Commit | Line | Data |
---|---|---|
92bda632 TC |
1 | #include "imager.h" |
2 | #include "imageri.h" | |
02d1d628 AMH |
3 | |
4 | /* | |
5 | =head1 NAME | |
6 | ||
7 | image.c - implements most of the basic functions of Imager and much of the rest | |
8 | ||
9 | =head1 SYNOPSIS | |
10 | ||
11 | i_img *i; | |
12 | i_color *c; | |
13 | c = i_color_new(red, green, blue, alpha); | |
14 | ICL_DESTROY(c); | |
15 | i = i_img_new(); | |
16 | i_img_destroy(i); | |
17 | // and much more | |
18 | ||
19 | =head1 DESCRIPTION | |
20 | ||
21 | image.c implements the basic functions to create and destroy image and | |
22 | color objects for Imager. | |
23 | ||
24 | =head1 FUNCTION REFERENCE | |
25 | ||
26 | Some of these functions are internal. | |
27 | ||
b8c2033e | 28 | =over |
02d1d628 AMH |
29 | |
30 | =cut | |
31 | */ | |
32 | ||
33 | #define XAXIS 0 | |
34 | #define YAXIS 1 | |
142c26ff | 35 | #define XYAXIS 2 |
02d1d628 AMH |
36 | |
37 | #define minmax(a,b,i) ( ((a>=i)?a: ( (b<=i)?b:i )) ) | |
38 | ||
39 | /* Hack around an obscure linker bug on solaris - probably due to builtin gcc thingies */ | |
b33c08f8 | 40 | static void fake(void) { ceil(1); } |
faa9b3e7 | 41 | |
97ac0a96 | 42 | static int i_ppix_d(i_img *im, int x, int y, const i_color *val); |
faa9b3e7 TC |
43 | static int i_gpix_d(i_img *im, int x, int y, i_color *val); |
44 | static int i_glin_d(i_img *im, int l, int r, int y, i_color *vals); | |
97ac0a96 TC |
45 | static int i_plin_d(i_img *im, int l, int r, int y, const i_color *vals); |
46 | static int i_ppixf_d(i_img *im, int x, int y, const i_fcolor *val); | |
faa9b3e7 TC |
47 | static int i_gpixf_d(i_img *im, int x, int y, i_fcolor *val); |
48 | static int i_glinf_d(i_img *im, int l, int r, int y, i_fcolor *vals); | |
97ac0a96 | 49 | static int i_plinf_d(i_img *im, int l, int r, int y, const i_fcolor *vals); |
18accb2a TC |
50 | static int i_gsamp_d(i_img *im, int l, int r, int y, i_sample_t *samps, const int *chans, int chan_count); |
51 | static int i_gsampf_d(i_img *im, int l, int r, int y, i_fsample_t *samps, const int *chans, int chan_count); | |
bd8052a6 TC |
52 | |
53 | /* | |
54 | =item i_img_alloc() | |
55 | =category Image Implementation | |
56 | ||
57 | Allocates a new i_img structure. | |
58 | ||
59 | When implementing a new image type perform the following steps in your | |
60 | image object creation function: | |
61 | ||
62 | =over | |
63 | ||
64 | =item 1. | |
65 | ||
66 | allocate the image with i_img_alloc(). | |
67 | ||
68 | =item 2. | |
69 | ||
70 | initialize any function pointers or other data as needed, you can | |
71 | overwrite the whole block if you need to. | |
72 | ||
73 | =item 3. | |
74 | ||
75 | initialize Imager's internal data by calling i_img_init() on the image | |
76 | object. | |
77 | ||
78 | =back | |
79 | ||
80 | =cut | |
81 | */ | |
82 | ||
83 | i_img * | |
84 | i_img_alloc(void) { | |
85 | return mymalloc(sizeof(i_img)); | |
86 | } | |
87 | ||
88 | /* | |
5715f7c3 | 89 | =item i_img_init(C<img>) |
bd8052a6 TC |
90 | =category Image Implementation |
91 | ||
5715f7c3 | 92 | Imager internal initialization of images. |
bd8052a6 TC |
93 | |
94 | Currently this does very little, in the future it may be used to | |
95 | support threads, or color profiles. | |
96 | ||
97 | =cut | |
98 | */ | |
99 | ||
100 | void | |
101 | i_img_init(i_img *img) { | |
102 | img->im_data = NULL; | |
103 | } | |
02d1d628 AMH |
104 | |
105 | /* | |
106 | =item ICL_new_internal(r, g, b, a) | |
107 | ||
108 | Return a new color object with values passed to it. | |
109 | ||
110 | r - red component (range: 0 - 255) | |
111 | g - green component (range: 0 - 255) | |
112 | b - blue component (range: 0 - 255) | |
113 | a - alpha component (range: 0 - 255) | |
114 | ||
115 | =cut | |
116 | */ | |
117 | ||
118 | i_color * | |
119 | ICL_new_internal(unsigned char r,unsigned char g,unsigned char b,unsigned char a) { | |
4cac9410 | 120 | i_color *cl = NULL; |
02d1d628 | 121 | |
4cac9410 | 122 | mm_log((1,"ICL_new_internal(r %d,g %d,b %d,a %d)\n", r, g, b, a)); |
02d1d628 | 123 | |
b1e96952 | 124 | if ( (cl=mymalloc(sizeof(i_color))) == NULL) i_fatal(2,"malloc() error\n"); |
4cac9410 AMH |
125 | cl->rgba.r = r; |
126 | cl->rgba.g = g; | |
127 | cl->rgba.b = b; | |
128 | cl->rgba.a = a; | |
129 | mm_log((1,"(%p) <- ICL_new_internal\n",cl)); | |
02d1d628 AMH |
130 | return cl; |
131 | } | |
132 | ||
133 | ||
134 | /* | |
135 | =item ICL_set_internal(cl, r, g, b, a) | |
136 | ||
137 | Overwrite a color with new values. | |
138 | ||
139 | cl - pointer to color object | |
140 | r - red component (range: 0 - 255) | |
141 | g - green component (range: 0 - 255) | |
142 | b - blue component (range: 0 - 255) | |
143 | a - alpha component (range: 0 - 255) | |
144 | ||
145 | =cut | |
146 | */ | |
147 | ||
148 | i_color * | |
149 | ICL_set_internal(i_color *cl,unsigned char r,unsigned char g,unsigned char b,unsigned char a) { | |
4cac9410 | 150 | mm_log((1,"ICL_set_internal(cl* %p,r %d,g %d,b %d,a %d)\n",cl,r,g,b,a)); |
02d1d628 AMH |
151 | if (cl == NULL) |
152 | if ( (cl=mymalloc(sizeof(i_color))) == NULL) | |
b1e96952 | 153 | i_fatal(2,"malloc() error\n"); |
02d1d628 AMH |
154 | cl->rgba.r=r; |
155 | cl->rgba.g=g; | |
156 | cl->rgba.b=b; | |
157 | cl->rgba.a=a; | |
4cac9410 | 158 | mm_log((1,"(%p) <- ICL_set_internal\n",cl)); |
02d1d628 AMH |
159 | return cl; |
160 | } | |
161 | ||
162 | ||
163 | /* | |
164 | =item ICL_add(dst, src, ch) | |
165 | ||
166 | Add src to dst inplace - dst is modified. | |
167 | ||
168 | dst - pointer to destination color object | |
169 | src - pointer to color object that is added | |
170 | ch - number of channels | |
171 | ||
172 | =cut | |
173 | */ | |
174 | ||
175 | void | |
176 | ICL_add(i_color *dst,i_color *src,int ch) { | |
177 | int tmp,i; | |
178 | for(i=0;i<ch;i++) { | |
179 | tmp=dst->channel[i]+src->channel[i]; | |
180 | dst->channel[i]= tmp>255 ? 255:tmp; | |
181 | } | |
182 | } | |
183 | ||
184 | /* | |
185 | =item ICL_info(cl) | |
186 | ||
187 | Dump color information to log - strictly for debugging. | |
