 | int dr,dg,db; |
158 | int cdist; | |
159 | int mcount; | |
160 | } cvec; | |
161 | ||
162 | typedef struct { | |
163 | int cnt; | |
164 | int vec[256]; | |
165 | } hashbox; | |
166 | ||
167 | typedef struct { | |
168 | int boxnum; | |
169 | int pixcnt; | |
170 | int cand; | |
171 | int pdc; | |
172 | } pbox; | |
173 | ||
18accb2a | 174 | static void prescan(i_img **im,int count, int cnum, cvec *clr, i_sample_t *line); |
02d1d628 AMH |
175 | static void reorder(pbox prescan[512]); |
176 | static int pboxcmp(const pbox *a,const pbox *b); | |
177 | static void boxcenter(int box,cvec *cv); | |
178 | static float frandn(void); | |
179 | static void boxrand(int box,cvec *cv); | |
180 | static void bbox(int box,int *r0,int *r1,int *g0,int *g1,int *b0,int *b1); | |
181 | static void cr_hashindex(cvec clr[256],int cnum,hashbox hb[512]); | |
182 | static int mindist(int boxnum,cvec *cv); | |
183 | static int maxdist(int boxnum,cvec *cv); | |
184 | ||
185 | /* Some of the simpler functions are kept here to aid the compiler - | |
186 | maybe some of them will be inlined. */ | |
187 | ||
188 | static int | |
189 | pixbox(i_color *ic) { return ((ic->channel[0] & 224)<<1)+ ((ic->channel[1]&224)>>2) + ((ic->channel[2] &224) >> 5); } | |
190 | ||
18accb2a TC |
191 | static int |
192 | pixbox_ch(i_sample_t *chans) { return ((chans[0] & 224)<<1)+ ((chans[1]&224)>>2) + ((chans[2] &224) >> 5); } | |
193 | ||
02d1d628 AMH |
194 | static unsigned char |
195 | g_sat(int in) { | |
196 | if (in>255) { return 255; } | |
197 | else if (in>0) return in; | |
198 | return 0; | |
199 | } | |
200 | ||
201 | static | |
202 | float | |
203 | frand(void) { | |
204 | return rand()/(RAND_MAX+1.0); | |
205 | } | |
206 | ||
a659442a | 207 | #ifdef NOTEF |
02d1d628 AMH |
208 | static |
209 | int | |
210 | eucl_d(cvec* cv,i_color *cl) { return PWR2(cv->r-cl->channel[0])+PWR2(cv->g-cl->channel[1])+PWR2(cv->b-cl->channel[2]); } | |
a659442a | 211 | #endif |
02d1d628 | 212 | |
18accb2a TC |
213 | static |
214 | int | |
215 | eucl_d_ch(cvec* cv,i_sample_t *chans) { | |
216 | return PWR2(cv->r - chans[0]) + PWR2(cv->g - chans[1]) | |
217 | + PWR2(cv->b - chans[2]); | |
218 | } | |
219 | ||
02d1d628 AMH |
220 | static |
221 | int | |
222 | ceucl_d(i_color *c1, i_color *c2) { return PWR2(c1->channel[0]-c2->channel[0])+PWR2(c1->channel[1]-c2->channel[1])+PWR2(c1->channel[2]-c2->channel[2]); } | |
223 | ||
18accb2a TC |
224 | static const int |
225 | gray_samples[] = { 0, 0, 0 }; | |
226 | ||
02d1d628 AMH |
227 | /* |
228 | ||
229 | This quantization algorithm and implementation routines are by Arnar | |
230 | M. Hrafnkelson. In case any new ideas are here they are mine since | |
231 | this was written from scratch. | |
232 | ||
233 | The algorithm uses local means in the following way: | |
234 | ||
235 | For each point in the colormap we find which image points | |
236 | have that point as it's closest point. We calculate the mean | |
237 | of those points and in the next iteration it will be the new | |
238 | entry in the colormap. | |
239 | ||
240 | In order to speed this process up (i.e. nearest neighbor problem) We | |
241 | divied the r,g,b space up in equally large 512 boxes. The boxes are | |
242 | numbered from 0 to 511. Their numbering is so that for a given vector | |
243 | it is known that it belongs to the box who is formed by concatenating the | |
244 | 3 most significant bits from each component of the RGB triplet. | |
245 | ||
246 | For each box we find the list of points from the colormap who might be | |
247 | closest to any given point within the box. The exact solution | |
248 | involves finding the Voronoi map (or the dual the Delauny | |
249 | triangulation) and has many issues including numerical stability. | |
250 | ||
251 | So we use this approximation: | |
252 | ||
253 | 1. Find which point has the shortest maximum distance to the box. | |
254 | 2. Find all points that have a shorter minimum distance than that to the box | |
255 | ||
256 | This is a very simple task and is not computationally heavy if one | |
257 | takes into account that the minimum distances from a pixel to a box is | |
258 | always found by checking if it's inside the box or is closest to some | |
259 | side or a corner. Finding the maximum distance is also either a side | |
260 | or a corner. | |
261 | ||
262 | This approach results 2-3 times more than the actual points needed but | |
263 | is still a good gain over the complete space. Usually when one has a | |
264 | 256 Colorcolor map a search over 30 is often obtained. | |
265 | ||
266 | A bit of an enhancement to this approach is to keep a seperate list | |
267 | for each side of the cube, but this will require even more memory. | |
268 | ||
269 | Arnar M. Hrafnkelsson (addi@umich.edu); | |
270 | ||
271 | */ | |
272 | /* | |
273 | Extracted from gifquant.c, removed dependencies on gif_lib, | |
274 | and added support for multiple images. | |
275 | starting from 1nov2000 by TonyC <tony@develop-help.com>. | |
276 | ||
277 | */ | |
278 | ||
279 | static void | |
280 | makemap_addi(i_quantize *quant, i_img **imgs, int count) { | |
281 | cvec *clr; | |
36e67d0b | 282 | int cnum, i, x, y, bst_idx=0, ld, cd, iter, currhb, img_num; |
18accb2a | 283 | i_sample_t *val; |
02d1d628 | 284 | float dlt, accerr; |
9cfd5724 | 285 | hashbox *hb; |
18accb2a TC |
286 | i_mempool mp; |
287 | int maxwidth = 0; | |
288 | i_sample_t *line; | |
289 | const int *sample_indices; | |
02d1d628 | 290 | |
7ac6a2e9 TC |
291 | mm_log((1, "makemap_addi(quant %p { mc_count=%d, mc_colors=%p }, imgs %p, count %d)\n", |
292 | quant, quant->mc_count, quant->mc_colors, imgs, count)); | |
293 | ||
18accb2a TC |
294 | i_mempool_init(&mp); |
295 | ||
296 | clr = i_mempool_alloc(&mp, sizeof(cvec) * quant->mc_size); | |
297 | hb = i_mempool_alloc(&mp, sizeof(hashbox) * 512); | |
02d1d628 AMH |
298 | for (i=0; i < quant->mc_count; ++i) { |
299 | clr[i].r = quant->mc_colors[i].rgb.r; | |
300 | clr[i].g = quant->mc_colors[i].rgb.g; | |
301 | clr[i].b = quant->mc_colors[i].rgb.b; | |
36e67d0b TC |
302 | clr[i].fixed = 1; |
303 | clr[i].mcount = 0; | |
02d1d628 AMH |
304 | } |
305 | /* mymalloc doesn't clear memory, so I think we need this */ | |
306 | for (; i < quant->mc_size; ++i) { | |
7ac6a2e9 TC |
307 | /*clr[i].r = clr[i].g = clr[i].b = 0;*/ |
308 | clr[i].dr = 0; | |
309 | clr[i].dg = 0; | |
310 | clr[i].db = 0; | |
36e67d0b TC |
311 | clr[i].fixed = 0; |
312 | clr[i].mcount = 0; | |
02d1d628 AMH |
313 | } |
314 | cnum = quant->mc_size; | |
315 | dlt = 1; | |
316 | ||
18accb2a TC |
317 | for (img_num = 0; img_num < count; ++img_num) { |
318 | if (imgs[img_num]->xsize > maxwidth) | |
319 | maxwidth = imgs[img_num]->xsize; | |
320 | } | |
321 | line = i_mempool_alloc(&mp, 3 * maxwidth * sizeof(*line)); | |
322 | ||
323 | prescan(imgs, count, cnum, clr, line); | |
02d1d628 AMH |
324 | cr_hashindex(clr, cnum, hb); |
325 | ||
326 | for(iter=0;iter<3;iter++) { | |
327 | accerr=0.0; | |
328 | ||
36e67d0b TC |
329 | for (img_num = 0; img_num < count; ++img_num) { |
330 | i_img *im = imgs[img_num]; | |
18accb2a TC |
331 | sample_indices = im->channels >= 3 ? NULL : gray_samples; |
332 | for(y=0;y<im->ysize;y++) { | |
