Commit | Line | Data |
---|---|---|
02d1d628 AMH |
1 | #include "image.h" |
2 | #include "io.h" | |
3 | ||
4 | /* | |
5 | =head1 NAME | |
6 | ||
7 | image.c - implements most of the basic functions of Imager and much of the rest | |
8 | ||
9 | =head1 SYNOPSIS | |
10 | ||
11 | i_img *i; | |
12 | i_color *c; | |
13 | c = i_color_new(red, green, blue, alpha); | |
14 | ICL_DESTROY(c); | |
15 | i = i_img_new(); | |
16 | i_img_destroy(i); | |
17 | // and much more | |
18 | ||
19 | =head1 DESCRIPTION | |
20 | ||
21 | image.c implements the basic functions to create and destroy image and | |
22 | color objects for Imager. | |
23 | ||
24 | =head1 FUNCTION REFERENCE | |
25 | ||
26 | Some of these functions are internal. | |
27 | ||
28 | =over 4 | |
29 | ||
30 | =cut | |
31 | */ | |
32 | ||
33 | #define XAXIS 0 | |
34 | #define YAXIS 1 | |
142c26ff | 35 | #define XYAXIS 2 |
02d1d628 AMH |
36 | |
37 | #define minmax(a,b,i) ( ((a>=i)?a: ( (b<=i)?b:i )) ) | |
38 | ||
39 | /* Hack around an obscure linker bug on solaris - probably due to builtin gcc thingies */ | |
40 | void fake() { ceil(1); } | |
41 | ||
42 | /* | |
43 | =item ICL_new_internal(r, g, b, a) | |
44 | ||
45 | Return a new color object with values passed to it. | |
46 | ||
47 | r - red component (range: 0 - 255) | |
48 | g - green component (range: 0 - 255) | |
49 | b - blue component (range: 0 - 255) | |
50 | a - alpha component (range: 0 - 255) | |
51 | ||
52 | =cut | |
53 | */ | |
54 | ||
55 | i_color * | |
56 | ICL_new_internal(unsigned char r,unsigned char g,unsigned char b,unsigned char a) { | |
4cac9410 | 57 | i_color *cl = NULL; |
02d1d628 | 58 | |
4cac9410 | 59 | mm_log((1,"ICL_new_internal(r %d,g %d,b %d,a %d)\n", r, g, b, a)); |
02d1d628 AMH |
60 | |
61 | if ( (cl=mymalloc(sizeof(i_color))) == NULL) m_fatal(2,"malloc() error\n"); | |
4cac9410 AMH |
62 | cl->rgba.r = r; |
63 | cl->rgba.g = g; | |
64 | cl->rgba.b = b; | |
65 | cl->rgba.a = a; | |
66 | mm_log((1,"(%p) <- ICL_new_internal\n",cl)); | |
02d1d628 AMH |
67 | return cl; |
68 | } | |
69 | ||
70 | ||
71 | /* | |
72 | =item ICL_set_internal(cl, r, g, b, a) | |
73 | ||
74 | Overwrite a color with new values. | |
75 | ||
76 | cl - pointer to color object | |
77 | r - red component (range: 0 - 255) | |
78 | g - green component (range: 0 - 255) | |
79 | b - blue component (range: 0 - 255) | |
80 | a - alpha component (range: 0 - 255) | |
81 | ||
82 | =cut | |
83 | */ | |
84 | ||
85 | i_color * | |
86 | ICL_set_internal(i_color *cl,unsigned char r,unsigned char g,unsigned char b,unsigned char a) { | |
4cac9410 | 87 | mm_log((1,"ICL_set_internal(cl* %p,r %d,g %d,b %d,a %d)\n",cl,r,g,b,a)); |
02d1d628 AMH |
88 | if (cl == NULL) |
89 | if ( (cl=mymalloc(sizeof(i_color))) == NULL) | |
90 | m_fatal(2,"malloc() error\n"); | |
91 | cl->rgba.r=r; | |
92 | cl->rgba.g=g; | |
93 | cl->rgba.b=b; | |
94 | cl->rgba.a=a; | |
4cac9410 | 95 | mm_log((1,"(%p) <- ICL_set_internal\n",cl)); |
02d1d628 AMH |
96 | return cl; |
97 | } | |
98 | ||
99 | ||
100 | /* | |
101 | =item ICL_add(dst, src, ch) | |
102 | ||
103 | Add src to dst inplace - dst is modified. | |
104 | ||
105 | dst - pointer to destination color object | |
106 | src - pointer to color object that is added | |
107 | ch - number of channels | |
108 | ||
109 | =cut | |
110 | */ | |
111 | ||
112 | void | |
113 | ICL_add(i_color *dst,i_color *src,int ch) { | |
114 | int tmp,i; | |
115 | for(i=0;i<ch;i++) { | |
116 | tmp=dst->channel[i]+src->channel[i]; | |
117 | dst->channel[i]= tmp>255 ? 255:tmp; | |
118 | } | |
119 | } | |
120 | ||
121 | /* | |
122 | =item ICL_info(cl) | |
123 | ||
124 | Dump color information to log - strictly for debugging. | |
125 | ||
126 | cl - pointer to color object | |
127 | ||
128 | =cut | |
129 | */ | |
130 | ||
131 | void | |
132 | ICL_info(i_color *cl) { | |
4cac9410 | 133 | mm_log((1,"i_color_info(cl* %p)\n",cl)); |
02d1d628 AMH |
134 | mm_log((1,"i_color_info: (%d,%d,%d,%d)\n",cl->rgba.r,cl->rgba.g,cl->rgba.b,cl->rgba.a)); |
135 | } | |
136 | ||
137 | /* | |
138 | =item ICL_DESTROY | |
139 | ||
140 | Destroy ancillary data for Color object. | |
141 | ||
142 | cl - pointer to color object | |
143 | ||
144 | =cut | |
145 | */ | |
146 | ||
147 | void | |
148 | ICL_DESTROY(i_color *cl) { | |
4cac9410 | 149 | mm_log((1,"ICL_DESTROY(cl* %p)\n",cl)); |
02d1d628 AMH |
150 | myfree(cl); |
151 | } | |
152 | ||
153 | /* | |
154 | =item IIM_new(x, y, ch) | |
155 | ||
156 | Creates a new image object I<x> pixels wide, and I<y> pixels high with I<ch> channels. | |
157 | ||
158 | =cut | |
159 | */ | |
160 | ||
161 | ||
162 | i_img * | |
163 | IIM_new(int x,int y,int ch) { | |
164 | i_img *im; | |
165 | mm_log((1,"IIM_new(x %d,y %d,ch %d)\n",x,y,ch)); | |
166 | ||
167 | im=i_img_empty_ch(NULL,x,y,ch); | |
168 | ||
4cac9410 | 169 | mm_log((1,"(%p) <- IIM_new\n",im)); |
02d1d628 AMH |
170 | return im; |
171 | } | |
172 | ||
173 | ||
174 | void | |
175 | IIM_DESTROY(i_img *im) { | |
4cac9410 | 176 | mm_log((1,"IIM_DESTROY(im* %p)\n",im)); |
02d1d628 AMH |
177 | /* myfree(cl); */ |
178 | } | |
179 | ||
180 | ||
181 | ||
182 | /* | |
183 | =item i_img_new() | |
184 | ||
185 | Create new image reference - notice that this isn't an object yet and | |
186 | this should be fixed asap. | |