188 | ||
189 | cl - pointer to color object | |
190 | ||
191 | =cut | |
192 | */ | |
193 | ||
194 | void | |
97ac0a96 | 195 | ICL_info(i_color const *cl) { |
4cac9410 | 196 | mm_log((1,"i_color_info(cl* %p)\n",cl)); |
02d1d628 AMH |
197 | mm_log((1,"i_color_info: (%d,%d,%d,%d)\n",cl->rgba.r,cl->rgba.g,cl->rgba.b,cl->rgba.a)); |
198 | } | |
199 | ||
200 | /* | |
201 | =item ICL_DESTROY | |
202 | ||
203 | Destroy ancillary data for Color object. | |
204 | ||
205 | cl - pointer to color object | |
206 | ||
207 | =cut | |
208 | */ | |
209 | ||
210 | void | |
211 | ICL_DESTROY(i_color *cl) { | |
4cac9410 | 212 | mm_log((1,"ICL_DESTROY(cl* %p)\n",cl)); |
02d1d628 AMH |
213 | myfree(cl); |
214 | } | |
215 | ||
faa9b3e7 TC |
216 | /* |
217 | =item i_fcolor_new(double r, double g, double b, double a) | |
218 | ||
219 | =cut | |
220 | */ | |
221 | i_fcolor *i_fcolor_new(double r, double g, double b, double a) { | |
222 | i_fcolor *cl = NULL; | |
223 | ||
224 | mm_log((1,"i_fcolor_new(r %g,g %g,b %g,a %g)\n", r, g, b, a)); | |
225 | ||
b1e96952 | 226 | if ( (cl=mymalloc(sizeof(i_fcolor))) == NULL) i_fatal(2,"malloc() error\n"); |
faa9b3e7 TC |
227 | cl->rgba.r = r; |
228 | cl->rgba.g = g; | |
229 | cl->rgba.b = b; | |
230 | cl->rgba.a = a; | |
231 | mm_log((1,"(%p) <- i_fcolor_new\n",cl)); | |
232 | ||
233 | return cl; | |
234 | } | |
235 | ||
236 | /* | |
237 | =item i_fcolor_destroy(i_fcolor *cl) | |
238 | ||
239 | =cut | |
240 | */ | |
241 | void i_fcolor_destroy(i_fcolor *cl) { | |
242 | myfree(cl); | |
243 | } | |
244 | ||
245 | /* | |
246 | =item IIM_base_8bit_direct (static) | |
247 | ||
248 | A static i_img object used to initialize direct 8-bit per sample images. | |
249 | ||
250 | =cut | |
251 | */ | |
252 | static i_img IIM_base_8bit_direct = | |
253 | { | |
254 | 0, /* channels set */ | |
255 | 0, 0, 0, /* xsize, ysize, bytes */ | |
9a88a5e6 | 256 | ~0U, /* ch_mask */ |
faa9b3e7 TC |
257 | i_8_bits, /* bits */ |
258 | i_direct_type, /* type */ | |
259 | 0, /* virtual */ | |
260 | NULL, /* idata */ | |
261 | { 0, 0, NULL }, /* tags */ | |
262 | NULL, /* ext_data */ | |
263 | ||
264 | i_ppix_d, /* i_f_ppix */ | |
265 | i_ppixf_d, /* i_f_ppixf */ | |
266 | i_plin_d, /* i_f_plin */ | |
267 | i_plinf_d, /* i_f_plinf */ | |
268 | i_gpix_d, /* i_f_gpix */ | |
269 | i_gpixf_d, /* i_f_gpixf */ | |
270 | i_glin_d, /* i_f_glin */ | |
271 | i_glinf_d, /* i_f_glinf */ | |
272 | i_gsamp_d, /* i_f_gsamp */ | |
273 | i_gsampf_d, /* i_f_gsampf */ | |
274 | ||
275 | NULL, /* i_f_gpal */ | |
276 | NULL, /* i_f_ppal */ | |
277 | NULL, /* i_f_addcolors */ | |
278 | NULL, /* i_f_getcolors */ | |
279 | NULL, /* i_f_colorcount */ | |
280 | NULL, /* i_f_maxcolors */ | |
281 | NULL, /* i_f_findcolor */ | |
282 | NULL, /* i_f_setcolors */ | |
283 | ||
284 | NULL, /* i_f_destroy */ | |
bd8052a6 TC |
285 | |
286 | i_gsamp_bits_fb, | |
287 | NULL, /* i_f_psamp_bits */ | |
faa9b3e7 TC |
288 | }; |
289 | ||
290 | /*static void set_8bit_direct(i_img *im) { | |
291 | im->i_f_ppix = i_ppix_d; | |
292 | im->i_f_ppixf = i_ppixf_d; | |
293 | im->i_f_plin = i_plin_d; | |
294 | im->i_f_plinf = i_plinf_d; | |
295 | im->i_f_gpix = i_gpix_d; | |
296 | im->i_f_gpixf = i_gpixf_d; | |
297 | im->i_f_glin = i_glin_d; | |
298 | im->i_f_glinf = i_glinf_d; | |
299 | im->i_f_gpal = NULL; | |
300 | im->i_f_ppal = NULL; | |
301 | im->i_f_addcolor = NULL; | |
302 | im->i_f_getcolor = NULL; | |
303 | im->i_f_colorcount = NULL; | |
304 | im->i_f_findcolor = NULL; | |
305 | }*/ | |
306 | ||
02d1d628 AMH |
307 | /* |
308 | =item IIM_new(x, y, ch) | |
309 | ||
92bda632 TC |
310 | =item i_img_8_new(x, y, ch) |
311 | ||
9167a5c6 TC |
312 | =category Image creation/destruction |
313 | ||
314 | =synopsis i_img *img = i_img_8_new(width, height, channels); | |
92bda632 TC |
315 | |
316 | Creates a new image object I<x> pixels wide, and I<y> pixels high with | |
317 | I<ch> channels. | |
02d1d628 AMH |
318 | |
319 | =cut | |
320 | */ | |
321 | ||
322 | ||
323 | i_img * | |
324 | IIM_new(int x,int y,int ch) { | |
325 | i_img *im; | |
326 | mm_log((1,"IIM_new(x %d,y %d,ch %d)\n",x,y,ch)); | |
327 | ||
328 | im=i_img_empty_ch(NULL,x,y,ch); | |
329 | ||
4cac9410 | 330 | mm_log((1,"(%p) <- IIM_new\n",im)); |
02d1d628 AMH |
331 | return im; |
332 | } | |
333 | ||
334 | ||
335 | void | |
336 | IIM_DESTROY(i_img *im) { | |
4cac9410 | 337 | mm_log((1,"IIM_DESTROY(im* %p)\n",im)); |
faa9b3e7 | 338 | i_img_destroy(im); |
02d1d628 AMH |
339 | /* myfree(cl); */ |
340 | } | |
341 | ||
02d1d628 AMH |
342 | /* |
343 | =item i_img_new() | |
344 | ||
345 | Create new image reference - notice that this isn't an object yet and | |
346 | this should be fixed asap. | |
347 | ||
348 | =cut | |
349 | */ | |
350 | ||
351 | ||
352 | i_img * | |
353 | i_img_new() { | |
354 | i_img *im; | |
355 | ||
356 | mm_log((1,"i_img_struct()\n")); | |
bd8052a6 TC |
357 | |
358 | im = i_img_alloc(); | |
02d1d628 | 359 | |
faa9b3e7 | 360 | *im = IIM_base_8bit_direct; |
02d1d628 AMH |
361 | im->xsize=0; |
362 | im->ysize=0; | |
363 | im->channels=3; | |
364 | im->ch_mask=MAXINT; | |
365 | im->bytes=0; | |
faa9b3e7 | 366 | im->idata=NULL; |
bd8052a6 TC |
367 | |
368 | i_img_init(im); | |
02d1d628 | 369 | |
4cac9410 | 370 | mm_log((1,"(%p) <- i_img_struct\n",im)); |
02d1d628 AMH |
371 | return im; |
372 | } | |
373 | ||
374 | /* | |
375 | =item i_img_empty(im, x, y) | |
376 | ||
377 | Re-new image reference (assumes 3 channels) | |
378 | ||
379 | im - Image pointer | |
380 | x - xsize of destination image | |
381 | y - ysize of destination image | |
382 | ||
faa9b3e7 TC |
383 | **FIXME** what happens if a live image is passed in here? |
384 | ||
385 | Should this just call i_img_empty_ch()? | |
386 | ||
02d1d628 AMH |
387 | =cut |
388 | */ | |
389 | ||
390 | i_img * | |
391 | i_img_empty(i_img *im,int x,int y) { | |
4cac9410 | 392 | mm_log((1,"i_img_empty(*im %p, x %d, y %d)\n",im, x, y)); |
faa9b3e7 | 393 | return i_img_empty_ch(im, x, y, 3); |
02d1d628 AMH |
394 | } |
395 | ||
396 | /* | |
397 | =item i_img_empty_ch(im, x, y, ch) | |
398 | ||