333 | i_gsamp(im, 0, im->xsize, y, line, sample_indices, 3); | |
334 | val = line; | |
335 | for(x=0;x<im->xsize;x++) { | |
336 | ld=196608; | |
337 | /*i_gpix(im,x,y,&val);*/ | |
338 | currhb=pixbox_ch(val); | |
339 | /* printf("box = %d \n",currhb); */ | |
340 | for(i=0;i<hb[currhb].cnt;i++) { | |
341 | /* printf("comparing: pix (%d,%d,%d) vec (%d,%d,%d)\n",val.channel[0],val.channel[1],val.channel[2],clr[hb[currhb].vec[i]].r,clr[hb[currhb].vec[i]].g,clr[hb[currhb].vec[i]].b); */ | |
342 | ||
343 | cd=eucl_d_ch(&clr[hb[currhb].vec[i]],val); | |
344 | if (cd<ld) { | |
345 | ld=cd; /* shortest distance yet */ | |
346 | bst_idx=hb[currhb].vec[i]; /* index of closest vector yet */ | |
347 | } | |
348 | } | |
349 | ||
350 | clr[bst_idx].mcount++; | |
351 | accerr+=(ld); | |
352 | clr[bst_idx].dr+=val[0]; | |
353 | clr[bst_idx].dg+=val[1]; | |
354 | clr[bst_idx].db+=val[2]; | |
355 | ||
356 | val += 3; /* next 3 samples (next pixel) */ | |
357 | } | |
02d1d628 AMH |
358 | } |
359 | } | |
18accb2a TC |
360 | |
361 | for(i=0;i<cnum;i++) | |
362 | if (clr[i].mcount) { | |
363 | clr[i].dr/=clr[i].mcount; | |
364 | clr[i].dg/=clr[i].mcount; | |
365 | clr[i].db/=clr[i].mcount; | |
366 | } | |
367 | ||
02d1d628 | 368 | /* for(i=0;i<cnum;i++) printf("vec(%d)=(%d,%d,%d) dest=(%d,%d,%d) matchcount=%d\n", |
18accb2a TC |
369 | i,clr[i].r,clr[i].g,clr[i].b,clr[i].dr,clr[i].dg,clr[i].db,clr[i].mcount); */ |
370 | ||
02d1d628 | 371 | /* printf("total error: %.2f\n",sqrt(accerr)); */ |
18accb2a | 372 | |
02d1d628 | 373 | for(i=0;i<cnum;i++) { |
36e67d0b | 374 | if (clr[i].fixed) continue; /* skip reserved colors */ |
18accb2a | 375 | |
02d1d628 | 376 | if (clr[i].mcount) { |
18accb2a TC |
377 | clr[i].used = 1; |
378 | clr[i].r=clr[i].r*(1-dlt)+dlt*clr[i].dr; | |
379 | clr[i].g=clr[i].g*(1-dlt)+dlt*clr[i].dg; | |
380 | clr[i].b=clr[i].b*(1-dlt)+dlt*clr[i].db; | |
02d1d628 | 381 | } else { |
18accb2a TC |
382 | /* let's try something else */ |
383 | clr[i].used = 0; | |
384 | clr[i].r=rand(); | |
385 | clr[i].g=rand(); | |
386 | clr[i].b=rand(); | |
02d1d628 | 387 | } |
18accb2a | 388 | |
02d1d628 AMH |
389 | clr[i].dr=0; |
390 | clr[i].dg=0; | |
391 | clr[i].db=0; | |
392 | clr[i].mcount=0; | |
393 | } | |
394 | cr_hashindex(clr,cnum,hb); | |
395 | } | |
396 | ||
397 | ||
398 | #ifdef NOTEF | |
399 | for(i=0;i<cnum;i++) { | |
400 | cd=eucl_d(&clr[i],&val); | |
401 | if (cd<ld) { | |
402 | ld=cd; | |
403 | bst_idx=i; | |
404 | } | |
405 | } | |
406 | #endif | |
407 | ||
36e67d0b TC |
408 | /* if defined, we only include colours with an mcount or that were |
409 | supplied in the fixed palette, giving us a smaller output palette */ | |
410 | #define ONLY_USE_USED | |
411 | #ifdef ONLY_USE_USED | |
412 | /* transfer the colors back */ | |
413 | quant->mc_count = 0; | |
414 | for (i = 0; i < cnum; ++i) { | |
415 | if (clr[i].fixed || clr[i].used) { | |
416 | /*printf("Adding %d (%d,%d,%d)\n", i, clr[i].r, clr[i].g, clr[i].b);*/ | |
417 | quant->mc_colors[quant->mc_count].rgb.r = clr[i].r; | |
418 | quant->mc_colors[quant->mc_count].rgb.g = clr[i].g; | |
419 | quant->mc_colors[quant->mc_count].rgb.b = clr[i].b; | |
420 | ++quant->mc_count; | |
421 | } | |
422 | } | |
423 | #else | |
02d1d628 AMH |
424 | /* transfer the colors back */ |
425 | for (i = 0; i < cnum; ++i) { | |
426 | quant->mc_colors[i].rgb.r = clr[i].r; | |
427 | quant->mc_colors[i].rgb.g = clr[i].g; | |
428 | quant->mc_colors[i].rgb.b = clr[i].b; | |
429 | } | |
430 | quant->mc_count = cnum; | |
36e67d0b | 431 | #endif |
02d1d628 | 432 | |
7ac6a2e9 TC |
433 | #if 0 |
434 | mm_log((1, "makemap_addi returns - quant.mc_count = %d\n", quant->mc_count)); | |
435 | for (i = 0; i < quant->mc_count; ++i) | |
436 | mm_log((5, " map entry %d: (%d, %d, %d)\n", i, clr[i].r, clr[i].g, clr[i].b)); | |
437 | #endif | |
438 | ||
18accb2a | 439 | i_mempool_destroy(&mp); |
02d1d628 AMH |
440 | } |
441 | ||
97c4effc TC |
442 | typedef struct { |
443 | i_sample_t rgb[3]; | |
444 | int count; | |
445 | } quant_color_entry; | |
446 | ||
447 | #define MEDIAN_CUT_COLORS 32768 | |
448 | ||
449 | #define MED_CUT_INDEX(c) ((((c).rgb.r & 0xF8) << 7) | \ | |
450 | (((c).rgb.g & 0xF8) << 2) | (((c).rgb.b & 0xF8) >> 3)) | |
451 | ||
18accb2a TC |
452 | #define MED_CUT_GRAY_INDEX(c) ((((c).rgb.r & 0xF8) << 7) | \ |
453 | (((c).rgb.r & 0xF8) << 2) | (((c).rgb.r & 0xF8) >> 3)) | |
454 | ||
97c4effc TC |
455 | /* scale these to cover the whole range */ |
456 | #define MED_CUT_RED(index) ((((index) & 0x7C00) >> 10) * 255 / 31) | |
457 | #define MED_CUT_GREEN(index) ((((index) & 0x3E0) >> 5) * 255 / 31) | |
458 | #define MED_CUT_BLUE(index) (((index) & 0x1F) * 255 / 31) | |
459 | ||
460 | typedef struct { | |
461 | i_sample_t min[3]; /* minimum for each channel */ | |
462 | i_sample_t max[3]; /* maximum for each channel */ | |
463 | i_sample_t width[3]; /* width for each channel */ | |
464 | int start, size; /* beginning and size of the partition */ | |
465 | int pixels; /* number of pixels represented by this partition */ | |
466 | } medcut_partition; | |
467 | ||
468 | /* | |
469 | =item calc_part(part, colors) | |
470 | ||
471 | Calculates the new color limits for the given partition. | |
472 | ||
473 | Giflib assumes that the limits for the non-split channels stay the | |
474 | same, but this strikes me as incorrect, especially if the colors tend | |
475 | to be color ramps. | |
476 | ||
477 | Of course this could be optimized by not recalculating the channel we | |
478 | just sorted on, but it's not worth the effort right now. | |
479 | ||
480 | =cut | |
481 | */ | |
482 | static void calc_part(medcut_partition *part, quant_color_entry *colors) { | |
483 | int i, ch; | |
484 | ||
485 | for (ch = 0; ch < 3; ++ch) { | |
486 | part->min[ch] = 255; | |
487 | part->max[ch] = 0; | |
488 | } | |
489 | for (i = part->start; i < part->start + part->size; ++i) { | |
490 | for (ch = 0; ch < 3; ++ch) { | |
491 | if (part->min[ch] > colors[i].rgb[ch]) | |
492 | part->min[ch] = colors[i].rgb[ch]; | |
493 | if (part->max[ch] < colors[i].rgb[ch]) | |
494 | part->max[ch] = colors[i].rgb[ch]; | |
495 | } | |
496 | } | |
497 | for (ch = 0; ch < 3; ++ch) { | |
498 | part->width[ch] = part->max[ch] - part->min[ch]; | |
499 | } | |
500 | } | |
501 | ||
502 | /* simple functions to sort by each channel - we could use a global, but | |
503 | that would be bad */ | |
504 | ||
505 | static int | |
506 | color_sort_red(void const *left, void const *right) { | |
507 | return ((quant_color_entry *)left)->rgb[0] - ((quant_color_entry *)right)->rgb[0]; | |
508 | } | |
509 | ||
510 | static int | |
511 | color_sort_green(void const *left, void const *right) { | |
512 | return ((quant_color_entry *)left)->rgb[1] - ((quant_color_entry *)right)->rgb[1]; | |
513 | } | |
514 | ||
515 | static int | |
516 | color_sort_blue(void const *left, void const *right) { | |
517 | return ((quant_color_entry *)left)->rgb[2] - ((quant_color_entry *)right)->rgb[2]; | |
518 | } | |
519 | ||
520 | static int (*sorters[])(void const *, void const *) = | |
521 | { | |
522 | color_sort_red, | |
523 | color_sort_green, | |
524 | color_sort_blue, | |
525 | }; | |
526 | ||
527 | static void | |