187 | ||
188 | =cut | |
189 | */ | |
190 | ||
191 | ||
192 | i_img * | |
193 | i_img_new() { | |
194 | i_img *im; | |
195 | ||
196 | mm_log((1,"i_img_struct()\n")); | |
197 | if ( (im=mymalloc(sizeof(i_img))) == NULL) | |
198 | m_fatal(2,"malloc() error\n"); | |
199 | ||
200 | im->xsize=0; | |
201 | im->ysize=0; | |
202 | im->channels=3; | |
203 | im->ch_mask=MAXINT; | |
204 | im->bytes=0; | |
205 | im->data=NULL; | |
206 | ||
207 | im->i_f_ppix=i_ppix_d; | |
208 | im->i_f_gpix=i_gpix_d; | |
7a0584ef TC |
209 | im->i_f_plin=i_plin_d; |
210 | im->i_f_glin=i_glin_d; | |
02d1d628 AMH |
211 | im->ext_data=NULL; |
212 | ||
4cac9410 | 213 | mm_log((1,"(%p) <- i_img_struct\n",im)); |
02d1d628 AMH |
214 | return im; |
215 | } | |
216 | ||
217 | /* | |
218 | =item i_img_empty(im, x, y) | |
219 | ||
220 | Re-new image reference (assumes 3 channels) | |
221 | ||
222 | im - Image pointer | |
223 | x - xsize of destination image | |
224 | y - ysize of destination image | |
225 | ||
226 | =cut | |
227 | */ | |
228 | ||
229 | i_img * | |
230 | i_img_empty(i_img *im,int x,int y) { | |
4cac9410 | 231 | mm_log((1,"i_img_empty(*im %p, x %d, y %d)\n",im, x, y)); |
02d1d628 AMH |
232 | if (im==NULL) |
233 | if ( (im=mymalloc(sizeof(i_img))) == NULL) | |
234 | m_fatal(2,"malloc() error\n"); | |
235 | ||
4cac9410 AMH |
236 | im->xsize = x; |
237 | im->ysize = y; | |
238 | im->channels = 3; | |
239 | im->ch_mask = MAXINT; | |
02d1d628 | 240 | im->bytes=x*y*im->channels; |
4cac9410 AMH |
241 | if ( (im->data = mymalloc(im->bytes)) == NULL) m_fatal(2,"malloc() error\n"); |
242 | memset(im->data, 0, (size_t)im->bytes); | |
02d1d628 | 243 | |
4cac9410 AMH |
244 | im->i_f_ppix = i_ppix_d; |
245 | im->i_f_gpix = i_gpix_d; | |
7a0584ef TC |
246 | im->i_f_plin = i_plin_d; |
247 | im->i_f_glin = i_glin_d; | |
4cac9410 | 248 | im->ext_data = NULL; |
02d1d628 | 249 | |
4cac9410 | 250 | mm_log((1,"(%p) <- i_img_empty\n", im)); |
02d1d628 AMH |
251 | return im; |
252 | } | |
253 | ||
254 | /* | |
255 | =item i_img_empty_ch(im, x, y, ch) | |
256 | ||
257 | Re-new image reference | |
258 | ||
259 | im - Image pointer | |
142c26ff AMH |
260 | x - xsize of destination image |
261 | y - ysize of destination image | |
02d1d628 AMH |
262 | ch - number of channels |
263 | ||
264 | =cut | |
265 | */ | |
266 | ||
267 | i_img * | |
268 | i_img_empty_ch(i_img *im,int x,int y,int ch) { | |
4cac9410 AMH |
269 | mm_log((1,"i_img_empty_ch(*im %p, x %d, y %d, ch %d)\n", im, x, y, ch)); |
270 | if (im == NULL) | |
02d1d628 AMH |
271 | if ( (im=mymalloc(sizeof(i_img))) == NULL) |
272 | m_fatal(2,"malloc() error\n"); | |
273 | ||
4cac9410 AMH |
274 | im->xsize = x; |
275 | im->ysize = y; | |
276 | im->channels = ch; | |
277 | im->ch_mask = MAXINT; | |
02d1d628 AMH |
278 | im->bytes=x*y*im->channels; |
279 | if ( (im->data=mymalloc(im->bytes)) == NULL) m_fatal(2,"malloc() error\n"); | |
280 | memset(im->data,0,(size_t)im->bytes); | |
281 | ||
4cac9410 AMH |
282 | im->i_f_ppix = i_ppix_d; |
283 | im->i_f_gpix = i_gpix_d; | |
7a0584ef TC |
284 | im->i_f_plin = i_plin_d; |
285 | im->i_f_glin = i_glin_d; | |
4cac9410 | 286 | im->ext_data = NULL; |
02d1d628 | 287 | |
4cac9410 | 288 | mm_log((1,"(%p) <- i_img_empty_ch\n",im)); |
02d1d628 AMH |
289 | return im; |
290 | } | |
291 | ||
292 | /* | |
293 | =item i_img_exorcise(im) | |
294 | ||
295 | Free image data. | |
296 | ||
297 | im - Image pointer | |
298 | ||
299 | =cut | |
300 | */ | |
301 | ||
302 | void | |
303 | i_img_exorcise(i_img *im) { | |
304 | mm_log((1,"i_img_exorcise(im* 0x%x)\n",im)); | |
305 | if (im->data != NULL) { myfree(im->data); } | |
4cac9410 AMH |
306 | im->data = NULL; |
307 | im->xsize = 0; | |
308 | im->ysize = 0; | |
309 | im->channels = 0; | |
02d1d628 AMH |
310 | |
311 | im->i_f_ppix=i_ppix_d; | |
312 | im->i_f_gpix=i_gpix_d; | |
7a0584ef TC |
313 | im->i_f_plin=i_plin_d; |
314 | im->i_f_glin=i_glin_d; | |
02d1d628 AMH |
315 | im->ext_data=NULL; |
316 | } | |
317 | ||
318 | /* | |
319 | =item i_img_destroy(im) | |
320 | ||
321 | Destroy image and free data via exorcise. | |
322 | ||
323 | im - Image pointer | |
324 | ||
325 | =cut | |
326 | */ | |
327 | ||
328 | void | |
329 | i_img_destroy(i_img *im) { | |
330 | mm_log((1,"i_img_destroy(im* 0x%x)\n",im)); | |
331 | i_img_exorcise(im); | |
332 | if (im) { myfree(im); } | |
333 | } | |
334 | ||
335 | /* | |
336 | =item i_img_info(im, info) | |
337 | ||
338 | Return image information | |
339 | ||
340 | im - Image pointer | |
341 | info - pointer to array to return data | |
342 | ||
343 | info is an array of 4 integers with the following values: | |
344 | ||
345 | info[0] - width | |
346 | info[1] - height | |
347 | info[2] - channels | |
348 | info[3] - channel mask | |
349 | ||
350 | =cut | |
351 | */ | |
352 | ||
353 | ||
354 | void | |
355 | i_img_info(i_img *im,int *info) { | |
356 | mm_log((1,"i_img_info(im 0x%x)\n",im)); | |
357 | if (im != NULL) { | |
358 | mm_log((1,"i_img_info: xsize=%d ysize=%d channels=%d mask=%ud\n",im->xsize,im->ysize,im->channels,im->ch_mask)); | |
359 | mm_log((1,"i_img_info: data=0x%d\n",im->data)); | |
4cac9410 AMH |
360 | info[0] = im->xsize; |
361 | info[1] = im->ysize; | |
362 | info[2] = im->channels; | |