399 | Re-new image reference | |
400 | ||
401 | im - Image pointer | |
142c26ff AMH |
402 | x - xsize of destination image |
403 | y - ysize of destination image | |
02d1d628 AMH |
404 | ch - number of channels |
405 | ||
406 | =cut | |
407 | */ | |
408 | ||
409 | i_img * | |
410 | i_img_empty_ch(i_img *im,int x,int y,int ch) { | |
653ea321 TC |
411 | int bytes; |
412 | ||
4cac9410 | 413 | mm_log((1,"i_img_empty_ch(*im %p, x %d, y %d, ch %d)\n", im, x, y, ch)); |
1501d9b3 TC |
414 | |
415 | if (x < 1 || y < 1) { | |
416 | i_push_error(0, "Image sizes must be positive"); | |
417 | return NULL; | |
418 | } | |
419 | if (ch < 1 || ch > MAXCHANNELS) { | |
420 | i_push_errorf(0, "channels must be between 1 and %d", MAXCHANNELS); | |
421 | return NULL; | |
422 | } | |
653ea321 TC |
423 | /* check this multiplication doesn't overflow */ |
424 | bytes = x*y*ch; | |
425 | if (bytes / y / ch != x) { | |
426 | i_push_errorf(0, "integer overflow calculating image allocation"); | |
427 | return NULL; | |
428 | } | |
1501d9b3 | 429 | |
4cac9410 | 430 | if (im == NULL) |
bd8052a6 | 431 | im = i_img_alloc(); |
faa9b3e7 TC |
432 | |
433 | memcpy(im, &IIM_base_8bit_direct, sizeof(i_img)); | |
434 | i_tags_new(&im->tags); | |
4cac9410 AMH |
435 | im->xsize = x; |
436 | im->ysize = y; | |
437 | im->channels = ch; | |
438 | im->ch_mask = MAXINT; | |
653ea321 TC |
439 | im->bytes=bytes; |
440 | if ( (im->idata=mymalloc(im->bytes)) == NULL) | |
b1e96952 | 441 | i_fatal(2,"malloc() error\n"); |
faa9b3e7 | 442 | memset(im->idata,0,(size_t)im->bytes); |
02d1d628 | 443 | |
4cac9410 | 444 | im->ext_data = NULL; |
bd8052a6 TC |
445 | |
446 | i_img_init(im); | |
02d1d628 | 447 | |
4cac9410 | 448 | mm_log((1,"(%p) <- i_img_empty_ch\n",im)); |
02d1d628 AMH |
449 | return im; |
450 | } | |
451 | ||
452 | /* | |
453 | =item i_img_exorcise(im) | |
454 | ||
455 | Free image data. | |
456 | ||
457 | im - Image pointer | |
458 | ||
459 | =cut | |
460 | */ | |
461 | ||
462 | void | |
463 | i_img_exorcise(i_img *im) { | |
464 | mm_log((1,"i_img_exorcise(im* 0x%x)\n",im)); | |
faa9b3e7 TC |
465 | i_tags_destroy(&im->tags); |
466 | if (im->i_f_destroy) | |
467 | (im->i_f_destroy)(im); | |
468 | if (im->idata != NULL) { myfree(im->idata); } | |
469 | im->idata = NULL; | |
4cac9410 AMH |
470 | im->xsize = 0; |
471 | im->ysize = 0; | |
472 | im->channels = 0; | |
02d1d628 AMH |
473 | |
474 | im->i_f_ppix=i_ppix_d; | |
475 | im->i_f_gpix=i_gpix_d; | |
7a0584ef TC |
476 | im->i_f_plin=i_plin_d; |
477 | im->i_f_glin=i_glin_d; | |
02d1d628 AMH |
478 | im->ext_data=NULL; |
479 | } | |
480 | ||
481 | /* | |
5715f7c3 | 482 | =item i_img_destroy(C<img>) |
6cfee9d1 | 483 | =order 90 |
9167a5c6 TC |
484 | =category Image creation/destruction |
485 | =synopsis i_img_destroy(img) | |
02d1d628 | 486 | |
9167a5c6 | 487 | Destroy an image object |
02d1d628 AMH |
488 | |
489 | =cut | |
490 | */ | |
491 | ||
492 | void | |
493 | i_img_destroy(i_img *im) { | |
07d70837 | 494 | mm_log((1,"i_img_destroy(im %p)\n",im)); |
02d1d628 AMH |
495 | i_img_exorcise(im); |
496 | if (im) { myfree(im); } | |
497 | } | |
498 | ||
499 | /* | |
500 | =item i_img_info(im, info) | |
501 | ||
92bda632 TC |
502 | =category Image |
503 | ||
02d1d628 AMH |
504 | Return image information |
505 | ||
506 | im - Image pointer | |
507 | info - pointer to array to return data | |
508 | ||
509 | info is an array of 4 integers with the following values: | |
510 | ||
511 | info[0] - width | |
512 | info[1] - height | |
513 | info[2] - channels | |
514 | info[3] - channel mask | |
515 | ||
516 | =cut | |
517 | */ | |
518 | ||
519 | ||
520 | void | |
521 | i_img_info(i_img *im,int *info) { | |
522 | mm_log((1,"i_img_info(im 0x%x)\n",im)); | |
523 | if (im != NULL) { | |
524 | mm_log((1,"i_img_info: xsize=%d ysize=%d channels=%d mask=%ud\n",im->xsize,im->ysize,im->channels,im->ch_mask)); | |
faa9b3e7 | 525 | mm_log((1,"i_img_info: idata=0x%d\n",im->idata)); |
4cac9410 AMH |
526 | info[0] = im->xsize; |
527 | info[1] = im->ysize; | |
528 | info[2] = im->channels; | |
529 | info[3] = im->ch_mask; | |
02d1d628 | 530 | } else { |
4cac9410 AMH |
531 | info[0] = 0; |
532 | info[1] = 0; | |
533 | info[2] = 0; | |
534 | info[3] = 0; | |
02d1d628 AMH |
535 | } |
536 | } | |
537 | ||
538 | /* | |
5715f7c3 | 539 | =item i_img_setmask(C<im>, C<ch_mask>) |
6cfee9d1 | 540 | =category Image Information |
d5477d3d TC |
541 | =synopsis // only channel 0 writeable |
542 | =synopsis i_img_setmask(img, 0x01); | |
543 | ||
5715f7c3 | 544 | Set the image channel mask for C<im> to C<ch_mask>. |
02d1d628 | 545 | |
6cfee9d1 TC |
546 | The image channel mask gives some control over which channels can be |
547 | written to in the image. | |
548 | ||
02d1d628 AMH |
549 | =cut |
550 | */ | |
551 | void | |
552 | i_img_setmask(i_img *im,int ch_mask) { im->ch_mask=ch_mask; } | |
553 | ||
554 | ||
555 | /* | |
5715f7c3 | 556 | =item i_img_getmask(C<im>) |
6cfee9d1 TC |
557 | =category Image Information |
558 | =synopsis int mask = i_img_getmask(img); | |
d5477d3d | 559 | |
5715f7c3 | 560 | Get the image channel mask for C<im>. |
02d1d628 AMH |
561 | |
562 | =cut | |
563 | */ | |
564 | int | |
565 | i_img_getmask(i_img *im) { return im->ch_mask; } | |
566 | ||
567 | /* | |
5715f7c3 | 568 | =item i_img_getchannels(C<im>) |
6cfee9d1 TC |
569 | =category Image Information |
570 | =synopsis int channels = i_img_getchannels(img); | |
d5477d3d | 571 | |
5715f7c3 | 572 | Get the number of channels in C<im>. |
02d1d628 AMH |
573 | |
574 | =cut | |
575 | */ | |
576 | int | |
577 | i_img_getchannels(i_img *im) { return im->channels; } | |
578 | ||
d5477d3d | 579 | /* |
5715f7c3 | 580 | =item i_img_get_width(C<im>) |
6cfee9d1 TC |
581 | =category Image Information |
582 | =synopsis i_img_dim width = i_img_get_width(im); | |
02d1d628 | 583 | |
d5477d3d TC |
584 | Returns the width in pixels of the image. |
585 | ||
586 | =cut | |
587 | */ | |
588 | i_img_dim | |
589 | i_img_get_width(i_img *im) { | |
590 | return im->xsize; | |
591 | } | |
592 | ||
593 | /* | |