528 | makemap_mediancut(i_quantize *quant, i_img **imgs, int count) { | |
529 | quant_color_entry *colors; | |
530 | i_mempool mp; | |
531 | int imgn, x, y, i, ch; | |
532 | int max_width; | |
533 | i_color *line; | |
534 | int color_count; | |
535 | int total_pixels; | |
536 | medcut_partition *parts; | |
537 | int part_num; | |
538 | int in, out; | |
18accb2a TC |
539 | /* number of channels we search for the best channel to partition |
540 | this isn't terribly efficient, but it should work */ | |
541 | int chan_count; | |
97c4effc TC |
542 | |
543 | /*printf("images %d pal size %d\n", count, quant->mc_size);*/ | |
544 | ||
545 | i_mempool_init(&mp); | |
546 | ||
547 | colors = i_mempool_alloc(&mp, sizeof(*colors) * MEDIAN_CUT_COLORS); | |
548 | for (i = 0; i < MEDIAN_CUT_COLORS; ++i) { | |
549 | colors[i].rgb[0] = MED_CUT_RED(i); | |
550 | colors[i].rgb[1] = MED_CUT_GREEN(i); | |
551 | colors[i].rgb[2] = MED_CUT_BLUE(i); | |
552 | colors[i].count = 0; | |
553 | } | |
554 | ||
555 | max_width = -1; | |
556 | for (imgn = 0; imgn < count; ++imgn) { | |
557 | if (imgs[imgn]->xsize > max_width) | |
558 | max_width = imgs[imgn]->xsize; | |
559 | } | |
560 | line = i_mempool_alloc(&mp, sizeof(i_color) * max_width); | |
561 | ||
562 | /* build the stats */ | |
563 | total_pixels = 0; | |
18accb2a | 564 | chan_count = 1; /* assume we just have grayscale */ |
97c4effc TC |
565 | for (imgn = 0; imgn < count; ++imgn) { |
566 | total_pixels += imgs[imgn]->xsize * imgs[imgn]->ysize; | |
567 | for (y = 0; y < imgs[imgn]->ysize; ++y) { | |
568 | i_glin(imgs[imgn], 0, imgs[imgn]->xsize, y, line); | |
18accb2a TC |
569 | if (imgs[imgn]->channels > 2) { |
570 | chan_count = 3; | |
571 | for (x = 0; x < imgs[imgn]->xsize; ++x) { | |
572 | ++colors[MED_CUT_INDEX(line[x])].count; | |
573 | } | |
574 | } | |
575 | else { | |
576 | /* a gray-scale image, just use the first channel */ | |
577 | for (x = 0; x < imgs[imgn]->xsize; ++x) { | |
578 | ++colors[MED_CUT_GRAY_INDEX(line[x])].count; | |
579 | } | |
97c4effc TC |
580 | } |
581 | } | |
582 | } | |
583 | ||
584 | /* eliminate the empty colors */ | |
585 | out = 0; | |
586 | for (in = 0; in < MEDIAN_CUT_COLORS; ++in) { | |
587 | if (colors[in].count) { | |
588 | colors[out++] = colors[in]; | |
589 | } | |
590 | } | |
591 | /*printf("out %d\n", out); | |
592 | ||
593 | for (i = 0; i < out; ++i) { | |
594 | if (colors[i].count) { | |
595 | printf("%d: (%d,%d,%d) -> %d\n", i, colors[i].rgb[0], colors[i].rgb[1], | |
596 | colors[i].rgb[2], colors[i].count); | |
597 | } | |
598 | }*/ | |
599 | ||
600 | if (out < quant->mc_size) { | |
601 | /* just copy them into the color table */ | |
602 | for (i = 0; i < out; ++i) { | |
603 | for (ch = 0; ch < 3; ++ch) { | |
604 | quant->mc_colors[i].channel[ch] = colors[i].rgb[ch]; | |
605 | } | |
606 | } | |
607 | quant->mc_count = out; | |
608 | } | |
609 | else { | |
610 | /* build the starting partition */ | |
611 | parts = i_mempool_alloc(&mp, sizeof(*parts) * quant->mc_size); | |
612 | parts[0].start = 0; | |
613 | parts[0].size = out; | |
614 | parts[0].pixels = total_pixels; | |
615 | calc_part(parts, colors); | |
616 | color_count = 1; | |
617 | ||
618 | while (color_count < quant->mc_size) { | |
b07bc64b TC |
619 | /* initialized to avoid compiler warnings */ |
620 | int max_index = 0, max_ch = 0; /* index/channel with biggest spread */ | |
97c4effc TC |
621 | int max_size; |
622 | medcut_partition *workpart; | |
623 | int cum_total; | |
624 | int half; | |
625 | ||
626 | /* find the partition with the most biggest span with more than | |
627 | one color */ | |
628 | max_size = -1; | |
629 | for (i = 0; i < color_count; ++i) { | |
18accb2a | 630 | for (ch = 0; ch < chan_count; ++ch) { |
97c4effc TC |
631 | if (parts[i].width[ch] > max_size |
632 | && parts[i].size > 1) { | |
633 | max_index = i; | |
634 | max_ch = ch; | |
635 | max_size = parts[i].width[ch]; | |
636 | } | |
637 | } | |
638 | } | |
639 | ||
640 | /* nothing else we can split */ | |
641 | if (max_size == -1) | |
642 | break; | |
643 | ||
644 | workpart = parts+max_index; | |
645 | /*printf("splitting partition %d (pixels %ld, start %d, size %d)\n", max_index, workpart->pixels, workpart->start, workpart->size);*/ | |
646 | qsort(colors + workpart->start, workpart->size, sizeof(*colors), | |
647 | sorters[max_ch]); | |
648 | ||
649 | /* find the median or something like it we need to make sure both | |
650 | sides of the split have at least one color in them, so we don't | |
651 | test at the first or last entry */ | |
652 | i = workpart->start; | |
653 | cum_total = colors[i].count; | |
654 | ++i; | |
655 | half = workpart->pixels / 2; | |
656 | while (i < workpart->start + workpart->size - 1 | |
657 | && cum_total < half) { | |
658 | cum_total += colors[i++].count; | |
659 | } | |
660 | /*printf("Split at %d to make %d (half %ld, cumtotal %ld)\n", i, color_count, half, cum_total);*/ | |
661 | ||
662 | /* found the spot to split */ | |
663 | parts[color_count].start = i; | |
664 | parts[color_count].size = workpart->start + workpart->size - i; | |
665 | workpart->size = i - workpart->start; | |
666 | parts[color_count].pixels = workpart->pixels - cum_total; | |
667 | workpart->pixels = cum_total; | |
668 | ||
669 | /* recalculate the limits */ | |
670 | calc_part(workpart, colors); | |
671 | calc_part(parts+color_count, colors); | |
672 | ++color_count; | |
673 | } | |
674 | ||
675 | /* fill in the color table - since we could still have partitions | |
676 | that have more than one color, we need to average the colors */ | |
677 | for (part_num = 0; part_num < color_count; ++part_num) { | |
678 | long sums[3]; | |
679 | medcut_partition *workpart; | |
680 | ||
681 | workpart = parts+part_num; | |
682 | for (ch = 0; ch < 3; ++ch) | |
683 | sums[ch] = 0; | |
684 | ||
685 | for (i = workpart->start; i < workpart->start + workpart->size; ++i) { | |
686 | for (ch = 0; ch < 3; ++ch) { | |
687 | sums[ch] += colors[i].rgb[ch] * colors[i].count; | |
688 | } | |
689 | } | |
690 | for (ch = 0; ch < 3; ++ch) { | |
691 | quant->mc_colors[part_num].channel[ch] = sums[ch] / workpart->pixels; | |
692 | } | |
693 | } | |
694 | quant->mc_count = color_count; | |
695 | } | |
696 | /*printf("out %d colors\n", quant->mc_count);*/ | |
697 | i_mempool_destroy(&mp); | |
698 | } | |
699 | ||
02d1d628 AMH |
700 | #define pboxjump 32 |
701 | ||
702 | /* Define one of the following 4 symbols to choose a colour search method | |
703 | The idea is to try these out, including benchmarking, to see which | |
704 | is fastest in a good spread of circumstances. | |
705 | I'd expect IM_CFLINSEARCH to be fastest for very small palettes, and | |
706 | IM_CFHASHBOX for large images with large palettes. | |
707 | ||
708 | Some other possibilities include: | |
709 | - search over entries sorted by luminance | |
710 | ||
711 | Initially I was planning on testing using the macros and then | |
712 | integrating the code directly into each function, but this means if | |
713 | we find a bug at a late stage we will need to update N copies of | |
714 | the same code. Also, keeping the code in the macros means that the | |
715 | code in the translation functions is much more to the point, | |