363 | info[3] = im->ch_mask; | |
02d1d628 | 364 | } else { |
4cac9410 AMH |
365 | info[0] = 0; |
366 | info[1] = 0; | |
367 | info[2] = 0; | |
368 | info[3] = 0; | |
02d1d628 AMH |
369 | } |
370 | } | |
371 | ||
372 | /* | |
373 | =item i_img_setmask(im, ch_mask) | |
374 | ||
375 | Set the image channel mask for I<im> to I<ch_mask>. | |
376 | ||
377 | =cut | |
378 | */ | |
379 | void | |
380 | i_img_setmask(i_img *im,int ch_mask) { im->ch_mask=ch_mask; } | |
381 | ||
382 | ||
383 | /* | |
384 | =item i_img_getmask(im) | |
385 | ||
386 | Get the image channel mask for I<im>. | |
387 | ||
388 | =cut | |
389 | */ | |
390 | int | |
391 | i_img_getmask(i_img *im) { return im->ch_mask; } | |
392 | ||
393 | /* | |
394 | =item i_img_getchannels(im) | |
395 | ||
396 | Get the number of channels in I<im>. | |
397 | ||
398 | =cut | |
399 | */ | |
400 | int | |
401 | i_img_getchannels(i_img *im) { return im->channels; } | |
402 | ||
403 | ||
404 | /* | |
405 | =item i_ppix(im, x, y, col) | |
406 | ||
407 | Sets the pixel at (I<x>,I<y>) in I<im> to I<col>. | |
408 | ||
409 | Returns true if the pixel could be set, false if x or y is out of | |
410 | range. | |
411 | ||
412 | =cut | |
413 | */ | |
414 | int | |
4cac9410 | 415 | i_ppix(i_img *im, int x, int y, i_color *val) { return im->i_f_ppix(im, x, y, val); } |
02d1d628 AMH |
416 | |
417 | /* | |
418 | =item i_gpix(im, x, y, &col) | |
419 | ||
420 | Get the pixel at (I<x>,I<y>) in I<im> into I<col>. | |
421 | ||
422 | Returns true if the pixel could be retrieved, false otherwise. | |
423 | ||
424 | =cut | |
425 | */ | |
426 | int | |
4cac9410 | 427 | i_gpix(i_img *im, int x, int y, i_color *val) { return im->i_f_gpix(im, x, y, val); } |
02d1d628 AMH |
428 | |
429 | /* | |
430 | =item i_ppix_d(im, x, y, col) | |
431 | ||
432 | Internal function. | |
433 | ||
434 | This is the function kept in the i_f_ppix member of an i_img object. | |
435 | It does a normal store of a pixel into the image with range checking. | |
436 | ||
437 | Returns true if the pixel could be set, false otherwise. | |
438 | ||
439 | =cut | |
440 | */ | |
441 | int | |
4cac9410 | 442 | i_ppix_d(i_img *im, int x, int y, i_color *val) { |
02d1d628 AMH |
443 | int ch; |
444 | ||
445 | if ( x>-1 && x<im->xsize && y>-1 && y<im->ysize ) { | |
446 | for(ch=0;ch<im->channels;ch++) | |
447 | if (im->ch_mask&(1<<ch)) | |
448 | im->data[(x+y*im->xsize)*im->channels+ch]=val->channel[ch]; | |
449 | return 0; | |
450 | } | |
451 | return -1; /* error was clipped */ | |
452 | } | |
453 | ||
454 | /* | |
455 | =item i_gpix_d(im, x, y, &col) | |
456 | ||
457 | Internal function. | |
458 | ||
459 | This is the function kept in the i_f_gpix member of an i_img object. | |
460 | It does normal retrieval of a pixel from the image with range checking. | |
461 | ||
462 | Returns true if the pixel could be set, false otherwise. | |
463 | ||
464 | =cut | |
465 | */ | |
466 | int | |
4cac9410 | 467 | i_gpix_d(i_img *im, int x, int y, i_color *val) { |
02d1d628 AMH |
468 | int ch; |
469 | if (x>-1 && x<im->xsize && y>-1 && y<im->ysize) { | |
470 | for(ch=0;ch<im->channels;ch++) | |
471 | val->channel[ch]=im->data[(x+y*im->xsize)*im->channels+ch]; | |
472 | return 0; | |
473 | } | |
474 | return -1; /* error was cliped */ | |
475 | } | |
476 | ||
7a0584ef TC |
477 | /* |
478 | =item i_glin_d(im, l, r, y, vals) | |
479 | ||
480 | Reads a line of data from the image, storing the pixels at vals. | |
481 | ||
482 | The line runs from (l,y) inclusive to (r,y) non-inclusive | |
483 | ||
484 | vals should point at space for (r-l) pixels. | |
485 | ||
486 | l should never be less than zero (to avoid confusion about where to | |
487 | put the pixels in vals). | |
488 | ||
489 | Returns the number of pixels copied (eg. if r, l or y is out of range) | |
490 | ||
491 | =cut */ | |
492 | int | |
493 | i_glin_d(i_img *im, int l, int r, int y, i_color *vals) { | |
494 | int x, ch; | |
495 | int count; | |
496 | int i; | |
497 | unsigned char *data; | |
498 | if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) { | |
499 | if (r > im->xsize) | |
500 | r = im->xsize; | |
501 | data = im->data + (l+y*im->xsize) * im->channels; | |
502 | count = r - l; | |
503 | for (i = 0; i < count; ++i) { | |
504 | for (ch = 0; ch < im->channels; ++ch) | |
505 | vals[i].channel[ch] = *data++; | |
506 | } | |
507 | return count; | |
508 | } | |
509 | else { | |
510 | return 0; | |
511 | } | |
512 | } | |
513 | /* | |
514 | =item i_plin_d(im, l, r, y, vals) | |
515 | ||
516 | Writes a line of data into the image, using the pixels at vals. | |
517 | ||
518 | The line runs from (l,y) inclusive to (r,y) non-inclusive | |
519 | ||
520 | vals should point at (r-l) pixels. | |
521 | ||
522 | l should never be less than zero (to avoid confusion about where to | |
523 | get the pixels in vals). | |
524 | ||
525 | Returns the number of pixels copied (eg. if r, l or y is out of range) | |
526 | ||
527 | =cut */ | |
528 | int | |
529 | i_plin_d(i_img *im, int l, int r, int y, i_color *vals) { | |
530 | int x, ch; | |
531 | int count; | |
532 | int i; | |
533 | unsigned char *data; | |
534 | if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) { | |
535 | if (r > im->xsize) | |
536 | r = im->xsize; | |