5715f7c3 | 594 | =item i_img_get_height(C<im>) |
6cfee9d1 TC |
595 | =category Image Information |
596 | =synopsis i_img_dim height = i_img_get_height(im); | |
d5477d3d TC |
597 | |
598 | Returns the height in pixels of the image. | |
599 | ||
600 | =cut | |
601 | */ | |
602 | i_img_dim | |
603 | i_img_get_height(i_img *im) { | |
604 | return im->ysize; | |
605 | } | |
02d1d628 AMH |
606 | |
607 | /* | |
5715f7c3 | 608 | =item i_copyto_trans(C<im>, C<src>, C<x1>, C<y1>, C<x2>, C<y2>, C<tx>, C<ty>, C<trans>) |
02d1d628 | 609 | |
92bda632 TC |
610 | =category Image |
611 | ||
5715f7c3 TC |
612 | (C<x1>,C<y1>) (C<x2>,C<y2>) specifies the region to copy (in the |
613 | source coordinates) (C<tx>,C<ty>) specifies the upper left corner for | |
614 | the target image. pass NULL in C<trans> for non transparent i_colors. | |
02d1d628 AMH |
615 | |
616 | =cut | |
617 | */ | |
618 | ||
619 | void | |
97ac0a96 | 620 | i_copyto_trans(i_img *im,i_img *src,int x1,int y1,int x2,int y2,int tx,int ty,const i_color *trans) { |
02d1d628 AMH |
621 | i_color pv; |
622 | int x,y,t,ttx,tty,tt,ch; | |
623 | ||
4cac9410 AMH |
624 | mm_log((1,"i_copyto_trans(im* %p,src 0x%x, x1 %d, y1 %d, x2 %d, y2 %d, tx %d, ty %d, trans* 0x%x)\n", |
625 | im, src, x1, y1, x2, y2, tx, ty, trans)); | |
626 | ||
02d1d628 AMH |
627 | if (x2<x1) { t=x1; x1=x2; x2=t; } |
628 | if (y2<y1) { t=y1; y1=y2; y2=t; } | |
629 | ||
630 | ttx=tx; | |
631 | for(x=x1;x<x2;x++) | |
632 | { | |
633 | tty=ty; | |
634 | for(y=y1;y<y2;y++) | |
635 | { | |
636 | i_gpix(src,x,y,&pv); | |
637 | if ( trans != NULL) | |
638 | { | |
639 | tt=0; | |
640 | for(ch=0;ch<im->channels;ch++) if (trans->channel[ch]!=pv.channel[ch]) tt++; | |
641 | if (tt) i_ppix(im,ttx,tty,&pv); | |
642 | } else i_ppix(im,ttx,tty,&pv); | |
643 | tty++; | |
644 | } | |
645 | ttx++; | |
646 | } | |
647 | } | |
648 | ||
02d1d628 | 649 | /* |
5715f7c3 | 650 | =item i_copy(source) |
92bda632 TC |
651 | |
652 | =category Image | |
653 | ||
5715f7c3 | 654 | Creates a new image that is a copy of the image C<source>. |
92bda632 TC |
655 | |
656 | Tags are not copied, only the image data. | |
02d1d628 | 657 | |
92bda632 | 658 | Returns: i_img * |
02d1d628 AMH |
659 | |
660 | =cut | |
661 | */ | |
662 | ||
92bda632 TC |
663 | i_img * |
664 | i_copy(i_img *src) { | |
a743c0a6 | 665 | int y, y1, x1; |
92bda632 TC |
666 | i_img *im = i_sametype(src, src->xsize, src->ysize); |
667 | ||
668 | mm_log((1,"i_copy(src %p)\n", src)); | |
02d1d628 | 669 | |
92bda632 TC |
670 | if (!im) |
671 | return NULL; | |
02d1d628 | 672 | |
4cac9410 AMH |
673 | x1 = src->xsize; |
674 | y1 = src->ysize; | |
faa9b3e7 TC |
675 | if (src->type == i_direct_type) { |
676 | if (src->bits == i_8_bits) { | |
677 | i_color *pv; | |
faa9b3e7 TC |
678 | pv = mymalloc(sizeof(i_color) * x1); |
679 | ||
680 | for (y = 0; y < y1; ++y) { | |
681 | i_glin(src, 0, x1, y, pv); | |
682 | i_plin(im, 0, x1, y, pv); | |
683 | } | |
684 | myfree(pv); | |
685 | } | |
686 | else { | |
faa9b3e7 | 687 | i_fcolor *pv; |
af3c2450 | 688 | |
faa9b3e7 TC |
689 | pv = mymalloc(sizeof(i_fcolor) * x1); |
690 | for (y = 0; y < y1; ++y) { | |
691 | i_glinf(src, 0, x1, y, pv); | |
692 | i_plinf(im, 0, x1, y, pv); | |
693 | } | |
694 | myfree(pv); | |
695 | } | |
696 | } | |
697 | else { | |
faa9b3e7 TC |
698 | i_palidx *vals; |
699 | ||
faa9b3e7 TC |
700 | vals = mymalloc(sizeof(i_palidx) * x1); |
701 | for (y = 0; y < y1; ++y) { | |
702 | i_gpal(src, 0, x1, y, vals); | |
703 | i_ppal(im, 0, x1, y, vals); | |
704 | } | |
705 | myfree(vals); | |
02d1d628 | 706 | } |
92bda632 TC |
707 | |
708 | return im; | |
02d1d628 AMH |
709 | } |
710 | ||
711 | ||
142c26ff AMH |
712 | |
713 | ||
714 | ||
715 | ||
716 | static | |
02d1d628 AMH |
717 | float |
718 | Lanczos(float x) { | |
719 | float PIx, PIx2; | |
720 | ||
721 | PIx = PI * x; | |
722 | PIx2 = PIx / 2.0; | |
723 | ||
724 | if ((x >= 2.0) || (x <= -2.0)) return (0.0); | |
725 | else if (x == 0.0) return (1.0); | |
726 | else return(sin(PIx) / PIx * sin(PIx2) / PIx2); | |
727 | } | |
728 | ||
b4e32feb | 729 | |
02d1d628 AMH |
730 | /* |
731 | =item i_scaleaxis(im, value, axis) | |
732 | ||
733 | Returns a new image object which is I<im> scaled by I<value> along | |
734 | wither the x-axis (I<axis> == 0) or the y-axis (I<axis> == 1). | |
735 | ||
736 | =cut | |
737 | */ | |
738 | ||
739 | i_img* | |
740 | i_scaleaxis(i_img *im, float Value, int Axis) { | |
741 | int hsize, vsize, i, j, k, l, lMax, iEnd, jEnd; | |
742 | int LanczosWidthFactor; | |
743 | float *l0, *l1, OldLocation; | |
07d70837 AMH |
744 | int T; |
745 | float t; | |
02d1d628 AMH |
746 | float F, PictureValue[MAXCHANNELS]; |
747 | short psave; | |
748 | i_color val,val1,val2; | |
749 | i_img *new_img; | |
750 | ||
de470892 | 751 | i_clear_error(); |
07d70837 | 752 | mm_log((1,"i_scaleaxis(im %p,Value %.2f,Axis %d)\n",im,Value,Axis)); |
02d1d628 | 753 | |
b4e32feb | 754 | |
02d1d628 | 755 | if (Axis == XAXIS) { |
07d70837 | 756 | hsize = (int)(0.5 + im->xsize * Value); |
1501d9b3 TC |
757 | if (hsize < 1) { |
758 | hsize = 1; | |
b0950e71 | 759 | Value = 1.0 / im->xsize; |
1501d9b3 | 760 | } |
02d1d628 AMH |
761 | vsize = im->ysize; |
762 | ||
763 | jEnd = hsize; | |
764 | iEnd = vsize; | |
02d1d628 AMH |
765 | } else { |
766 | hsize = im->xsize; | |
07d70837 AMH |
767 | vsize = (int)(0.5 + im->ysize * Value); |
768 | ||
1501d9b3 TC |
769 | if (vsize < 1) { |
770 | vsize = 1; | |
b0950e71 | 771 | Value = 1.0 / im->ysize; |
1501d9b3 TC |
772 | } |
773 | ||
02d1d628 AMH |
774 | jEnd = vsize; |
775 | iEnd = hsize; | |
02d1d628 AMH |
776 | } |
777 | ||
07d70837 | 778 | new_img = i_img_empty_ch(NULL, hsize, vsize, im->channels); |
de470892 TC |
779 | if (!new_img) { |
780 | i_push_error(0, "cannot create output image"); | |
781 | return NULL; | |
782 | } | |
02d1d628 | 783 | |
0bcbaf60 | 784 | /* 1.4 is a magic number, setting it to 2 will cause rather blurred images */ |
07d70837 | 785 | LanczosWidthFactor = (Value >= 1) ? 1 : (int) (1.4/Value); |
02d1d628 AMH |
786 | lMax = LanczosWidthFactor << 1; |
787 | ||
07d70837 AMH |