716 | there's no distracting colour search code to remove attention from | |
717 | what makes _this_ translation function different. It may be | |
718 | advisable to move the setup code into functions at some point, but | |
719 | it should be possible to do this fairly transparently. | |
720 | ||
721 | If IM_CF_COPTS is defined then CFLAGS must have an appropriate | |
722 | definition. | |
723 | ||
724 | Each option needs to define 4 macros: | |
725 | CF_VARS - variables to define in the function | |
726 | CF_SETUP - code to setup for the colour search, eg. allocating and | |
727 | initializing lookup tables | |
728 | CF_FIND - code that looks for the color in val and puts the best | |
729 | matching index in bst_idx | |
730 | CF_CLEANUP - code to clean up, eg. releasing memory | |
731 | */ | |
732 | #ifndef IM_CF_COPTS | |
733 | /*#define IM_CFLINSEARCH*/ | |
734 | #define IM_CFHASHBOX | |
735 | /*#define IM_CFSORTCHAN*/ | |
736 | /*#define IM_CFRAND2DIST*/ | |
737 | #endif | |
738 | ||
739 | #ifdef IM_CFHASHBOX | |
740 | ||
741 | /* The original version I wrote for this used the sort. | |
742 | If this is defined then we use a sort to extract the indices for | |
743 | the hashbox */ | |
744 | #define HB_SORT | |
745 | ||
746 | /* assume i is available */ | |
9cfd5724 | 747 | #define CF_VARS hashbox *hb = mymalloc(sizeof(hashbox) * 512); \ |
02d1d628 AMH |
748 | int currhb; \ |
749 | long ld, cd | |
750 | ||
751 | #ifdef HB_SORT | |
752 | ||
753 | static long *gdists; /* qsort is annoying */ | |
754 | /* int might be smaller than long, so we need to do a real compare | |
755 | rather than a subtraction*/ | |
756 | static int distcomp(void const *a, void const *b) { | |
757 | long ra = gdists[*(int const *)a]; | |
758 | long rb = gdists[*(int const *)b]; | |
759 | if (ra < rb) | |
760 | return -1; | |
761 | else if (ra > rb) | |
762 | return 1; | |
763 | else | |
764 | return 0; | |
765 | } | |
766 | ||
767 | #endif | |
768 | ||
769 | /* for each hashbox build a list of colours that are in the hb or is closer | |
770 | than other colours | |
771 | This is pretty involved. The original gifquant generated the hashbox | |
772 | as part of it's normal processing, but since the map generation is now | |
773 | separated from the translation we need to do this on the spot. | |
774 | Any optimizations, even if they don't produce perfect results would be | |
775 | welcome. | |
776 | */ | |
777 | static void hbsetup(i_quantize *quant, hashbox *hb) { | |
a659442a | 778 | long *dists, mind, maxd; |
02d1d628 AMH |
779 | int cr, cb, cg, hbnum, i; |
780 | i_color cenc; | |
781 | #ifdef HB_SORT | |
782 | int *indices = mymalloc(quant->mc_count * sizeof(int)); | |
783 | #endif | |
784 | ||
785 | dists = mymalloc(quant->mc_count * sizeof(long)); | |
786 | for (cr = 0; cr < 8; ++cr) { | |
787 | for (cg = 0; cg < 8; ++cg) { | |
788 | for (cb = 0; cb < 8; ++cb) { | |
789 | /* centre of the hashbox */ | |
790 | cenc.channel[0] = cr*pboxjump+pboxjump/2; | |
791 | cenc.channel[1] = cg*pboxjump+pboxjump/2; | |
792 | cenc.channel[2] = cb*pboxjump+pboxjump/2; | |
793 | hbnum = pixbox(&cenc); | |
794 | hb[hbnum].cnt = 0; | |
795 | /* order indices in the order of distance from the hashbox */ | |
796 | for (i = 0; i < quant->mc_count; ++i) { | |
797 | #ifdef HB_SORT | |
798 | indices[i] = i; | |
799 | #endif | |
800 | dists[i] = ceucl_d(&cenc, quant->mc_colors+i); | |
801 | } | |
802 | #ifdef HB_SORT | |
803 | /* it should be possible to do this without a sort | |
804 | but so far I'm too lazy */ | |
805 | gdists = dists; | |
806 | qsort(indices, quant->mc_count, sizeof(int), distcomp); | |
807 | /* any colors that can match are within mind+diagonal size of | |
808 | a hashbox */ | |
809 | mind = dists[indices[0]]; | |
810 | i = 0; | |
811 | maxd = (sqrt(mind)+pboxjump)*(sqrt(mind)+pboxjump); | |
812 | while (i < quant->mc_count && dists[indices[i]] < maxd) { | |
813 | hb[hbnum].vec[hb[hbnum].cnt++] = indices[i++]; | |
814 | } | |
815 | #else | |
816 | /* work out the minimum */ | |
817 | mind = 256*256*3; | |
818 | for (i = 0; i < quant->mc_count; ++i) { | |
819 | if (dists[i] < mind) mind = dists[i]; | |
820 | } | |
821 | /* transfer any colours that might be closest to a colour in | |
822 | this hashbox */ | |
823 | maxd = (sqrt(mind)+pboxjump)*(sqrt(mind)+pboxjump); | |
824 | for (i = 0; i < quant->mc_count; ++i) { | |
825 | if (dists[i] < maxd) | |
826 | hb[hbnum].vec[hb[hbnum].cnt++] = i; | |
827 | } | |
828 | #endif | |
829 | } | |
830 | } | |
862b614c | 831 | } |
02d1d628 AMH |
832 | #ifdef HB_SORT |
833 | myfree(indices); | |
834 | #endif | |
835 | myfree(dists) ; | |
836 | } | |
837 | #define CF_SETUP hbsetup(quant, hb) | |
838 | ||
839 | #define CF_FIND \ | |
840 | currhb = pixbox(&val); \ | |
841 | ld = 196608; \ | |
842 | for (i = 0; i < hb[currhb].cnt; ++i) { \ | |
843 | cd = ceucl_d(quant->mc_colors+hb[currhb].vec[i], &val); \ | |
844 | if (cd < ld) { ld = cd; bst_idx = hb[currhb].vec[i]; } \ | |
845 | } | |
846 | ||
9cfd5724 | 847 | #define CF_CLEANUP myfree(hb) |
02d1d628 AMH |
848 | |
849 | #endif | |
850 | ||
851 | #ifdef IM_CFLINSEARCH | |
852 | /* as simple as it gets */ | |
853 | #define CF_VARS long ld, cd | |
854 | #define CF_SETUP /* none needed */ | |
855 | #define CF_FIND \ | |
856 | ld = 196608; \ | |
857 | for (i = 0; i < quant->mc_count; ++i) { \ | |
858 | cd = ceucl_d(quant->mc_colors+i, &val); \ | |
859 | if (cd < ld) { ld = cd; bst_idx = i; } \ | |
860 | } | |
861 | #define CF_CLEANUP | |
862 | #endif | |
863 | ||
864 | #ifdef IM_CFSORTCHAN | |
865 | static int gsortchan; | |
866 | static i_quantize *gquant; | |
867 | static int chansort(void const *a, void const *b) { | |
868 | return gquant->mc_colors[*(int const *)a].channel[gsortchan] - | |
869 | gquant->mc_colors[*(int const *)b].channel[gsortchan]; | |
870 | } | |
871 | #define CF_VARS int *indices, sortchan, diff; \ | |
872 | long ld, cd; \ | |
873 | int vindex[256] /* where to find value i of chan */ | |
874 | ||
875 | static void chansetup(i_img *img, i_quantize *quant, int *csortchan, | |
876 | int *vindex, int **cindices) { | |
877 | int *indices, sortchan, chan, i, chval; | |
878 | int chanmins[MAXCHANNELS], chanmaxs[MAXCHANNELS], maxrange; | |
879 | ||
880 | /* find the channel with the maximum range */ | |
881 | /* the maximum stddev would probably be better */ | |
882 | for (chan = 0; chan < img->channels; ++chan) { | |
883 | chanmins[chan] = 256; chanmaxs[chan] = 0; | |
884 | for (i = 0; i < quant->mc_count; ++i) { | |
885 | if (quant->mc_colors[i].channel[chan] < chanmins[chan]) | |
886 | chanmins[chan] = quant->mc_colors[i].channel[chan]; | |
887 | if (quant->mc_colors[i].channel[chan] > chanmaxs[chan]) | |
888 | chanmaxs[chan] = quant->mc_colors[i].channel[chan]; | |
889 | } | |
890 | } | |
891 | maxrange = -1; | |
892 | for (chan = 0; chan < img->channels; ++chan) { | |
893 | if (chanmaxs[chan]-chanmins[chan] > maxrange) { | |
894 | maxrange = chanmaxs[chan]-chanmins[chan]; | |
895 | sortchan = chan; | |
896 | } | |
897 | } | |
898 | indices = mymalloc(quant->mc_count * sizeof(int)) ; | |
899 | for (i = 0; i < quant->mc_count; ++i) { | |
900 | indices[i] = i; | |
901 | } | |
902 | gsortchan = sortchan; | |