537 | data = im->data + (l+y*im->xsize) * im->channels; | |
538 | count = r - l; | |
539 | for (i = 0; i < count; ++i) { | |
540 | for (ch = 0; ch < im->channels; ++ch) { | |
541 | if (im->ch_mask & (1 << ch)) | |
542 | *data = vals[i].channel[ch]; | |
543 | ++data; | |
544 | } | |
545 | } | |
546 | return count; | |
547 | } | |
548 | else { | |
549 | return 0; | |
550 | } | |
551 | } | |
552 | ||
02d1d628 AMH |
553 | /* |
554 | =item i_ppix_pch(im, x, y, ch) | |
555 | ||
556 | Get the value from the channel I<ch> for pixel (I<x>,I<y>) from I<im> | |
557 | scaled to [0,1]. | |
558 | ||
559 | Returns zero if x or y is out of range. | |
560 | ||
561 | Warning: this ignores the vptr interface for images. | |
562 | ||
563 | =cut | |
564 | */ | |
565 | float | |
566 | i_gpix_pch(i_img *im,int x,int y,int ch) { | |
567 | if (x>-1 && x<im->xsize && y>-1 && y<im->ysize) return ((float)im->data[(x+y*im->xsize)*im->channels+ch]/255); | |
568 | else return 0; | |
569 | } | |
570 | ||
571 | ||
572 | /* | |
573 | =item i_copyto_trans(im, src, x1, y1, x2, y2, tx, ty, trans) | |
574 | ||
575 | (x1,y1) (x2,y2) specifies the region to copy (in the source coordinates) | |
576 | (tx,ty) specifies the upper left corner for the target image. | |
577 | pass NULL in trans for non transparent i_colors. | |
578 | ||
579 | =cut | |
580 | */ | |
581 | ||
582 | void | |
583 | i_copyto_trans(i_img *im,i_img *src,int x1,int y1,int x2,int y2,int tx,int ty,i_color *trans) { | |
584 | i_color pv; | |
585 | int x,y,t,ttx,tty,tt,ch; | |
586 | ||
4cac9410 AMH |
587 | mm_log((1,"i_copyto_trans(im* %p,src 0x%x, x1 %d, y1 %d, x2 %d, y2 %d, tx %d, ty %d, trans* 0x%x)\n", |
588 | im, src, x1, y1, x2, y2, tx, ty, trans)); | |
589 | ||
02d1d628 AMH |
590 | if (x2<x1) { t=x1; x1=x2; x2=t; } |
591 | if (y2<y1) { t=y1; y1=y2; y2=t; } | |
592 | ||
593 | ttx=tx; | |
594 | for(x=x1;x<x2;x++) | |
595 | { | |
596 | tty=ty; | |
597 | for(y=y1;y<y2;y++) | |
598 | { | |
599 | i_gpix(src,x,y,&pv); | |
600 | if ( trans != NULL) | |
601 | { | |
602 | tt=0; | |
603 | for(ch=0;ch<im->channels;ch++) if (trans->channel[ch]!=pv.channel[ch]) tt++; | |
604 | if (tt) i_ppix(im,ttx,tty,&pv); | |
605 | } else i_ppix(im,ttx,tty,&pv); | |
606 | tty++; | |
607 | } | |
608 | ttx++; | |
609 | } | |
610 | } | |
611 | ||
612 | /* | |
613 | =item i_copyto(dest, src, x1, y1, x2, y2, tx, ty) | |
614 | ||
615 | Copies image data from the area (x1,y1)-[x2,y2] in the source image to | |
616 | a rectangle the same size with it's top-left corner at (tx,ty) in the | |
617 | destination image. | |
618 | ||
619 | If x1 > x2 or y1 > y2 then the corresponding co-ordinates are swapped. | |
620 | ||
621 | =cut | |
622 | */ | |
623 | ||
624 | void | |
4cac9410 | 625 | i_copyto(i_img *im, i_img *src, int x1, int y1, int x2, int y2, int tx, int ty) { |
02d1d628 | 626 | i_color pv; |
4cac9410 | 627 | int x, y, t, ttx, tty; |
02d1d628 AMH |
628 | |
629 | if (x2<x1) { t=x1; x1=x2; x2=t; } | |
630 | if (y2<y1) { t=y1; y1=y2; y2=t; } | |
631 | ||
4cac9410 AMH |
632 | mm_log((1,"i_copyto(im* %p, src %p, x1 %d, y1 %d, x2 %d, y2 %d, tx %d, ty %d)\n", |
633 | im, src, x1, y1, x2, y2, tx, ty)); | |
02d1d628 | 634 | |
4cac9410 AMH |
635 | tty = ty; |
636 | for(y=y1; y<y2; y++) { | |
637 | ttx = tx; | |
638 | for(x=x1; x<x2; x++) { | |
639 | i_gpix(src, x, y, &pv); | |
640 | i_ppix(im, ttx, tty, &pv); | |
641 | ttx++; | |
02d1d628 AMH |
642 | } |
643 | tty++; | |
644 | } | |
645 | } | |
646 | ||
647 | /* | |
648 | =item i_copy(im, src) | |
649 | ||
650 | Copies the contents of the image I<src> over the image I<im>. | |
651 | ||
652 | =cut | |
653 | */ | |
654 | ||
655 | void | |
4cac9410 | 656 | i_copy(i_img *im, i_img *src) { |
7a0584ef | 657 | i_color *pv; |
02d1d628 AMH |
658 | int x,y,y1,x1; |
659 | ||
4202e066 | 660 | mm_log((1,"i_copy(im* %p,src %p)\n", im, src)); |
02d1d628 | 661 | |
4cac9410 AMH |
662 | x1 = src->xsize; |
663 | y1 = src->ysize; | |
664 | i_img_empty_ch(im, x1, y1, src->channels); | |
7a0584ef | 665 | pv = mymalloc(sizeof(i_color) * x1); |
02d1d628 | 666 | |
7a0584ef TC |
667 | for (y = 0; y < y1; ++y) { |
668 | i_glin(src, 0, x1, y, pv); | |
669 | i_plin(im, 0, x1, y, pv); | |
02d1d628 | 670 | } |
1f235e0d | 671 | myfree(pv); |
02d1d628 AMH |
672 | } |
673 | ||
674 | ||
675 | /* | |
676 | =item i_rubthru(im, src, tx, ty) | |
677 | ||
678 | Takes the image I<src> and applies it at an original (I<tx>,I<ty>) in I<im>. | |
679 | ||
680 | The alpha channel of each pixel in I<src> is used to control how much | |
681 | the existing colour in I<im> is replaced, if it is 255 then the colour | |
682 | is completely replaced, if it is 0 then the original colour is left | |
683 | unmodified. | |
684 | ||
685 | =cut | |
686 | */ | |
142c26ff | 687 | |
02d1d628 AMH |
688 | void |
689 | i_rubthru(i_img *im,i_img *src,int tx,int ty) { | |
4cac9410 AMH |
690 | i_color pv, orig, dest; |
691 | int x, y, ttx, tty; | |
02d1d628 | 692 | |
4cac9410 | 693 | mm_log((1,"i_rubthru(im %p, src %p, tx %d, ty %d)\n", im, src, tx, ty)); |
02d1d628 | 694 | |
4cac9410 | 695 | if (im->channels != 3) { fprintf(stderr,"Destination is not in rgb mode.\n"); exit(3); } |
02d1d628 AMH |
696 | if (src->channels != 4) { fprintf(stderr,"Source is not in rgba mode.\n"); exit(3); } |