788 | l0 = mymalloc(lMax * sizeof(float)); |
789 | l1 = mymalloc(lMax * sizeof(float)); | |
02d1d628 AMH |
790 | |
791 | for (j=0; j<jEnd; j++) { | |
792 | OldLocation = ((float) j) / Value; | |
793 | T = (int) (OldLocation); | |
794 | F = OldLocation - (float) T; | |
795 | ||
07d70837 | 796 | for (l = 0; l<lMax; l++) { |
02d1d628 | 797 | l0[lMax-l-1] = Lanczos(((float) (lMax-l-1) + F) / (float) LanczosWidthFactor); |
07d70837 AMH |
798 | l1[l] = Lanczos(((float) (l+1) - F) / (float) LanczosWidthFactor); |
799 | } | |
800 | ||
801 | /* Make sure filter is normalized */ | |
802 | t = 0.0; | |
803 | for(l=0; l<lMax; l++) { | |
804 | t+=l0[l]; | |
805 | t+=l1[l]; | |
02d1d628 | 806 | } |
07d70837 | 807 | t /= (float)LanczosWidthFactor; |
02d1d628 | 808 | |
07d70837 AMH |
809 | for(l=0; l<lMax; l++) { |
810 | l0[l] /= t; | |
811 | l1[l] /= t; | |
812 | } | |
813 | ||
814 | if (Axis == XAXIS) { | |
02d1d628 AMH |
815 | |
816 | for (i=0; i<iEnd; i++) { | |
817 | for (k=0; k<im->channels; k++) PictureValue[k] = 0.0; | |
0bcbaf60 AMH |
818 | for (l=0; l<lMax; l++) { |
819 | int mx = T-lMax+l+1; | |
820 | int Mx = T+l+1; | |
821 | mx = (mx < 0) ? 0 : mx; | |
822 | Mx = (Mx >= im->xsize) ? im->xsize-1 : Mx; | |
823 | ||
824 | i_gpix(im, Mx, i, &val1); | |
825 | i_gpix(im, mx, i, &val2); | |
826 | ||
02d1d628 | 827 | for (k=0; k<im->channels; k++) { |
07d70837 | 828 | PictureValue[k] += l1[l] * val1.channel[k]; |
02d1d628 AMH |
829 | PictureValue[k] += l0[lMax-l-1] * val2.channel[k]; |
830 | } | |
831 | } | |
832 | for(k=0;k<im->channels;k++) { | |
07d70837 | 833 | psave = (short)(0.5+(PictureValue[k] / LanczosWidthFactor)); |
02d1d628 AMH |
834 | val.channel[k]=minmax(0,255,psave); |
835 | } | |
07d70837 | 836 | i_ppix(new_img, j, i, &val); |
02d1d628 AMH |
837 | } |
838 | ||
839 | } else { | |
840 | ||
841 | for (i=0; i<iEnd; i++) { | |
842 | for (k=0; k<im->channels; k++) PictureValue[k] = 0.0; | |
843 | for (l=0; l < lMax; l++) { | |
0bcbaf60 AMH |
844 | int mx = T-lMax+l+1; |
845 | int Mx = T+l+1; | |
846 | mx = (mx < 0) ? 0 : mx; | |
847 | Mx = (Mx >= im->ysize) ? im->ysize-1 : Mx; | |
848 | ||
849 | i_gpix(im, i, Mx, &val1); | |
850 | i_gpix(im, i, mx, &val2); | |
02d1d628 | 851 | for (k=0; k<im->channels; k++) { |
0bcbaf60 | 852 | PictureValue[k] += l1[l] * val1.channel[k]; |
02d1d628 AMH |
853 | PictureValue[k] += l0[lMax-l-1] * val2.channel[k]; |
854 | } | |
855 | } | |
856 | for (k=0; k<im->channels; k++) { | |
0bcbaf60 | 857 | psave = (short)(0.5+(PictureValue[k] / LanczosWidthFactor)); |
07d70837 | 858 | val.channel[k] = minmax(0, 255, psave); |
02d1d628 | 859 | } |
07d70837 | 860 | i_ppix(new_img, i, j, &val); |
02d1d628 AMH |
861 | } |
862 | ||
863 | } | |
864 | } | |
865 | myfree(l0); | |
866 | myfree(l1); | |
867 | ||
07d70837 | 868 | mm_log((1,"(%p) <- i_scaleaxis\n", new_img)); |
02d1d628 AMH |
869 | |
870 | return new_img; | |
871 | } | |
872 | ||
873 | ||
874 | /* | |
875 | =item i_scale_nn(im, scx, scy) | |
876 | ||
877 | Scale by using nearest neighbor | |
878 | Both axes scaled at the same time since | |
879 | nothing is gained by doing it in two steps | |
880 | ||
881 | =cut | |
882 | */ | |
883 | ||
884 | ||
885 | i_img* | |
886 | i_scale_nn(i_img *im, float scx, float scy) { | |
887 | ||
888 | int nxsize,nysize,nx,ny; | |
889 | i_img *new_img; | |
890 | i_color val; | |
891 | ||
892 | mm_log((1,"i_scale_nn(im 0x%x,scx %.2f,scy %.2f)\n",im,scx,scy)); | |
893 | ||
894 | nxsize = (int) ((float) im->xsize * scx); | |
1501d9b3 TC |
895 | if (nxsize < 1) { |
896 | nxsize = 1; | |
b3afeed5 | 897 | scx = 1.0 / im->xsize; |
1501d9b3 | 898 | } |
02d1d628 | 899 | nysize = (int) ((float) im->ysize * scy); |
1501d9b3 TC |
900 | if (nysize < 1) { |
901 | nysize = 1; | |
b3afeed5 | 902 | scy = 1.0 / im->ysize; |
1501d9b3 | 903 | } |
b3afeed5 | 904 | im_assert(scx != 0 && scy != 0); |
02d1d628 AMH |
905 | |
906 | new_img=i_img_empty_ch(NULL,nxsize,nysize,im->channels); | |
907 | ||
908 | for(ny=0;ny<nysize;ny++) for(nx=0;nx<nxsize;nx++) { | |
909 | i_gpix(im,((float)nx)/scx,((float)ny)/scy,&val); | |
910 | i_ppix(new_img,nx,ny,&val); | |
911 | } | |
912 | ||
913 | mm_log((1,"(0x%x) <- i_scale_nn\n",new_img)); | |
914 | ||
915 | return new_img; | |
916 | } | |
917 | ||
faa9b3e7 | 918 | /* |
5715f7c3 | 919 | =item i_sametype(C<im>, C<xsize>, C<ysize>) |
faa9b3e7 | 920 | |
9167a5c6 TC |
921 | =category Image creation/destruction |
922 | =synopsis i_img *img = i_sametype(src, width, height); | |
92bda632 | 923 | |
faa9b3e7 TC |
924 | Returns an image of the same type (sample size, channels, paletted/direct). |
925 | ||
926 | For paletted images the palette is copied from the source. | |
927 | ||
928 | =cut | |
929 | */ | |
930 | ||
931 | i_img *i_sametype(i_img *src, int xsize, int ysize) { | |
932 | if (src->type == i_direct_type) { | |
933 | if (src->bits == 8) { | |
934 | return i_img_empty_ch(NULL, xsize, ysize, src->channels); | |
935 | } | |
af3c2450 | 936 | else if (src->bits == i_16_bits) { |
faa9b3e7 TC |
937 | return i_img_16_new(xsize, ysize, src->channels); |
938 | } | |
af3c2450 TC |
939 | else if (src->bits == i_double_bits) { |
940 | return i_img_double_new(xsize, ysize, src->channels); | |
941 | } | |
faa9b3e7 TC |
942 | else { |
943 | i_push_error(0, "Unknown image bits"); | |
944 | return NULL; | |
945 | } | |
946 | } | |
947 | else { | |
948 | i_color col; | |
949 | int i; | |
950 | ||
951 | i_img *targ = i_img_pal_new(xsize, ysize, src->channels, i_maxcolors(src)); | |
952 | for (i = 0; i < i_colorcount(src); ++i) { | |
953 | i_getcolors(src, i, &col, 1); | |
954 | i_addcolors(targ, &col, 1); | |
955 | } | |
956 | ||
957 | return targ; | |
958 | } | |
959 | } | |
02d1d628 | 960 | |
dff75dee | 961 | /* |
5715f7c3 | 962 | =item i_sametype_chans(C<im>, C<xsize>, C<ysize>, C<channels>) |
dff75dee | 963 | |
9167a5c6 TC |
964 | =category Image creation/destruction |
965 | =synopsis i_img *img = i_sametype_chans(src, width, height, channels); | |
92bda632 | 966 | |
dff75dee TC |
967 | Returns an image of the same type (sample size). |