903 | gquant = quant; | |
904 | qsort(indices, quant->mc_count, sizeof(int), chansort) ; | |
905 | /* now a lookup table to find entries faster */ | |
906 | for (chval=0, i=0; i < quant->mc_count; ++i) { | |
907 | while (chval < 256 && | |
908 | chval < quant->mc_colors[indices[i]].channel[sortchan]) { | |
909 | vindex[chval++] = i; | |
910 | } | |
911 | } | |
912 | while (chval < 256) { | |
913 | vindex[chval++] = quant->mc_count-1; | |
914 | } | |
915 | *csortchan = sortchan; | |
916 | *cindices = indices; | |
917 | } | |
918 | ||
919 | #define CF_SETUP \ | |
920 | chansetup(img, quant, &sortchan, vindex, &indices) | |
921 | ||
922 | int chanfind(i_color val, i_quantize *quant, int *indices, int *vindex, | |
923 | int sortchan) { | |
924 | int i, bst_idx, diff, maxdiff; | |
925 | long ld, cd; | |
926 | ||
927 | i = vindex[val.channel[sortchan]]; | |
928 | bst_idx = indices[i]; | |
929 | ld = 196608; | |
930 | diff = 0; | |
931 | maxdiff = quant->mc_count; | |
932 | while (diff < maxdiff) { | |
933 | if (i+diff < quant->mc_count) { | |
934 | cd = ceucl_d(&val, quant->mc_colors+indices[i+diff]); | |
935 | if (cd < ld) { | |
936 | bst_idx = indices[i+diff]; | |
937 | ld = cd; | |
938 | maxdiff = sqrt(ld); | |
939 | } | |
940 | } | |
941 | if (i-diff >= 0) { | |
942 | cd = ceucl_d(&val, quant->mc_colors+indices[i-diff]); | |
943 | if (cd < ld) { | |
944 | bst_idx = indices[i-diff]; | |
945 | ld = cd; | |
946 | maxdiff = sqrt(ld); | |
947 | } | |
948 | } | |
949 | ++diff; | |
950 | } | |
951 | ||
952 | return bst_idx; | |
953 | } | |
954 | ||
955 | #define CF_FIND \ | |
956 | bst_idx = chanfind(val, quant, indices, vindex, sortchan) | |
957 | ||
958 | ||
959 | #define CF_CLEANUP myfree(indices) | |
960 | ||
961 | #endif | |
962 | ||
963 | #ifdef IM_CFRAND2DIST | |
964 | ||
965 | /* This is based on a method described by Addi in the #imager channel | |
966 | on the 28/2/2001. I was about 1am Sydney time at the time, so I | |
967 | wasn't at my most cogent. Well, that's my excuse :) | |
968 | ||
969 | <TonyC> what I have at the moment is: hashboxes, with optimum hash box | |
970 | filling; simple linear search; and a lookup in the widest channel | |
971 | (currently the channel with the maximum range) | |
972 | <Addi> There is one more way that might be simple to implement. | |
973 | <Addi> You want to hear? | |
974 | <TonyC> what's that? | |
975 | <purl> somebody said that was not true | |
976 | <Addi> For each of the colors in the palette start by creating a | |
977 | sorted list of the form: | |
978 | <Addi> [distance, color] | |
979 | <Addi> Where they are sorted by distance. | |
980 | <TonyC> distance to where? | |
981 | <Addi> Where the elements in the lists are the distances and colors of | |
982 | the other colors in the palette | |
983 | <TonyC> ok | |
984 | <Addi> So if you are at color 0 | |
985 | <Addi> ok - now to search for the closest color when you are creating | |
986 | the final image is done like this: | |
987 | <Addi> a) pick a random color from the palette | |
988 | <Addi> b) calculate the distance to it | |
989 | <Addi> c) only check the vectors that are within double the distance | |
990 | in the list of the color you picked from the palette. | |
991 | <Addi> Does that seem logical? | |
992 | <Addi> Lets imagine that we only have grayscale to make an example: | |
993 | <Addi> Our palette has 1 4 10 20 as colors. | |
994 | <Addi> And we want to quantize the color 11 | |
995 | <Addi> lets say we picked 10 randomly | |
996 | <Addi> the double distance is 2 | |
997 | <Addi> since abs(10-11)*2 is 2 | |
998 | <Addi> And the list at vector 10 is this: | |
999 | <Addi> [0, 10], [6 4], [9, 1], [10, 20] | |
1000 | <Addi> so we look at the first one (but not the second one since 6 is | |
1001 | at a greater distance than 2. | |
1002 | <Addi> Any of that make sense? | |
1003 | <TonyC> yes, though are you suggesting another random jump to one of | |
1004 | the colours with the possible choices? or an exhaustive search? | |
1005 | <Addi> TonyC: It's possible to come up with a recursive/iterative | |
1006 | enhancement but this is the 'basic' version. | |
1007 | <Addi> Which would do an iterative search. | |
1008 | <Addi> You can come up with conditions where it pays to switch to a new one. | |
1009 | <Addi> And the 'random' start can be switched over to a small tree. | |
1010 | <Addi> So you would have a little index at the start. | |
1011 | <Addi> to get you into the general direction | |
1012 | <Addi> Perhaps just an 8 split. | |
1013 | <Addi> that is - split each dimension in half. | |
1014 | <TonyC> yep | |
1015 | <TonyC> I get the idea | |
1016 | <Addi> But this would seem to be a good approach in our case since we | |
1017 | usually have few codevectors. | |
1018 | <Addi> So we only need 256*256 entries in a table. | |
1019 | <Addi> We could even only index some of them that were deemed as good | |
1020 | candidates. | |
1021 | <TonyC> I was considering adding paletted output support for PNG and | |
1022 | TIFF at some point, which support 16-bit palettes | |
1023 | <Addi> ohh. | |
1024 | <Addi> 'darn' ;) | |
1025 | ||
1026 | ||
1027 | */ | |
1028 | ||
1029 | ||
1030 | typedef struct i_dists { | |
1031 | int index; | |
1032 | long dist; | |
1033 | } i_dists; | |
1034 | ||
1035 | #define CF_VARS \ | |
1036 | i_dists *dists; | |
1037 | ||
1038 | static int dists_sort(void const *a, void const *b) { | |
1039 | return ((i_dists *)a)->dist - ((i_dists *)b)->dist; | |
1040 | } | |
1041 | ||
1042 | static void rand2dist_setup(i_quantize *quant, i_dists **cdists) { | |
1043 | i_dists *dists = | |
1044 | mymalloc(sizeof(i_dists)*quant->mc_count*quant->mc_count); | |
1045 | int i, j; | |
1046 | long cd; | |
1047 | for (i = 0; i < quant->mc_count; ++i) { | |
1048 | i_dists *ldists = dists + quant->mc_count * i; | |
1049 | i_color val = quant->mc_colors[i]; | |
1050 | for (j = 0; j < quant->mc_count; ++j) { | |
1051 | ldists[j].index = j; | |
1052 | ldists[j].dist = ceucl_d(&val, quant->mc_colors+j); | |
1053 | } | |
1054 | qsort(ldists, quant->mc_count, sizeof(i_dists), dists_sort); | |
1055 | } | |
1056 | *cdists = dists; | |
1057 | } | |
1058 | ||
1059 | #define CF_SETUP \ | |
1060 | bst_idx = rand() % quant->mc_count; \ | |
1061 | rand2dist_setup(quant, &dists) | |
1062 | ||
1063 | static int rand2dist_find(i_color val, i_quantize *quant, i_dists *dists, int index) { | |
1064 | i_dists *cdists; | |
1065 | long cd, ld; | |
1066 | long maxld; | |
1067 | int i; | |
1068 | int bst_idx; | |
1069 | ||
1070 | cdists = dists + index * quant->mc_count; | |
1071 | ld = 3 * 256 * 256; | |
1072 | maxld = 8 * ceucl_d(&val, quant->mc_colors+index); | |
1073 | for (i = 0; i < quant->mc_count && cdists[i].dist <= maxld; ++i) { | |
1074 | cd = ceucl_d(&val, quant->mc_colors+cdists[i].index); | |
1075 | if (cd < ld) { | |
1076 | bst_idx = cdists[i].index; | |
1077 | ld = cd; | |
1078 | } | |
1079 | } | |
1080 | return bst_idx; | |
1081 | } | |
1082 | ||
1083 | #define CF_FIND bst_idx = rand2dist_find(val, quant, dists, bst_idx) | |
1084 | ||
1085 | #define CF_CLEANUP myfree(dists) | |
1086 | ||
1087 | ||
1088 | #endif | |
1089 | ||
1090 | static void translate_addi(i_quantize *quant, i_img *img, i_palidx *out) { | |