697 | ||
4cac9410 AMH |
698 | ttx = tx; |
699 | for(x=0; x<src->xsize; x++) { | |
700 | tty=ty; | |
701 | for(y=0;y<src->ysize;y++) { | |
702 | /* fprintf(stderr,"reading (%d,%d) writing (%d,%d).\n",x,y,ttx,tty); */ | |
703 | i_gpix(src, x, y, &pv); | |
704 | i_gpix(im, ttx, tty, &orig); | |
705 | dest.rgb.r = (pv.rgba.a*pv.rgba.r+(255-pv.rgba.a)*orig.rgb.r)/255; | |
706 | dest.rgb.g = (pv.rgba.a*pv.rgba.g+(255-pv.rgba.a)*orig.rgb.g)/255; | |
707 | dest.rgb.b = (pv.rgba.a*pv.rgba.b+(255-pv.rgba.a)*orig.rgb.b)/255; | |
708 | i_ppix(im, ttx, tty, &dest); | |
709 | tty++; | |
02d1d628 | 710 | } |
4cac9410 AMH |
711 | ttx++; |
712 | } | |
02d1d628 AMH |
713 | } |
714 | ||
142c26ff AMH |
715 | |
716 | /* | |
717 | =item i_flipxy(im, axis) | |
718 | ||
719 | Flips the image inplace around the axis specified. | |
720 | Returns 0 if parameters are invalid. | |
721 | ||
722 | im - Image pointer | |
723 | axis - 0 = x, 1 = y, 2 = both | |
724 | ||
725 | =cut | |
726 | */ | |
727 | ||
728 | undef_int | |
729 | i_flipxy(i_img *im, int direction) { | |
730 | int x, x2, y, y2, xm, ym; | |
731 | int xs = im->xsize; | |
732 | int ys = im->ysize; | |
733 | ||
734 | mm_log((1, "i_flipxy(im %p, direction %d)\n", im, direction )); | |
735 | ||
736 | if (!im) return 0; | |
737 | ||
738 | switch (direction) { | |
739 | case XAXIS: /* Horizontal flip */ | |
740 | xm = xs/2; | |
741 | ym = ys; | |
742 | for(y=0; y<ym; y++) { | |
743 | x2 = xs-1; | |
744 | for(x=0; x<xm; x++) { | |
745 | i_color val1, val2; | |
746 | i_gpix(im, x, y, &val1); | |
747 | i_gpix(im, x2, y, &val2); | |
748 | i_ppix(im, x, y, &val2); | |
749 | i_ppix(im, x2, y, &val1); | |
750 | x2--; | |
751 | } | |
752 | } | |
753 | break; | |
390cd725 | 754 | case YAXIS: /* Vertical flip */ |
142c26ff AMH |
755 | xm = xs; |
756 | ym = ys/2; | |
757 | y2 = ys-1; | |
758 | for(y=0; y<ym; y++) { | |
759 | for(x=0; x<xm; x++) { | |
760 | i_color val1, val2; | |
761 | i_gpix(im, x, y, &val1); | |
762 | i_gpix(im, x, y2, &val2); | |
763 | i_ppix(im, x, y, &val2); | |
764 | i_ppix(im, x, y2, &val1); | |
765 | } | |
766 | y2--; | |
767 | } | |
768 | break; | |
390cd725 | 769 | case XYAXIS: /* Horizontal and Vertical flip */ |
142c26ff AMH |
770 | xm = xs/2; |
771 | ym = ys/2; | |
772 | y2 = ys-1; | |
773 | for(y=0; y<ym; y++) { | |
774 | x2 = xs-1; | |
775 | for(x=0; x<xm; x++) { | |
776 | i_color val1, val2; | |
777 | i_gpix(im, x, y, &val1); | |
778 | i_gpix(im, x2, y2, &val2); | |
779 | i_ppix(im, x, y, &val2); | |
780 | i_ppix(im, x2, y2, &val1); | |
781 | ||
782 | i_gpix(im, x2, y, &val1); | |
783 | i_gpix(im, x, y2, &val2); | |
784 | i_ppix(im, x2, y, &val2); | |
785 | i_ppix(im, x, y2, &val1); | |
786 | x2--; | |
787 | } | |
788 | y2--; | |
789 | } | |
390cd725 AMH |
790 | if (xm*2 != xs) { /* odd number of column */ |
791 | mm_log((1, "i_flipxy: odd number of columns\n")); | |
792 | x = xm; | |
793 | y2 = ys-1; | |
794 | for(y=0; y<ym; y++) { | |
795 | i_color val1, val2; | |
796 | i_gpix(im, x, y, &val1); | |
797 | i_gpix(im, x, y2, &val2); | |
798 | i_ppix(im, x, y, &val2); | |
799 | i_ppix(im, x, y2, &val1); | |
800 | y2--; | |
801 | } | |
802 | } | |
803 | if (ym*2 != ys) { /* odd number of rows */ | |
804 | mm_log((1, "i_flipxy: odd number of rows\n")); | |
805 | y = ym; | |
806 | x2 = xs-1; | |
807 | for(x=0; x<xm; x++) { | |
808 | i_color val1, val2; | |
809 | i_gpix(im, x, y, &val1); | |
810 | i_gpix(im, x2, y, &val2); | |
811 | i_ppix(im, x, y, &val2); | |
812 | i_ppix(im, x2, y, &val1); | |
813 | x2--; | |
814 | } | |
815 | } | |
142c26ff AMH |
816 | break; |
817 | default: | |
818 | mm_log((1, "i_flipxy: direction is invalid\n" )); | |
819 | return 0; | |
820 | } | |
821 | return 1; | |
822 | } | |
823 | ||
824 | ||
825 | ||
826 | ||
827 | ||
828 | static | |
02d1d628 AMH |
829 | float |
830 | Lanczos(float x) { | |
831 | float PIx, PIx2; | |
832 | ||
833 | PIx = PI * x; | |
834 | PIx2 = PIx / 2.0; | |
835 | ||
836 | if ((x >= 2.0) || (x <= -2.0)) return (0.0); | |
837 | else if (x == 0.0) return (1.0); | |
838 | else return(sin(PIx) / PIx * sin(PIx2) / PIx2); | |
839 | } | |
840 | ||
841 | /* | |
842 | =item i_scaleaxis(im, value, axis) | |
843 | ||
844 | Returns a new image object which is I<im> scaled by I<value> along | |
845 | wither the x-axis (I<axis> == 0) or the y-axis (I<axis> == 1). | |
846 | ||
847 | =cut | |
848 | */ | |
849 | ||
850 | i_img* | |
851 | i_scaleaxis(i_img *im, float Value, int Axis) { | |
852 | int hsize, vsize, i, j, k, l, lMax, iEnd, jEnd; | |
853 | int LanczosWidthFactor; | |
854 | float *l0, *l1, OldLocation; | |
855 | int T, TempJump1, TempJump2; | |
856 | float F, PictureValue[MAXCHANNELS]; | |
857 | short psave; | |
858 | i_color val,val1,val2; | |
859 | i_img *new_img; | |
860 | ||
861 | mm_log((1,"i_scaleaxis(im 0x%x,Value %.2f,Axis %d)\n",im,Value,Axis)); | |
862 | ||
863 | if (Axis == XAXIS) { | |
864 | hsize = (int) ((float) im->xsize * Value); | |
865 | vsize = im->ysize; | |
866 | ||
867 | jEnd = hsize; | |
868 | iEnd = vsize; | |
869 | ||
870 | TempJump1 = (hsize - 1) * 3; | |
871 | TempJump2 = hsize * (vsize - 1) * 3 + TempJump1; | |
872 | } else { | |
873 | hsize = im->xsize; | |