968 | ||
969 | For paletted images the equivalent direct type is returned. | |
970 | ||
971 | =cut | |
972 | */ | |
973 | ||
974 | i_img *i_sametype_chans(i_img *src, int xsize, int ysize, int channels) { | |
975 | if (src->bits == 8) { | |
976 | return i_img_empty_ch(NULL, xsize, ysize, channels); | |
977 | } | |
978 | else if (src->bits == i_16_bits) { | |
979 | return i_img_16_new(xsize, ysize, channels); | |
980 | } | |
981 | else if (src->bits == i_double_bits) { | |
982 | return i_img_double_new(xsize, ysize, channels); | |
983 | } | |
984 | else { | |
985 | i_push_error(0, "Unknown image bits"); | |
986 | return NULL; | |
987 | } | |
988 | } | |
989 | ||
02d1d628 AMH |
990 | /* |
991 | =item i_transform(im, opx, opxl, opy, opyl, parm, parmlen) | |
992 | ||
993 | Spatially transforms I<im> returning a new image. | |
994 | ||
995 | opx for a length of opxl and opy for a length of opy are arrays of | |
996 | operators that modify the x and y positions to retreive the pixel data from. | |
997 | ||
998 | parm and parmlen define extra parameters that the operators may use. | |
999 | ||
1000 | Note that this function is largely superseded by the more flexible | |
1001 | L<transform.c/i_transform2>. | |
1002 | ||
1003 | Returns the new image. | |
1004 | ||
1005 | The operators for this function are defined in L<stackmach.c>. | |
1006 | ||
1007 | =cut | |
1008 | */ | |
1009 | i_img* | |
1010 | i_transform(i_img *im, int *opx,int opxl,int *opy,int opyl,double parm[],int parmlen) { | |
1011 | double rx,ry; | |
1012 | int nxsize,nysize,nx,ny; | |
1013 | i_img *new_img; | |
1014 | i_color val; | |
1015 | ||
1016 | mm_log((1,"i_transform(im 0x%x, opx 0x%x, opxl %d, opy 0x%x, opyl %d, parm 0x%x, parmlen %d)\n",im,opx,opxl,opy,opyl,parm,parmlen)); | |
1017 | ||
1018 | nxsize = im->xsize; | |
1019 | nysize = im->ysize ; | |
1020 | ||
1021 | new_img=i_img_empty_ch(NULL,nxsize,nysize,im->channels); | |
1022 | /* fprintf(stderr,"parm[2]=%f\n",parm[2]); */ | |
1023 | for(ny=0;ny<nysize;ny++) for(nx=0;nx<nxsize;nx++) { | |
1024 | /* parm[parmlen-2]=(double)nx; | |
1025 | parm[parmlen-1]=(double)ny; */ | |
1026 | ||
1027 | parm[0]=(double)nx; | |
1028 | parm[1]=(double)ny; | |
1029 | ||
1030 | /* fprintf(stderr,"(%d,%d) ->",nx,ny); */ | |
b33c08f8 TC |
1031 | rx=i_op_run(opx,opxl,parm,parmlen); |
1032 | ry=i_op_run(opy,opyl,parm,parmlen); | |
02d1d628 AMH |
1033 | /* fprintf(stderr,"(%f,%f)\n",rx,ry); */ |
1034 | i_gpix(im,rx,ry,&val); | |
1035 | i_ppix(new_img,nx,ny,&val); | |
1036 | } | |
1037 | ||
1038 | mm_log((1,"(0x%x) <- i_transform\n",new_img)); | |
1039 | return new_img; | |
1040 | } | |
1041 | ||
1042 | /* | |
1043 | =item i_img_diff(im1, im2) | |
1044 | ||
1045 | Calculates the sum of the squares of the differences between | |
1046 | correspoding channels in two images. | |
1047 | ||
1048 | If the images are not the same size then only the common area is | |
1049 | compared, hence even if images are different sizes this function | |
1050 | can return zero. | |
1051 | ||
1052 | =cut | |
1053 | */ | |
e41cfe8f | 1054 | |
02d1d628 AMH |
1055 | float |
1056 | i_img_diff(i_img *im1,i_img *im2) { | |
1057 | int x,y,ch,xb,yb,chb; | |
1058 | float tdiff; | |
1059 | i_color val1,val2; | |
1060 | ||
1061 | mm_log((1,"i_img_diff(im1 0x%x,im2 0x%x)\n",im1,im2)); | |
1062 | ||
1063 | xb=(im1->xsize<im2->xsize)?im1->xsize:im2->xsize; | |
1064 | yb=(im1->ysize<im2->ysize)?im1->ysize:im2->ysize; | |
1065 | chb=(im1->channels<im2->channels)?im1->channels:im2->channels; | |
1066 | ||
1067 | mm_log((1,"i_img_diff: xb=%d xy=%d chb=%d\n",xb,yb,chb)); | |
1068 | ||
1069 | tdiff=0; | |
1070 | for(y=0;y<yb;y++) for(x=0;x<xb;x++) { | |
1071 | i_gpix(im1,x,y,&val1); | |
1072 | i_gpix(im2,x,y,&val2); | |
1073 | ||
1074 | for(ch=0;ch<chb;ch++) tdiff+=(val1.channel[ch]-val2.channel[ch])*(val1.channel[ch]-val2.channel[ch]); | |
1075 | } | |
1076 | mm_log((1,"i_img_diff <- (%.2f)\n",tdiff)); | |
1077 | return tdiff; | |
1078 | } | |
1079 | ||
e41cfe8f TC |
1080 | /* |
1081 | =item i_img_diffd(im1, im2) | |
1082 | ||
1083 | Calculates the sum of the squares of the differences between | |
1084 | correspoding channels in two images. | |
1085 | ||
1086 | If the images are not the same size then only the common area is | |
1087 | compared, hence even if images are different sizes this function | |
1088 | can return zero. | |
1089 | ||
1090 | This is like i_img_diff() but looks at floating point samples instead. | |
1091 | ||
1092 | =cut | |
1093 | */ | |
1094 | ||
1095 | double | |
1096 | i_img_diffd(i_img *im1,i_img *im2) { | |
1097 | int x,y,ch,xb,yb,chb; | |
1098 | double tdiff; | |
1099 | i_fcolor val1,val2; | |
1100 | ||
1101 | mm_log((1,"i_img_diffd(im1 0x%x,im2 0x%x)\n",im1,im2)); | |
1102 | ||
1103 | xb=(im1->xsize<im2->xsize)?im1->xsize:im2->xsize; | |
1104 | yb=(im1->ysize<im2->ysize)?im1->ysize:im2->ysize; | |
1105 | chb=(im1->channels<im2->channels)?im1->channels:im2->channels; | |
1106 | ||
1107 | mm_log((1,"i_img_diff: xb=%d xy=%d chb=%d\n",xb,yb,chb)); | |
1108 | ||
1109 | tdiff=0; | |
1110 | for(y=0;y<yb;y++) for(x=0;x<xb;x++) { | |
1111 | i_gpixf(im1,x,y,&val1); | |
1112 | i_gpixf(im2,x,y,&val2); | |
1113 | ||
1114 | for(ch=0;ch<chb;ch++) { | |
1115 | double sdiff = val1.channel[ch]-val2.channel[ch]; | |
1116 | tdiff += sdiff * sdiff; | |
1117 | } | |
1118 | } | |
1119 | mm_log((1,"i_img_diffd <- (%.2f)\n",tdiff)); | |
1120 | ||
1121 | return tdiff; | |
1122 | } | |
1123 | ||
02d1d628 AMH |
1124 | /* just a tiny demo of haar wavelets */ |
1125 | ||
1126 | i_img* | |
1127 | i_haar(i_img *im) { | |
1128 | int mx,my; | |
1129 | int fx,fy; | |
1130 | int x,y; | |
1131 | int ch,c; | |
1132 | i_img *new_img,*new_img2; | |
1133 | i_color val1,val2,dval1,dval2; | |
1134 | ||
1135 | mx=im->xsize; | |
1136 | my=im->ysize; | |
1137 | fx=(mx+1)/2; | |
1138 | fy=(my+1)/2; | |
1139 | ||
1140 | ||
1141 | /* horizontal pass */ | |
1142 | ||
1143 | new_img=i_img_empty_ch(NULL,fx*2,fy*2,im->channels); | |
1144 | new_img2=i_img_empty_ch(NULL,fx*2,fy*2,im->channels); | |
1145 | ||