b07bc64b | 1091 | int x, y, i, k, bst_idx = 0; |
02d1d628 AMH |
1092 | i_color val; |
1093 | int pixdev = quant->perturb; | |
1094 | CF_VARS; | |
1095 | ||
1096 | CF_SETUP; | |
1097 | ||
18accb2a TC |
1098 | if (img->channels >= 3) { |
1099 | if (pixdev) { | |
1100 | k=0; | |
1101 | for(y=0;y<img->ysize;y++) for(x=0;x<img->xsize;x++) { | |
1102 | i_gpix(img,x,y,&val); | |
1103 | val.channel[0]=g_sat(val.channel[0]+(int)(pixdev*frandn())); | |
1104 | val.channel[1]=g_sat(val.channel[1]+(int)(pixdev*frandn())); | |
1105 | val.channel[2]=g_sat(val.channel[2]+(int)(pixdev*frandn())); | |
1106 | CF_FIND; | |
1107 | out[k++]=bst_idx; | |
1108 | } | |
1109 | } else { | |
1110 | k=0; | |
1111 | for(y=0;y<img->ysize;y++) for(x=0;x<img->xsize;x++) { | |
1112 | i_gpix(img,x,y,&val); | |
1113 | CF_FIND; | |
1114 | out[k++]=bst_idx; | |
1115 | } | |
02d1d628 | 1116 | } |
18accb2a TC |
1117 | } |
1118 | else { | |
1119 | if (pixdev) { | |
1120 | k=0; | |
1121 | for(y=0;y<img->ysize;y++) for(x=0;x<img->xsize;x++) { | |
1122 | i_gpix(img,x,y,&val); | |
1123 | val.channel[1] = val.channel[2] = | |
1124 | val.channel[0]=g_sat(val.channel[0]+(int)(pixdev*frandn())); | |
1125 | CF_FIND; | |
1126 | out[k++]=bst_idx; | |
1127 | } | |
1128 | } else { | |
1129 | k=0; | |
1130 | for(y=0;y<img->ysize;y++) for(x=0;x<img->xsize;x++) { | |
1131 | i_gpix(img,x,y,&val); | |
1132 | val.channel[1] = val.channel[2] = val.channel[0]; | |
1133 | CF_FIND; | |
1134 | out[k++]=bst_idx; | |
1135 | } | |
02d1d628 AMH |
1136 | } |
1137 | } | |
1138 | CF_CLEANUP; | |
1139 | } | |
1140 | ||
1141 | static int floyd_map[] = | |
1142 | { | |
1143 | 0, 0, 7, | |
1144 | 3, 5, 1 | |
1145 | }; | |
1146 | ||
1147 | static int jarvis_map[] = | |
1148 | { | |
1149 | 0, 0, 0, 7, 5, | |
1150 | 3, 5, 7, 5, 3, | |
1151 | 1, 3, 5, 3, 1 | |
1152 | }; | |
1153 | ||
1154 | static int stucki_map[] = | |
1155 | { | |
1156 | 0, 0, 0, 8, 4, | |
1157 | 2, 4, 8, 4, 2, | |
1158 | 1, 2, 4, 2, 1 | |
1159 | }; | |
1160 | ||
1161 | struct errdiff_map { | |
1162 | int *map; | |
1163 | int width, height, orig; | |
1164 | }; | |
1165 | ||
1166 | static struct errdiff_map maps[] = | |
1167 | { | |
1168 | { floyd_map, 3, 2, 1 }, | |
1169 | { jarvis_map, 5, 3, 2 }, | |
1170 | { stucki_map, 5, 3, 2 }, | |
1171 | }; | |
1172 | ||
1173 | typedef struct errdiff_tag { | |
1174 | int r, g, b; | |
1175 | } errdiff_t; | |
1176 | ||
1177 | /* perform an error diffusion dither */ | |
1178 | static | |
1179 | void | |
1180 | translate_errdiff(i_quantize *quant, i_img *img, i_palidx *out) { | |
1181 | int *map; | |
1182 | int mapw, maph, mapo; | |
1183 | int i; | |
1184 | errdiff_t *err; | |
1185 | int errw; | |
1186 | int difftotal; | |
1187 | int x, y, dx, dy; | |
b07bc64b | 1188 | int bst_idx = 0; |
02d1d628 AMH |
1189 | CF_VARS; |
1190 | ||
1191 | if ((quant->errdiff & ed_mask) == ed_custom) { | |
1192 | map = quant->ed_map; | |
1193 | mapw = quant->ed_width; | |
1194 | maph = quant->ed_height; | |
1195 | mapo = quant->ed_orig; | |
1196 | } | |
1197 | else { | |
1198 | int index = quant->errdiff & ed_mask; | |
1199 | if (index >= ed_custom) index = ed_floyd; | |
1200 | map = maps[index].map; | |
1201 | mapw = maps[index].width; | |
1202 | maph = maps[index].height; | |
1203 | mapo = maps[index].orig; | |
1204 | } | |
1205 | ||
1206 | errw = img->xsize+mapw; | |
1207 | err = mymalloc(sizeof(*err) * maph * errw); | |
1208 | /*errp = err+mapo;*/ | |
1209 | memset(err, 0, sizeof(*err) * maph * errw); | |
1210 | ||
1211 | difftotal = 0; | |
1212 | for (i = 0; i < maph * mapw; ++i) | |
1213 | difftotal += map[i]; | |
1214 | /*printf("map:\n"); | |
1215 | for (dy = 0; dy < maph; ++dy) { | |
1216 | for (dx = 0; dx < mapw; ++dx) { | |
1217 | printf("%2d", map[dx+dy*mapw]); | |
1218 | } | |
1219 | putchar('\n'); | |
1220 | }*/ | |
1221 | ||
1222 | CF_SETUP; | |
1223 | ||
1224 | for (y = 0; y < img->ysize; ++y) { | |
1225 | for (x = 0; x < img->xsize; ++x) { | |
1226 | i_color val; | |
1227 | long ld, cd; | |
1228 | errdiff_t perr; | |
1229 | i_gpix(img, x, y, &val); | |
18accb2a TC |
1230 | if (img->channels < 3) { |
1231 | val.channel[1] = val.channel[2] = val.channel[0]; | |
1232 | } | |
02d1d628 AMH |
1233 | perr = err[x+mapo]; |
1234 | perr.r = perr.r < 0 ? -((-perr.r)/difftotal) : perr.r/difftotal; | |
1235 | perr.g = perr.g < 0 ? -((-perr.g)/difftotal) : perr.g/difftotal; | |
1236 | perr.b = perr.b < 0 ? -((-perr.b)/difftotal) : perr.b/difftotal; | |
1237 | /*printf("x %3d y %3d in(%3d, %3d, %3d) di(%4d,%4d,%4d)\n", x, y, val.channel[0], val.channel[1], val.channel[2], perr.r, perr.g, perr.b);*/ | |
1238 | val.channel[0] = g_sat(val.channel[0]-perr.r); | |
1239 | val.channel[1] = g_sat(val.channel[1]-perr.g); | |
1240 | val.channel[2] = g_sat(val.channel[2]-perr.b); | |
1241 | CF_FIND; | |
1242 | /* save error */ | |
1243 | perr.r = quant->mc_colors[bst_idx].channel[0] - val.channel[0]; | |
1244 | perr.g = quant->mc_colors[bst_idx].channel[1] - val.channel[1]; | |
1245 | perr.b = quant->mc_colors[bst_idx].channel[2] - val.channel[2]; | |
1246 | /*printf(" out(%3d, %3d, %3d) er(%4d, %4d, %4d)\n", quant->mc_colors[bst_idx].channel[0], quant->mc_colors[bst_idx].channel[1], quant->mc_colors[bst_idx].channel[2], perr.r, perr.g, perr.b);*/ | |
1247 | for (dx = 0; dx < mapw; ++dx) { | |
1248 | for (dy = 0; dy < maph; ++dy) { | |
1249 | err[x+dx+dy*errw].r += perr.r * map[dx+mapw*dy]; | |
1250 | err[x+dx+dy*errw].g += perr.g * map[dx+mapw*dy]; | |
1251 | err[x+dx+dy*errw].b += perr.b * map[dx+mapw*dy]; | |
1252 | } | |
1253 | } | |
1254 | *out++ = bst_idx; | |
1255 | } | |
1256 | /* shift up the error matrix */ | |
1257 | for (dy = 0; dy < maph-1; ++dy) { | |
1258 | memcpy(err+dy*errw, err+(dy+1)*errw, sizeof(*err)*errw); | |
1259 | } | |
1260 | memset(err+(maph-1)*errw, 0, sizeof(*err)*errw); | |
1261 | } | |
1262 | CF_CLEANUP; | |
7fd765fe | 1263 | myfree(err); |
02d1d628 AMH |
1264 | } |
1265 | /* Prescan finds the boxes in the image that have the highest number of colors | |
1266 | and that result is used as the initial value for the vectores */ | |
1267 | ||
1268 | ||
18accb2a | 1269 | static void prescan(i_img **imgs,int count, int cnum, cvec *clr, i_sample_t *line) { |
02d1d628 | 1270 | int i,k,j,x,y; |
18accb2a TC |
1271 | i_sample_t *val; |
1272 | const int *chans; | |
02d1d628 AMH |
1273 | |
1274 | pbox prebox[512]; | |
1275 | for(i=0;i<512;i++) { | |
1276 | prebox[i].boxnum=i; | |
1277 | prebox[i].pixcnt=0; | |
1278 | prebox[i].cand=1; | |
1279 | } | |
1280 | ||
1281 | /* process each image */ | |
1282 | for (i = 0; i < count; ++i) { | |
1283 | i_img *im = imgs[i]; | |
18accb2a TC |
1284 | chans = im->channels >= 3 ? NULL : gray_samples; |
1285 | for(y=0;y<im->ysize;y++) { | |
1286 | i_gsamp(im, 0, im->xsize, y, line, chans, 3); | |
1287 | val = line; | |
1288 | for(x=0;x<im->xsize;x++) { | |
1289 | prebox[pixbox_ch(val)].pixcnt++; | |
1290 | } | |
02d1d628 AMH |
1291 | } |
1292 | } | |
1293 | ||
1294 | for(i=0;i<512;i++) prebox[i].pdc=prebox[i].pixcnt; | |
1295 | qsort(prebox,512,sizeof(pbox),(cmpfunc)pboxcmp); | |
1296 | ||
1297 | for(i=0;i<cnum;i++) { | |
1298 | /* printf("Color %d\n",i); | |