874 | vsize = (int) ((float) im->ysize * Value); | |
875 | ||
876 | jEnd = vsize; | |
877 | iEnd = hsize; | |
878 | ||
879 | TempJump1 = 0; | |
880 | TempJump2 = 0; | |
881 | } | |
882 | ||
883 | new_img=i_img_empty_ch(NULL,hsize,vsize,im->channels); | |
884 | ||
885 | if (Value >=1) LanczosWidthFactor = 1; | |
886 | else LanczosWidthFactor = (int) (1.0/Value); | |
887 | ||
888 | lMax = LanczosWidthFactor << 1; | |
889 | ||
890 | l0 = (float *) mymalloc(lMax * sizeof(float)); | |
891 | l1 = (float *) mymalloc(lMax * sizeof(float)); | |
892 | ||
893 | for (j=0; j<jEnd; j++) { | |
894 | OldLocation = ((float) j) / Value; | |
895 | T = (int) (OldLocation); | |
896 | F = OldLocation - (float) T; | |
897 | ||
898 | for (l = 0; l < lMax; l++) { | |
899 | l0[lMax-l-1] = Lanczos(((float) (lMax-l-1) + F) / (float) LanczosWidthFactor); | |
900 | l1[l] = Lanczos(((float) (l + 1) - F) / (float) LanczosWidthFactor); | |
901 | } | |
902 | ||
903 | if (Axis== XAXIS) { | |
904 | ||
905 | for (i=0; i<iEnd; i++) { | |
906 | for (k=0; k<im->channels; k++) PictureValue[k] = 0.0; | |
907 | for (l=0; l < lMax; l++) { | |
908 | i_gpix(im,T+l+1, i, &val1); | |
909 | i_gpix(im,T-lMax+l+1, i, &val2); | |
910 | for (k=0; k<im->channels; k++) { | |
911 | PictureValue[k] += l1[l] * val1.channel[k]; | |
912 | PictureValue[k] += l0[lMax-l-1] * val2.channel[k]; | |
913 | } | |
914 | } | |
915 | for(k=0;k<im->channels;k++) { | |
916 | psave = (short)( PictureValue[k] / LanczosWidthFactor); | |
917 | val.channel[k]=minmax(0,255,psave); | |
918 | } | |
919 | i_ppix(new_img,j,i,&val); | |
920 | } | |
921 | ||
922 | } else { | |
923 | ||
924 | for (i=0; i<iEnd; i++) { | |
925 | for (k=0; k<im->channels; k++) PictureValue[k] = 0.0; | |
926 | for (l=0; l < lMax; l++) { | |
927 | i_gpix(im,i, T+l+1, &val1); | |
928 | i_gpix(im,i, T-lMax+l+1, &val2); | |
929 | for (k=0; k<im->channels; k++) { | |
930 | PictureValue[k] += l1[l] * val1.channel[k]; | |
931 | PictureValue[k] += l0[lMax-l-1] * val2.channel[k]; | |
932 | } | |
933 | } | |
934 | for (k=0; k<im->channels; k++) { | |
935 | psave = (short)( PictureValue[k] / LanczosWidthFactor); | |
936 | val.channel[k]=minmax(0,255,psave); | |
937 | } | |
938 | i_ppix(new_img,i,j,&val); | |
939 | } | |
940 | ||
941 | } | |
942 | } | |
943 | myfree(l0); | |
944 | myfree(l1); | |
945 | ||
946 | mm_log((1,"(0x%x) <- i_scaleaxis\n",new_img)); | |
947 | ||
948 | return new_img; | |
949 | } | |
950 | ||
951 | ||
952 | /* | |
953 | =item i_scale_nn(im, scx, scy) | |
954 | ||
955 | Scale by using nearest neighbor | |
956 | Both axes scaled at the same time since | |
957 | nothing is gained by doing it in two steps | |
958 | ||
959 | =cut | |
960 | */ | |
961 | ||
962 | ||
963 | i_img* | |
964 | i_scale_nn(i_img *im, float scx, float scy) { | |
965 | ||
966 | int nxsize,nysize,nx,ny; | |
967 | i_img *new_img; | |
968 | i_color val; | |
969 | ||
970 | mm_log((1,"i_scale_nn(im 0x%x,scx %.2f,scy %.2f)\n",im,scx,scy)); | |
971 | ||
972 | nxsize = (int) ((float) im->xsize * scx); | |
973 | nysize = (int) ((float) im->ysize * scy); | |
974 | ||
975 | new_img=i_img_empty_ch(NULL,nxsize,nysize,im->channels); | |
976 | ||
977 | for(ny=0;ny<nysize;ny++) for(nx=0;nx<nxsize;nx++) { | |
978 | i_gpix(im,((float)nx)/scx,((float)ny)/scy,&val); | |
979 | i_ppix(new_img,nx,ny,&val); | |
980 | } | |
981 | ||
982 | mm_log((1,"(0x%x) <- i_scale_nn\n",new_img)); | |
983 | ||
984 | return new_img; | |
985 | } | |
986 | ||
987 | ||
988 | /* | |
989 | =item i_transform(im, opx, opxl, opy, opyl, parm, parmlen) | |
990 | ||
991 | Spatially transforms I<im> returning a new image. | |
992 | ||
993 | opx for a length of opxl and opy for a length of opy are arrays of | |
994 | operators that modify the x and y positions to retreive the pixel data from. | |
995 | ||
996 | parm and parmlen define extra parameters that the operators may use. | |
997 | ||
998 | Note that this function is largely superseded by the more flexible | |
999 | L<transform.c/i_transform2>. | |
1000 | ||
1001 | Returns the new image. | |
1002 | ||
1003 | The operators for this function are defined in L<stackmach.c>. | |
1004 | ||
1005 | =cut | |
1006 | */ | |
1007 | i_img* | |
1008 | i_transform(i_img *im, int *opx,int opxl,int *opy,int opyl,double parm[],int parmlen) { | |
1009 | double rx,ry; | |
1010 | int nxsize,nysize,nx,ny; | |
1011 | i_img *new_img; | |
1012 | i_color val; | |
1013 | ||
1014 | mm_log((1,"i_transform(im 0x%x, opx 0x%x, opxl %d, opy 0x%x, opyl %d, parm 0x%x, parmlen %d)\n",im,opx,opxl,opy,opyl,parm,parmlen)); | |
1015 | ||
1016 | nxsize = im->xsize; | |
1017 | nysize = im->ysize ; | |
1018 | ||
1019 | new_img=i_img_empty_ch(NULL,nxsize,nysize,im->channels); | |
1020 | /* fprintf(stderr,"parm[2]=%f\n",parm[2]); */ | |
1021 | for(ny=0;ny<nysize;ny++) for(nx=0;nx<nxsize;nx++) { | |
1022 | /* parm[parmlen-2]=(double)nx; | |
1023 | parm[parmlen-1]=(double)ny; */ | |
1024 | ||
1025 | parm[0]=(double)nx; | |
1026 | parm[1]=(double)ny; | |
1027 | ||
1028 | /* fprintf(stderr,"(%d,%d) ->",nx,ny); */ | |
1029 | rx=op_run(opx,opxl,parm,parmlen); | |
1030 | ry=op_run(opy,opyl,parm,parmlen); | |
1031 | /* fprintf(stderr,"(%f,%f)\n",rx,ry); */ | |
1032 | i_gpix(im,rx,ry,&val); | |
1033 | i_ppix(new_img,nx,ny,&val); | |