1146 | c=0; | |
1147 | for(y=0;y<my;y++) for(x=0;x<fx;x++) { | |
1148 | i_gpix(im,x*2,y,&val1); | |
1149 | i_gpix(im,x*2+1,y,&val2); | |
1150 | for(ch=0;ch<im->channels;ch++) { | |
1151 | dval1.channel[ch]=(val1.channel[ch]+val2.channel[ch])/2; | |
1152 | dval2.channel[ch]=(255+val1.channel[ch]-val2.channel[ch])/2; | |
1153 | } | |
1154 | i_ppix(new_img,x,y,&dval1); | |
1155 | i_ppix(new_img,x+fx,y,&dval2); | |
1156 | } | |
1157 | ||
1158 | for(y=0;y<fy;y++) for(x=0;x<mx;x++) { | |
1159 | i_gpix(new_img,x,y*2,&val1); | |
1160 | i_gpix(new_img,x,y*2+1,&val2); | |
1161 | for(ch=0;ch<im->channels;ch++) { | |
1162 | dval1.channel[ch]=(val1.channel[ch]+val2.channel[ch])/2; | |
1163 | dval2.channel[ch]=(255+val1.channel[ch]-val2.channel[ch])/2; | |
1164 | } | |
1165 | i_ppix(new_img2,x,y,&dval1); | |
1166 | i_ppix(new_img2,x,y+fy,&dval2); | |
1167 | } | |
1168 | ||
1169 | i_img_destroy(new_img); | |
1170 | return new_img2; | |
1171 | } | |
1172 | ||
1173 | /* | |
1174 | =item i_count_colors(im, maxc) | |
1175 | ||
1176 | returns number of colors or -1 | |
1177 | to indicate that it was more than max colors | |
1178 | ||
1179 | =cut | |
1180 | */ | |
fe622da1 TC |
1181 | /* This function has been changed and is now faster. It's using |
1182 | * i_gsamp instead of i_gpix */ | |
02d1d628 AMH |
1183 | int |
1184 | i_count_colors(i_img *im,int maxc) { | |
1185 | struct octt *ct; | |
1186 | int x,y; | |
02d1d628 | 1187 | int colorcnt; |
fe622da1 TC |
1188 | int channels[3]; |
1189 | int *samp_chans; | |
1190 | i_sample_t * samp; | |
fe622da1 TC |
1191 | int xsize = im->xsize; |
1192 | int ysize = im->ysize; | |
a60905e4 TC |
1193 | int samp_cnt = 3 * xsize; |
1194 | ||
fe622da1 TC |
1195 | if (im->channels >= 3) { |
1196 | samp_chans = NULL; | |
1197 | } | |
1198 | else { | |
1199 | channels[0] = channels[1] = channels[2] = 0; | |
1200 | samp_chans = channels; | |
02d1d628 | 1201 | } |
a60905e4 | 1202 | |
fe622da1 TC |
1203 | ct = octt_new(); |
1204 | ||
1205 | samp = (i_sample_t *) mymalloc( xsize * 3 * sizeof(i_sample_t)); | |
1206 | ||
1207 | colorcnt = 0; | |
1208 | for(y = 0; y < ysize; ) { | |
1209 | i_gsamp(im, 0, xsize, y++, samp, samp_chans, 3); | |
1210 | for(x = 0; x < samp_cnt; ) { | |
1211 | colorcnt += octt_add(ct, samp[x], samp[x+1], samp[x+2]); | |
1212 | x += 3; | |
1213 | if (colorcnt > maxc) { | |
1214 | octt_delete(ct); | |
1215 | return -1; | |
1216 | } | |
1217 | } | |
1218 | } | |
1219 | myfree(samp); | |
02d1d628 AMH |
1220 | octt_delete(ct); |
1221 | return colorcnt; | |
1222 | } | |
1223 | ||
fe622da1 TC |
1224 | /* sorts the array ra[0..n-1] into increasing order using heapsort algorithm |
1225 | * (adapted from the Numerical Recipes) | |
1226 | */ | |
1227 | /* Needed by get_anonymous_color_histo */ | |
a60905e4 TC |
1228 | static void |
1229 | hpsort(unsigned int n, unsigned *ra) { | |
fe622da1 TC |
1230 | unsigned int i, |
1231 | ir, | |
1232 | j, | |
1233 | l, | |
1234 | rra; | |
1235 | ||
1236 | if (n < 2) return; | |
1237 | l = n >> 1; | |
1238 | ir = n - 1; | |
1239 | for(;;) { | |
1240 | if (l > 0) { | |
1241 | rra = ra[--l]; | |
1242 | } | |
1243 | else { | |
1244 | rra = ra[ir]; | |
1245 | ra[ir] = ra[0]; | |
1246 | if (--ir == 0) { | |
1247 | ra[0] = rra; | |
1248 | break; | |
1249 | } | |
1250 | } | |
1251 | i = l; | |
1252 | j = 2 * l + 1; | |
1253 | while (j <= ir) { | |
1254 | if (j < ir && ra[j] < ra[j+1]) j++; | |
1255 | if (rra < ra[j]) { | |
1256 | ra[i] = ra[j]; | |
1257 | i = j; | |
1258 | j++; j <<= 1; j--; | |
1259 | } | |
1260 | else break; | |
1261 | } | |
1262 | ra[i] = rra; | |
1263 | } | |
1264 | } | |
1265 | ||
1266 | /* This function constructs an ordered list which represents how much the | |
1267 | * different colors are used. So for instance (100, 100, 500) means that one | |
1268 | * color is used for 500 pixels, another for 100 pixels and another for 100 | |
1269 | * pixels. It's tuned for performance. You might not like the way I've hardcoded | |
1270 | * the maxc ;-) and you might want to change the name... */ | |
1271 | /* Uses octt_histo */ | |
1272 | int | |
a60905e4 TC |
1273 | i_get_anonymous_color_histo(i_img *im, unsigned int **col_usage, int maxc) { |
1274 | struct octt *ct; | |
1275 | int x,y; | |
1276 | int colorcnt; | |
1277 | unsigned int *col_usage_it; | |
1278 | i_sample_t * samp; | |
1279 | int channels[3]; | |
1280 | int *samp_chans; | |
1281 | ||
1282 | int xsize = im->xsize; | |
1283 | int ysize = im->ysize; | |
1284 | int samp_cnt = 3 * xsize; | |
1285 | ct = octt_new(); | |
1286 | ||
1287 | samp = (i_sample_t *) mymalloc( xsize * 3 * sizeof(i_sample_t)); | |
1288 | ||
1289 | if (im->channels >= 3) { | |
1290 | samp_chans = NULL; | |
1291 | } | |
1292 | else { | |
1293 | channels[0] = channels[1] = channels[2] = 0; | |
1294 | samp_chans = channels; | |
1295 | } | |
1296 | ||
1297 | colorcnt = 0; | |
1298 | for(y = 0; y < ysize; ) { | |
1299 | i_gsamp(im, 0, xsize, y++, samp, samp_chans, 3); | |
1300 | for(x = 0; x < samp_cnt; ) { | |
1301 | colorcnt += octt_add(ct, samp[x], samp[x+1], samp[x+2]); | |
1302 | x += 3; | |
1303 | if (colorcnt > maxc) { | |
1304 | octt_delete(ct); | |
1305 | return -1; | |
1306 | } | |
fe622da1 | 1307 | } |
a60905e4 TC |
1308 | } |
1309 | myfree(samp); | |
1310 | /* Now that we know the number of colours... */ | |
1311 | col_usage_it = *col_usage = (unsigned int *) mymalloc(colorcnt * sizeof(unsigned int)); | |
1312 | octt_histo(ct, &col_usage_it); | |
1313 | hpsort(colorcnt, *col_usage); | |
1314 | octt_delete(ct); | |
1315 | return colorcnt; | |
fe622da1 TC |
1316 | } |
1317 | ||
02d1d628 | 1318 | /* |
faa9b3e7 TC |
1319 | =back |
1320 | ||
1321 | =head2 8-bit per sample image internal functions | |
1322 | ||
1323 | These are the functions installed in an 8-bit per sample image. | |
1324 | ||
1325 | =over | |
1326 | ||
1327 | =item i_ppix_d(im, x, y, col) | |
1328 | ||
1329 | Internal function. | |
1330 | ||
1331 | This is the function kept in the i_f_ppix member of an i_img object. | |
1332 | It does a normal store of a pixel into the image with range checking. | |