1299 | for(k=0;k<10;k++) { printf("box=%03d %04d %d %04d \n",prebox[k].boxnum,prebox[k].pixcnt,prebox[k].cand,prebox[k].pdc); } | |
1300 | printf("\n\n"); */ | |
1301 | reorder(prebox); | |
1302 | } | |
1303 | ||
1304 | /* for(k=0;k<cnum;k++) { printf("box=%03d %04d %d %04d \n",prebox[k].boxnum,prebox[k].pixcnt,prebox[k].cand,prebox[k].pdc); } */ | |
1305 | ||
1306 | k=0; | |
1307 | j=1; | |
1308 | i=0; | |
1309 | while(i<cnum) { | |
1310 | /* printf("prebox[%d].cand=%d\n",k,prebox[k].cand); */ | |
36e67d0b | 1311 | if (clr[i].fixed) { i++; continue; } /* reserved go to next */ |
02d1d628 AMH |
1312 | if (j>=prebox[k].cand) { k++; j=1; } else { |
1313 | if (prebox[k].cand == 2) boxcenter(prebox[k].boxnum,&(clr[i])); | |
1314 | else boxrand(prebox[k].boxnum,&(clr[i])); | |
1315 | /* printf("(%d,%d) %d %d -> (%d,%d,%d)\n",k,j,prebox[k].boxnum,prebox[k].pixcnt,clr[i].r,clr[i].g,clr[i].b); */ | |
1316 | j++; | |
1317 | i++; | |
1318 | } | |
1319 | } | |
1320 | } | |
1321 | ||
1322 | ||
1323 | static void reorder(pbox prescan[512]) { | |
1324 | int nidx; | |
1325 | pbox c; | |
1326 | ||
1327 | nidx=0; | |
1328 | c=prescan[0]; | |
1329 | ||
1330 | c.cand++; | |
1331 | c.pdc=c.pixcnt/(c.cand*c.cand); | |
1332 | /* c.pdc=c.pixcnt/c.cand; */ | |
1333 | while(c.pdc < prescan[nidx+1].pdc && nidx < 511) { | |
1334 | prescan[nidx]=prescan[nidx+1]; | |
1335 | nidx++; | |
1336 | } | |
1337 | prescan[nidx]=c; | |
1338 | } | |
1339 | ||
1340 | static int | |
1341 | pboxcmp(const pbox *a,const pbox *b) { | |
1342 | if (a->pixcnt > b->pixcnt) return -1; | |
1343 | if (a->pixcnt < b->pixcnt) return 1; | |
1344 | return 0; | |
1345 | } | |
1346 | ||
1347 | static void | |
1348 | boxcenter(int box,cvec *cv) { | |
1349 | cv->r=15+((box&448)>>1); | |
1350 | cv->g=15+((box&56)<<2); | |
1351 | cv->b=15+((box&7)<<5); | |
1352 | } | |
1353 | ||
1354 | static void | |
1355 | bbox(int box,int *r0,int *r1,int *g0,int *g1,int *b0,int *b1) { | |
1356 | *r0=(box&448)>>1; | |
1357 | *r1=(*r0)|31; | |
1358 | *g0=(box&56)<<2; | |
1359 | *g1=(*g0)|31; | |
1360 | *b0=(box&7)<<5; | |
1361 | *b1=(*b0)|31; | |
1362 | } | |
1363 | ||
1364 | static void | |
1365 | boxrand(int box,cvec *cv) { | |
1366 | cv->r=6+(rand()%25)+((box&448)>>1); | |
1367 | cv->g=6+(rand()%25)+((box&56)<<2); | |
1368 | cv->b=6+(rand()%25)+((box&7)<<5); | |
1369 | } | |
1370 | ||
1371 | static float | |
1372 | frandn(void) { | |
1373 | ||
1374 | float u1,u2,w; | |
1375 | ||
1376 | w=1; | |
1377 | ||
1378 | while (w >= 1 || w == 0) { | |
1379 | u1 = 2 * frand() - 1; | |
1380 | u2 = 2 * frand() - 1; | |
1381 | w = u1*u1 + u2*u2; | |
1382 | } | |
1383 | ||
1384 | w = sqrt((-2*log(w))/w); | |
1385 | return u1*w; | |
1386 | } | |
1387 | ||
1388 | /* Create hash index */ | |
1389 | static | |
1390 | void | |
1391 | cr_hashindex(cvec clr[256],int cnum,hashbox hb[512]) { | |
1392 | ||
1393 | int bx,mind,cd,cumcnt,bst_idx,i; | |
1394 | /* printf("indexing... \n");*/ | |
1395 | ||
1396 | cumcnt=0; | |
1397 | for(bx=0; bx<512; bx++) { | |
1398 | mind=196608; | |
1399 | for(i=0; i<cnum; i++) { | |
1400 | cd = maxdist(bx,&clr[i]); | |
1401 | if (cd < mind) { mind=cd; bst_idx=i; } | |
1402 | } | |
1403 | ||
1404 | hb[bx].cnt=0; | |
1405 | for(i=0;i<cnum;i++) if (mindist(bx,&clr[i])<mind) hb[bx].vec[hb[bx].cnt++]=i; | |
1406 | /*printf("box %d -> approx -> %d\n",bx,hb[bx].cnt); */ | |
1407 | /* statbox(bx,cnum,clr); */ | |
1408 | cumcnt+=hb[bx].cnt; | |
1409 | } | |
1410 | ||
1411 | /* printf("Average search space: %d\n",cumcnt/512); */ | |
1412 | } | |
1413 | ||
1414 | static int | |
1415 | maxdist(int boxnum,cvec *cv) { | |
1416 | int r0,r1,g0,g1,b0,b1; | |
1417 | int r,g,b,mr,mg,mb; | |
1418 | ||
1419 | r=cv->r; | |
1420 | g=cv->g; | |
1421 | b=cv->b; | |
1422 | ||
1423 | bbox(boxnum,&r0,&r1,&g0,&g1,&b0,&b1); | |
1424 | ||
b33c08f8 TC |
1425 | mr=i_max(abs(b-b0),abs(b-b1)); |
1426 | mg=i_max(abs(g-g0),abs(g-g1)); | |
1427 | mb=i_max(abs(r-r0),abs(r-r1)); | |
02d1d628 AMH |
1428 | |
1429 | return PWR2(mr)+PWR2(mg)+PWR2(mb); | |
1430 | } | |
1431 | ||
1432 | static int | |
1433 | mindist(int boxnum,cvec *cv) { | |
1434 | int r0,r1,g0,g1,b0,b1; | |
1435 | int r,g,b,mr,mg,mb; | |
1436 | ||
1437 | r=cv->r; | |
1438 | g=cv->g; | |
1439 | b=cv->b; | |
1440 | ||
1441 | bbox(boxnum,&r0,&r1,&g0,&g1,&b0,&b1); | |
1442 | ||
1443 | /* printf("box %d, (%d,%d,%d)-(%d,%d,%d) vec (%d,%d,%d) ",boxnum,r0,g0,b0,r1,g1,b1,r,g,b); */ | |
1444 | ||
1445 | if (r0<=r && r<=r1 && g0<=g && g<=g1 && b0<=b && b<=b1) return 0; | |
1446 | ||
b33c08f8 TC |
1447 | mr=i_min(abs(b-b0),abs(b-b1)); |
1448 | mg=i_min(abs(g-g0),abs(g-g1)); | |
1449 | mb=i_min(abs(r-r0),abs(r-r1)); | |
02d1d628 AMH |
1450 | |
1451 | mr=PWR2(mr); | |
1452 | mg=PWR2(mg); | |
1453 | mb=PWR2(mb); | |
1454 | ||
1455 | if (r0<=r && r<=r1 && g0<=g && g<=g1) return mb; | |
1456 | if (r0<=r && r<=r1 && b0<=b && b<=b1) return mg; | |
1457 | if (b0<=b && b<=b1 && g0<=g && g<=g1) return mr; | |
1458 | ||
1459 | if (r0<=r && r<=r1) return mg+mb; | |
1460 | if (g0<=g && g<=g1) return mr+mb; | |
1461 | if (b0<=b && b<=b1) return mg+mr; | |
1462 | ||
1463 | return mr+mg+mb; | |
1464 | } | |
1465 | ||
1466 | static void transparent_threshold(i_quantize *, i_palidx *, i_img *, i_palidx); | |
1467 | static void transparent_errdiff(i_quantize *, i_palidx *, i_img *, i_palidx); | |
1468 | static void transparent_ordered(i_quantize *, i_palidx *, i_img *, i_palidx); | |
1469 | ||
92bda632 TC |
1470 | /* |
1471 | =item i_quant_transparent(quant, data, img, trans_index) | |
1472 | ||
1473 | =category Image quantization | |
1474 | ||
1475 | Dither the alpha channel on I<img> into the palette indexes in | |
1476 | I<data>. Pixels to be transparent are replaced with I<trans_pixel>. | |
1477 | ||
1478 | The method used depends on the tr_* members of quant. | |
1479 | ||
1480 | =cut | |
1481 | */ | |
1482 | ||
1483 | void | |
1484 | i_quant_transparent(i_quantize *quant, i_palidx *data, i_img *img, | |
02d1d628 AMH |
1485 | i_palidx trans_index) |
1486 | { | |
1487 | switch (quant->transp) { | |
1488 | case tr_none: | |
1489 | break; | |
1490 | ||
1491 | default: | |
1492 | quant->tr_threshold = 128; | |
1493 | /* fall through */ | |
1494 | case tr_threshold: | |
1495 | transparent_threshold(quant, data, img, trans_index); | |
1496 | break; | |
1497 | ||
1498 | case tr_errdiff: | |
1499 | transparent_errdiff(quant, data, img, trans_index); | |
1500 | break; | |
1501 | ||
1502 | case tr_ordered: | |
1503 | transparent_ordered(quant, data, img, trans_index); | |
1504 | break; | |
1505 | } | |
1506 | } | |
1507 | ||
1508 | static void | |
1509 | transparent_threshold(i_quantize *quant, i_palidx *data, i_img *img, | |
1510 | i_palidx trans_index) | |
1511 | { | |
1512 | int x, y; | |
18accb2a TC |
1513 | i_sample_t *line = mymalloc(img->xsize * sizeof(i_sample_t)); |
1514 | int trans_chan = img->channels > 2 ? 3 : 1; | |
02d1d628 AMH |
1515 | |
1516 | for (y = 0; y < img->ysize; ++y) { | |
18accb2a | 1517 | i_gsamp(img, 0, img->xsize, y, line, &trans_chan, 1); |
02d1d628 | 1518 | for (x = 0; x < img->xsize; ++x) { |
18accb2a | 1519 | if (line[x] < quant->tr_threshold) |
02d1d628 AMH |
1520 | data[y*img->xsize+x] = trans_index; |
1521 | } | |
1522 | } | |