1034 | } | |
1035 | ||
1036 | mm_log((1,"(0x%x) <- i_transform\n",new_img)); | |
1037 | return new_img; | |
1038 | } | |
1039 | ||
1040 | /* | |
1041 | =item i_img_diff(im1, im2) | |
1042 | ||
1043 | Calculates the sum of the squares of the differences between | |
1044 | correspoding channels in two images. | |
1045 | ||
1046 | If the images are not the same size then only the common area is | |
1047 | compared, hence even if images are different sizes this function | |
1048 | can return zero. | |
1049 | ||
1050 | =cut | |
1051 | */ | |
1052 | float | |
1053 | i_img_diff(i_img *im1,i_img *im2) { | |
1054 | int x,y,ch,xb,yb,chb; | |
1055 | float tdiff; | |
1056 | i_color val1,val2; | |
1057 | ||
1058 | mm_log((1,"i_img_diff(im1 0x%x,im2 0x%x)\n",im1,im2)); | |
1059 | ||
1060 | xb=(im1->xsize<im2->xsize)?im1->xsize:im2->xsize; | |
1061 | yb=(im1->ysize<im2->ysize)?im1->ysize:im2->ysize; | |
1062 | chb=(im1->channels<im2->channels)?im1->channels:im2->channels; | |
1063 | ||
1064 | mm_log((1,"i_img_diff: xb=%d xy=%d chb=%d\n",xb,yb,chb)); | |
1065 | ||
1066 | tdiff=0; | |
1067 | for(y=0;y<yb;y++) for(x=0;x<xb;x++) { | |
1068 | i_gpix(im1,x,y,&val1); | |
1069 | i_gpix(im2,x,y,&val2); | |
1070 | ||
1071 | for(ch=0;ch<chb;ch++) tdiff+=(val1.channel[ch]-val2.channel[ch])*(val1.channel[ch]-val2.channel[ch]); | |
1072 | } | |
1073 | mm_log((1,"i_img_diff <- (%.2f)\n",tdiff)); | |
1074 | return tdiff; | |
1075 | } | |
1076 | ||
1077 | /* just a tiny demo of haar wavelets */ | |
1078 | ||
1079 | i_img* | |
1080 | i_haar(i_img *im) { | |
1081 | int mx,my; | |
1082 | int fx,fy; | |
1083 | int x,y; | |
1084 | int ch,c; | |
1085 | i_img *new_img,*new_img2; | |
1086 | i_color val1,val2,dval1,dval2; | |
1087 | ||
1088 | mx=im->xsize; | |
1089 | my=im->ysize; | |
1090 | fx=(mx+1)/2; | |
1091 | fy=(my+1)/2; | |
1092 | ||
1093 | ||
1094 | /* horizontal pass */ | |
1095 | ||
1096 | new_img=i_img_empty_ch(NULL,fx*2,fy*2,im->channels); | |
1097 | new_img2=i_img_empty_ch(NULL,fx*2,fy*2,im->channels); | |
1098 | ||
1099 | c=0; | |
1100 | for(y=0;y<my;y++) for(x=0;x<fx;x++) { | |
1101 | i_gpix(im,x*2,y,&val1); | |
1102 | i_gpix(im,x*2+1,y,&val2); | |
1103 | for(ch=0;ch<im->channels;ch++) { | |
1104 | dval1.channel[ch]=(val1.channel[ch]+val2.channel[ch])/2; | |
1105 | dval2.channel[ch]=(255+val1.channel[ch]-val2.channel[ch])/2; | |
1106 | } | |
1107 | i_ppix(new_img,x,y,&dval1); | |
1108 | i_ppix(new_img,x+fx,y,&dval2); | |
1109 | } | |
1110 | ||
1111 | for(y=0;y<fy;y++) for(x=0;x<mx;x++) { | |
1112 | i_gpix(new_img,x,y*2,&val1); | |
1113 | i_gpix(new_img,x,y*2+1,&val2); | |
1114 | for(ch=0;ch<im->channels;ch++) { | |
1115 | dval1.channel[ch]=(val1.channel[ch]+val2.channel[ch])/2; | |
1116 | dval2.channel[ch]=(255+val1.channel[ch]-val2.channel[ch])/2; | |
1117 | } | |
1118 | i_ppix(new_img2,x,y,&dval1); | |
1119 | i_ppix(new_img2,x,y+fy,&dval2); | |
1120 | } | |
1121 | ||
1122 | i_img_destroy(new_img); | |
1123 | return new_img2; | |
1124 | } | |
1125 | ||
1126 | /* | |
1127 | =item i_count_colors(im, maxc) | |
1128 | ||
1129 | returns number of colors or -1 | |
1130 | to indicate that it was more than max colors | |
1131 | ||
1132 | =cut | |
1133 | */ | |
1134 | int | |
1135 | i_count_colors(i_img *im,int maxc) { | |
1136 | struct octt *ct; | |
1137 | int x,y; | |
1138 | int xsize,ysize; | |
1139 | i_color val; | |
1140 | int colorcnt; | |
1141 | ||
1142 | mm_log((1,"i_count_colors(im 0x%08X,maxc %d)\n")); | |
1143 | ||
1144 | xsize=im->xsize; | |
1145 | ysize=im->ysize; | |
1146 | ct=octt_new(); | |
1147 | ||
1148 | colorcnt=0; | |
1149 | for(y=0;y<ysize;y++) for(x=0;x<xsize;x++) { | |
1150 | i_gpix(im,x,y,&val); | |
1151 | colorcnt+=octt_add(ct,val.rgb.r,val.rgb.g,val.rgb.b); | |
1152 | if (colorcnt > maxc) { octt_delete(ct); return -1; } | |
1153 | } | |
1154 | octt_delete(ct); | |
1155 | return colorcnt; | |
1156 | } | |
1157 | ||
1158 | ||
1159 | symbol_table_t symbol_table={i_has_format,ICL_set_internal,ICL_info, | |
1160 | i_img_new,i_img_empty,i_img_empty_ch,i_img_exorcise, | |
1161 | i_img_info,i_img_setmask,i_img_getmask,i_ppix,i_gpix, | |
1162 | i_box,i_draw,i_arc,i_copyto,i_copyto_trans,i_rubthru}; | |
1163 | ||
1164 | ||
1165 | /* | |
1166 | =item i_gen_reader(i_gen_read_data *info, char *buf, int length) | |
1167 | ||
1168 | Performs general read buffering for file readers that permit reading | |
1169 | to be done through a callback. | |
1170 | ||
1171 | The final callback gets two parameters, a I<need> value, and a I<want> | |
1172 | value, where I<need> is the amount of data that the file library needs | |
1173 | to read, and I<want> is the amount of space available in the buffer | |
1174 | maintained by these functions. | |
1175 | ||
1176 | This means if you need to read from a stream that you don't know the | |
1177 | length of, you can return I<need> bytes, taking the performance hit of | |
1178 | possibly expensive callbacks (eg. back to perl code), or if you are | |
1179 | reading from a stream where it doesn't matter if some data is lost, or | |
1180 | if the total length of the stream is known, you can return I<want> | |
1181 | bytes. | |
1182 | ||
1183 | =cut | |
1184 | */ | |
1185 | ||
1186 | int | |
1187 | i_gen_reader(i_gen_read_data *gci, char *buf, int length) { | |
1188 | int total; | |
1189 | ||
1190 | if (length < gci->length - gci->cpos) { | |
1191 | /* simplest case */ | |
1192 | memcpy(buf, gci->buffer+gci->cpos, length); | |
1193 | gci->cpos += length; | |
1194 | return length; | |
1195 | } | |
1196 | ||
1197 | total = 0; | |
1198 | memcpy(buf, gci->buffer+gci->cpos, gci->length-gci->cpos); | |
1199 | total += gci->length - gci->cpos; | |
1200 | length -= gci->length - gci->cpos; | |
1201 | buf += gci->length - gci->cpos; | |
1202 | if (length < (int)sizeof(gci->buffer)) { | |
1203 | int did_read; | |
1204 | int copy_size; | |
1205 | while (length | |
1206 | && (did_read = (gci->cb)(gci->userdata, gci->buffer, length, | |
1207 | sizeof(gci->buffer))) > 0) { | |
1208 | gci->cpos = 0; | |
1209 | gci->length = did_read; | |
1210 | ||
1211 | copy_size = min(length, gci->length); | |
1212 | memcpy(buf, gci->buffer, copy_size); | |
1213 | gci->cpos += copy_size; | |
1214 | buf += copy_size; | |
1215 | total += copy_size; | |
1216 | length -= copy_size; | |
1217 | } | |
1218 | } | |
1219 | else { | |
1220 | /* just read the rest - too big for our buffer*/ | |
1221 | int did_read; | |
1222 | while ((did_read = (gci->cb)(gci->userdata, buf, length, length)) > 0) { | |
1223 | length -= did_read; | |
1224 | total += did_read; | |
1225 | buf += did_read; | |
1226 | } | |
1227 | } | |
1228 | return total; | |
1229 | } | |
1230 | ||
1231 | /* | |
1232 | =item i_gen_read_data_new(i_read_callback_t cb, char *userdata) | |
1233 | ||
1234 | For use by callback file readers to initialize the reader buffer. | |
1235 | ||
1236 | Allocates, initializes and returns the reader buffer. | |
1237 | ||
1238 | See also L<image.c/free_gen_read_data> and L<image.c/i_gen_reader>. | |
1239 | ||
1240 | =cut | |
1241 | */ | |
1242 | i_gen_read_data * | |
1243 | i_gen_read_data_new(i_read_callback_t cb, char *userdata) { | |
1244 | i_gen_read_data *self = mymalloc(sizeof(i_gen_read_data)); | |
1245 | self->cb = cb; | |
1246 | self->userdata = userdata; | |
1247 | self->length = 0; | |
1248 | self->cpos = 0; | |
1249 | ||
1250 | return self; | |
1251 | } | |
1252 | ||
1253 | /* | |
1254 | =item free_gen_read_data(i_gen_read_data *) | |
1255 | ||
1256 | Cleans up. | |
1257 | ||
1258 | =cut | |
1259 | */ | |
1260 | void free_gen_read_data(i_gen_read_data *self) { | |
1261 | myfree(self); | |
1262 | } | |
1263 | ||
1264 | /* | |
1265 | =item i_gen_writer(i_gen_write_data *info, char const *data, int size) | |
1266 | ||
1267 | Performs write buffering for a callback based file writer. | |
1268 | ||
1269 | Failures are considered fatal, if a write fails then data will be | |
1270 | dropped. | |
1271 | ||
1272 | =cut | |
1273 | */ | |
1274 | int | |
1275 | i_gen_writer( | |
1276 | i_gen_write_data *self, | |
1277 | char const *data, | |
1278 | int size) | |
1279 | { | |
1280 | if (self->filledto && self->filledto+size > self->maxlength) { | |
1281 | if (self->cb(self->userdata, self->buffer, self->filledto)) { | |
1282 | self->filledto = 0; | |
1283 | } | |
1284 | else { | |
1285 | self->filledto = 0; | |
1286 | return 0; | |
1287 | } | |
1288 | } | |
1289 | if (self->filledto+size <= self->maxlength) { | |
1290 | /* just save it */ | |
1291 | memcpy(self->buffer+self->filledto, data, size); | |
1292 | self->filledto += size; | |
1293 | return 1; | |
1294 | } | |
1295 | /* doesn't fit - hand it off */ | |
1296 | return self->cb(self->userdata, data, size); | |
1297 | } | |
1298 | ||
1299 | /* | |
1300 | =item i_gen_write_data_new(i_write_callback_t cb, char *userdata, int max_length) | |
1301 | ||
1302 | Allocates and initializes the data structure used by i_gen_writer. | |
1303 | ||
1304 | This should be released with L<image.c/free_gen_write_data> | |
1305 | ||
1306 | =cut | |
1307 | */ | |
1308 | i_gen_write_data *i_gen_write_data_new(i_write_callback_t cb, | |
1309 | char *userdata, int max_length) | |
1310 | { | |
1311 | i_gen_write_data *self = mymalloc(sizeof(i_gen_write_data)); | |
1312 | self->cb = cb; | |
1313 | self->userdata = userdata; | |
1314 | self->maxlength = min(max_length, sizeof(self->buffer)); | |
1315 | if (self->maxlength < 0) | |
1316 | self->maxlength = sizeof(self->buffer); | |
1317 | self->filledto = 0; | |
1318 | ||
1319 | return self; | |
1320 | } | |
1321 | ||
1322 | /* | |
1323 | =item free_gen_write_data(i_gen_write_data *info, int flush) | |
1324 | ||
1325 | Cleans up the write buffer. | |
1326 | ||
1327 | Will flush any left-over data if I<flush> is non-zero. | |
1328 | ||
1329 | Returns non-zero if flush is zero or if info->cb() returns non-zero. | |
1330 | ||
1331 | Return zero only if flush is non-zero and info->cb() returns zero. | |
1332 | ie. if it fails. | |
1333 | ||
1334 | =cut | |
1335 | */ | |
1336 | ||
1337 | int free_gen_write_data(i_gen_write_data *info, int flush) | |
1338 | { | |
1339 | int result = !flush || | |
1340 | info->filledto == 0 || | |
1341 | info->cb(info->userdata, info->buffer, info->filledto); | |
1342 | myfree(info); | |
1343 | ||
1344 | return result; | |
1345 | } | |
1346 | ||
1347 | /* | |
1348 | =back | |
1349 | ||
1350 | =head1 SEE ALSO | |
1351 | ||
1352 | L<Imager>, L<gif.c> | |
1353 | ||
1354 | =cut | |
1355 | */ |