18accb2a | 1523 | myfree(line); |
02d1d628 AMH |
1524 | } |
1525 | ||
1526 | static void | |
1527 | transparent_errdiff(i_quantize *quant, i_palidx *data, i_img *img, | |
1528 | i_palidx trans_index) | |
1529 | { | |
1530 | int *map; | |
1531 | int index; | |
1532 | int mapw, maph, mapo; | |
1533 | int errw, *err, *errp; | |
1534 | int difftotal, out, error; | |
1535 | int x, y, dx, dy, i; | |
18accb2a TC |
1536 | i_sample_t *line; |
1537 | int trans_chan = img->channels > 2 ? 3 : 1; | |
02d1d628 AMH |
1538 | |
1539 | /* no custom map for transparency (yet) */ | |
1540 | index = quant->tr_errdiff & ed_mask; | |
1541 | if (index >= ed_custom) index = ed_floyd; | |
1542 | map = maps[index].map; | |
1543 | mapw = maps[index].width; | |
1544 | maph = maps[index].height; | |
1545 | mapo = maps[index].orig; | |
1546 | ||
1547 | errw = img->xsize+mapw-1; | |
1548 | err = mymalloc(sizeof(*err) * maph * errw); | |
1549 | errp = err+mapo; | |
1550 | memset(err, 0, sizeof(*err) * maph * errw); | |
1551 | ||
18accb2a | 1552 | line = mymalloc(img->xsize * sizeof(i_sample_t)); |
02d1d628 AMH |
1553 | difftotal = 0; |
1554 | for (i = 0; i < maph * mapw; ++i) | |
1555 | difftotal += map[i]; | |
1556 | for (y = 0; y < img->ysize; ++y) { | |
18accb2a | 1557 | i_gsamp(img, 0, img->xsize, y, line, &trans_chan, 1); |
02d1d628 | 1558 | for (x = 0; x < img->xsize; ++x) { |
18accb2a TC |
1559 | line[x] = g_sat(line[x]-errp[x]/difftotal); |
1560 | if (line[x] < 128) { | |
02d1d628 AMH |
1561 | out = 0; |
1562 | data[y*img->xsize+x] = trans_index; | |
1563 | } | |
1564 | else { | |
1565 | out = 255; | |
1566 | } | |
18accb2a | 1567 | error = out - line[x]; |
02d1d628 AMH |
1568 | for (dx = 0; dx < mapw; ++dx) { |
1569 | for (dy = 0; dy < maph; ++dy) { | |
1570 | errp[x+dx-mapo+dy*errw] += error * map[dx+mapw*dy]; | |
1571 | } | |
1572 | } | |
1573 | } | |
1574 | /* shift up the error matrix */ | |
1575 | for (dy = 0; dy < maph-1; ++dy) | |
1576 | memcpy(err+dy*errw, err+(dy+1)*errw, sizeof(*err)*errw); | |
1577 | memset(err+(maph-1)*errw, 0, sizeof(*err)*errw); | |
1578 | } | |
18accb2a TC |
1579 | myfree(err); |
1580 | myfree(line); | |
02d1d628 AMH |
1581 | } |
1582 | ||
1583 | /* builtin ordered dither maps */ | |
b33c08f8 TC |
1584 | static unsigned char |
1585 | orddith_maps[][64] = | |
02d1d628 AMH |
1586 | { |
1587 | { /* random | |
1588 | this is purely random - it's pretty awful | |
1589 | */ | |
1590 | 48, 72, 196, 252, 180, 92, 108, 52, | |
1591 | 228, 176, 64, 8, 236, 40, 20, 164, | |
1592 | 120, 128, 84, 116, 24, 28, 172, 220, | |
1593 | 68, 0, 188, 124, 184, 224, 192, 104, | |
1594 | 132, 100, 240, 200, 152, 160, 244, 44, | |
1595 | 96, 204, 144, 16, 140, 56, 232, 216, | |
1596 | 208, 4, 76, 212, 136, 248, 80, 168, | |
1597 | 156, 88, 32, 112, 148, 12, 36, 60, | |
1598 | }, | |
1599 | { | |
1600 | /* dot8 | |
1601 | perl spot.perl '($x-3.5)*($x-3.5)+($y-3.5)*($y-3.5)' | |
1602 | */ | |
1603 | 240, 232, 200, 136, 140, 192, 228, 248, | |
1604 | 220, 148, 100, 76, 80, 104, 152, 212, | |
1605 | 180, 116, 56, 32, 36, 60, 120, 176, | |
1606 | 156, 64, 28, 0, 8, 44, 88, 160, | |
1607 | 128, 92, 24, 12, 4, 40, 68, 132, | |
1608 | 184, 96, 48, 20, 16, 52, 108, 188, | |
1609 | 216, 144, 112, 72, 84, 124, 164, 224, | |
1610 | 244, 236, 196, 168, 172, 204, 208, 252, | |
1611 | }, | |
1612 | { /* dot4 | |
1613 | perl spot.perl \ | |
1614 | 'min(dist(1.5, 1.5),dist(5.5,1.5),dist(1.5,5.5),dist(5.5,5.5))' | |
1615 | */ | |
1616 | 196, 72, 104, 220, 200, 80, 112, 224, | |
1617 | 76, 4, 24, 136, 84, 8, 32, 144, | |
1618 | 108, 28, 52, 168, 116, 36, 56, 176, | |
1619 | 216, 140, 172, 244, 228, 148, 180, 248, | |
1620 | 204, 92, 124, 236, 192, 68, 96, 208, | |
1621 | 88, 12, 44, 156, 64, 0, 16, 128, | |
1622 | 120, 40, 60, 188, 100, 20, 48, 160, | |
1623 | 232, 152, 184, 252, 212, 132, 164, 240, | |
1624 | }, | |
1625 | { /* hline | |
1626 | perl spot.perl '$y-3' | |
1627 | */ | |
1628 | 160, 164, 168, 172, 176, 180, 184, 188, | |
1629 | 128, 132, 136, 140, 144, 148, 152, 156, | |
1630 | 32, 36, 40, 44, 48, 52, 56, 60, | |
1631 | 0, 4, 8, 12, 16, 20, 24, 28, | |
1632 | 64, 68, 72, 76, 80, 84, 88, 92, | |
1633 | 96, 100, 104, 108, 112, 116, 120, 124, | |
1634 | 192, 196, 200, 204, 208, 212, 216, 220, | |
1635 | 224, 228, 232, 236, 240, 244, 248, 252, | |
1636 | }, | |
1637 | { /* vline | |
1638 | perl spot.perl '$x-3' | |
1639 | */ | |
1640 | 180, 100, 40, 12, 44, 104, 184, 232, | |
1641 | 204, 148, 60, 16, 64, 128, 208, 224, | |
1642 | 212, 144, 76, 8, 80, 132, 216, 244, | |
1643 | 160, 112, 68, 20, 84, 108, 172, 236, | |
1644 | 176, 96, 72, 28, 88, 152, 188, 228, | |
1645 | 200, 124, 92, 0, 32, 116, 164, 240, | |
1646 | 168, 120, 36, 24, 48, 136, 192, 248, | |
1647 | 196, 140, 52, 4, 56, 156, 220, 252, | |
1648 | }, | |
1649 | { /* slashline | |
1650 | perl spot.perl '$y+$x-7' | |
1651 | */ | |
1652 | 248, 232, 224, 192, 140, 92, 52, 28, | |
1653 | 240, 220, 196, 144, 108, 60, 12, 64, | |
1654 | 216, 180, 148, 116, 76, 20, 80, 128, | |
1655 | 204, 152, 104, 44, 16, 72, 100, 160, | |
1656 | 164, 96, 68, 24, 56, 112, 168, 176, | |
1657 | 124, 40, 8, 36, 88, 136, 184, 212, | |
1658 | 84, 4, 32, 120, 156, 188, 228, 236, | |
1659 | 0, 48, 132, 172, 200, 208, 244, 252, | |
1660 | }, | |
1661 | { /* backline | |
1662 | perl spot.perl '$y-$x' | |
1663 | */ | |
1664 | 0, 32, 116, 172, 184, 216, 236, 252, | |
1665 | 56, 8, 72, 132, 136, 200, 228, 240, | |
1666 | 100, 36, 12, 40, 92, 144, 204, 220, | |
1667 | 168, 120, 60, 16, 44, 96, 156, 176, | |
1668 | 180, 164, 112, 48, 28, 52, 128, 148, | |
1669 | 208, 192, 152, 88, 84, 20, 64, 104, | |
1670 | 232, 224, 196, 140, 108, 68, 24, 76, | |
1671 | 248, 244, 212, 188, 160, 124, 80, 4, | |
1672 | }, | |
11e7329d TC |
1673 | { |
1674 | /* tiny | |
1675 | good for display, bad for print | |
1676 | hand generated | |
1677 | */ | |
1678 | 0, 128, 32, 192, 8, 136, 40, 200, | |
1679 | 224, 64, 160, 112, 232, 72, 168, 120, | |
1680 | 48, 144, 16, 208, 56, 152, 24, 216, | |
1681 | 176, 96, 240, 80, 184, 104, 248, 88, | |
1682 | 12, 140, 44, 204, 4, 132, 36, 196, | |
1683 | 236, 76, 172, 124, 228, 68, 164, 116, | |
1684 | 60, 156, 28, 220, 52, 148, 20, 212, | |
1685 | 188, 108, 252, 92, 180, 100, 244, 84, | |
1686 | }, | |
02d1d628 AMH |
1687 | }; |
1688 | ||
1689 | static void | |
1690 | transparent_ordered(i_quantize *quant, i_palidx *data, i_img *img, | |
1691 | i_palidx trans_index) | |
1692 | { | |
1693 | unsigned char *spot; | |
1694 | int x, y; | |
18accb2a TC |
1695 | i_sample_t *line; |
1696 | int trans_chan = img->channels > 2 ? 3 : 1; | |
02d1d628 AMH |
1697 | if (quant->tr_orddith == od_custom) |
1698 | spot = quant->tr_custom; | |
1699 | else | |
1700 | spot = orddith_maps[quant->tr_orddith]; | |
18accb2a TC |
1701 | |
1702 | line = mymalloc(img->xsize * sizeof(i_sample_t)); | |
02d1d628 | 1703 | for (y = 0; y < img->ysize; ++y) { |
18accb2a | 1704 | i_gsamp(img, 0, img->xsize, y, line, &trans_chan, 1); |
02d1d628 | 1705 | for (x = 0; x < img->xsize; ++x) { |
18accb2a | 1706 | if (line[x] < spot[(x&7)+(y&7)*8]) |
02d1d628 AMH |
1707 | data[x+y*img->xsize] = trans_index; |
1708 | } | |
1709 | } | |
18accb2a | 1710 | myfree(line); |
02d1d628 | 1711 | } |
18accb2a | 1712 |