1333 | ||
1334 | Returns 0 if the pixel could be set, -1 otherwise. | |
1335 | ||
1336 | =cut | |
1337 | */ | |
63b018fd | 1338 | static |
faa9b3e7 | 1339 | int |
97ac0a96 | 1340 | i_ppix_d(i_img *im, int x, int y, const i_color *val) { |
faa9b3e7 TC |
1341 | int ch; |
1342 | ||
1343 | if ( x>-1 && x<im->xsize && y>-1 && y<im->ysize ) { | |
1344 | for(ch=0;ch<im->channels;ch++) | |
1345 | if (im->ch_mask&(1<<ch)) | |
1346 | im->idata[(x+y*im->xsize)*im->channels+ch]=val->channel[ch]; | |
1347 | return 0; | |
1348 | } | |
1349 | return -1; /* error was clipped */ | |
1350 | } | |
1351 | ||
1352 | /* | |
1353 | =item i_gpix_d(im, x, y, &col) | |
1354 | ||
1355 | Internal function. | |
1356 | ||
1357 | This is the function kept in the i_f_gpix member of an i_img object. | |
1358 | It does normal retrieval of a pixel from the image with range checking. | |
1359 | ||
1360 | Returns 0 if the pixel could be set, -1 otherwise. | |
1361 | ||
1362 | =cut | |
1363 | */ | |
63b018fd | 1364 | static |
faa9b3e7 TC |
1365 | int |
1366 | i_gpix_d(i_img *im, int x, int y, i_color *val) { | |
1367 | int ch; | |
1368 | if (x>-1 && x<im->xsize && y>-1 && y<im->ysize) { | |
1369 | for(ch=0;ch<im->channels;ch++) | |
9982a307 | 1370 | val->channel[ch]=im->idata[(x+y*im->xsize)*im->channels+ch]; |
faa9b3e7 TC |
1371 | return 0; |
1372 | } | |
0bcbaf60 | 1373 | for(ch=0;ch<im->channels;ch++) val->channel[ch] = 0; |
faa9b3e7 TC |
1374 | return -1; /* error was cliped */ |
1375 | } | |
1376 | ||
1377 | /* | |
1378 | =item i_glin_d(im, l, r, y, vals) | |
1379 | ||
1380 | Reads a line of data from the image, storing the pixels at vals. | |
1381 | ||
1382 | The line runs from (l,y) inclusive to (r,y) non-inclusive | |
1383 | ||
1384 | vals should point at space for (r-l) pixels. | |
1385 | ||
1386 | l should never be less than zero (to avoid confusion about where to | |
1387 | put the pixels in vals). | |
1388 | ||
1389 | Returns the number of pixels copied (eg. if r, l or y is out of range) | |
1390 | ||
1391 | =cut | |
1392 | */ | |
63b018fd | 1393 | static |
faa9b3e7 TC |
1394 | int |
1395 | i_glin_d(i_img *im, int l, int r, int y, i_color *vals) { | |
1396 | int ch, count, i; | |
1397 | unsigned char *data; | |
1398 | if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) { | |
1399 | if (r > im->xsize) | |
1400 | r = im->xsize; | |
1401 | data = im->idata + (l+y*im->xsize) * im->channels; | |
1402 | count = r - l; | |
1403 | for (i = 0; i < count; ++i) { | |
1404 | for (ch = 0; ch < im->channels; ++ch) | |
1405 | vals[i].channel[ch] = *data++; | |
1406 | } | |
1407 | return count; | |
1408 | } | |
1409 | else { | |
1410 | return 0; | |
1411 | } | |
1412 | } | |
1413 | ||
1414 | /* | |
1415 | =item i_plin_d(im, l, r, y, vals) | |
1416 | ||
1417 | Writes a line of data into the image, using the pixels at vals. | |
1418 | ||
1419 | The line runs from (l,y) inclusive to (r,y) non-inclusive | |
1420 | ||
1421 | vals should point at (r-l) pixels. | |
1422 | ||
1423 | l should never be less than zero (to avoid confusion about where to | |
1424 | get the pixels in vals). | |
1425 | ||
1426 | Returns the number of pixels copied (eg. if r, l or y is out of range) | |
1427 | ||
1428 | =cut | |
1429 | */ | |
63b018fd | 1430 | static |
faa9b3e7 | 1431 | int |
97ac0a96 | 1432 | i_plin_d(i_img *im, int l, int r, int y, const i_color *vals) { |
faa9b3e7 TC |
1433 | int ch, count, i; |
1434 | unsigned char *data; | |
1435 | if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) { | |
1436 | if (r > im->xsize) | |
1437 | r = im->xsize; | |
1438 | data = im->idata + (l+y*im->xsize) * im->channels; | |
1439 | count = r - l; | |
1440 | for (i = 0; i < count; ++i) { | |
1441 | for (ch = 0; ch < im->channels; ++ch) { | |
1442 | if (im->ch_mask & (1 << ch)) | |
1443 | *data = vals[i].channel[ch]; | |
1444 | ++data; | |
1445 | } | |
1446 | } | |
1447 | return count; | |
1448 | } | |
1449 | else { | |
1450 | return 0; | |
1451 | } | |
1452 | } | |
1453 | ||
1454 | /* | |
1455 | =item i_ppixf_d(im, x, y, val) | |
1456 | ||
1457 | =cut | |
1458 | */ | |
63b018fd | 1459 | static |
faa9b3e7 | 1460 | int |
97ac0a96 | 1461 | i_ppixf_d(i_img *im, int x, int y, const i_fcolor *val) { |
faa9b3e7 TC |
1462 | int ch; |
1463 | ||
1464 | if ( x>-1 && x<im->xsize && y>-1 && y<im->ysize ) { | |
1465 | for(ch=0;ch<im->channels;ch++) | |
1466 | if (im->ch_mask&(1<<ch)) { | |
1467 | im->idata[(x+y*im->xsize)*im->channels+ch] = | |
1468 | SampleFTo8(val->channel[ch]); | |
1469 | } | |
1470 | return 0; | |
1471 | } | |
1472 | return -1; /* error was clipped */ | |
1473 | } | |
1474 | ||
1475 | /* | |
1476 | =item i_gpixf_d(im, x, y, val) | |
1477 | ||
1478 | =cut | |
1479 | */ | |
63b018fd | 1480 | static |
faa9b3e7 TC |
1481 | int |
1482 | i_gpixf_d(i_img *im, int x, int y, i_fcolor *val) { | |
1483 | int ch; | |
1484 | if (x>-1 && x<im->xsize && y>-1 && y<im->ysize) { | |
1485 | for(ch=0;ch<im->channels;ch++) { | |
1486 | val->channel[ch] = | |
1487 | Sample8ToF(im->idata[(x+y*im->xsize)*im->channels+ch]); | |
1488 | } | |
1489 | return 0; | |
1490 | } | |
1491 | return -1; /* error was cliped */ | |
1492 | } | |
1493 | ||
1494 | /* | |
1495 | =item i_glinf_d(im, l, r, y, vals) | |
1496 | ||
1497 | Reads a line of data from the image, storing the pixels at vals. | |
1498 | ||
1499 | The line runs from (l,y) inclusive to (r,y) non-inclusive | |
1500 | ||
1501 | vals should point at space for (r-l) pixels. | |
1502 | ||
1503 | l should never be less than zero (to avoid confusion about where to | |
1504 | put the pixels in vals). | |
1505 | ||
1506 | Returns the number of pixels copied (eg. if r, l or y is out of range) | |
1507 | ||
1508 | =cut | |
1509 | */ | |
63b018fd | 1510 | static |
faa9b3e7 TC |
1511 | int |
1512 | i_glinf_d(i_img *im, int l, int r, int y, i_fcolor *vals) { | |
1513 | int ch, count, i; | |
1514 | unsigned char *data; | |
1515 | if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) { | |
1516 | if (r > im->xsize) | |
1517 | r = im->xsize; | |
1518 | data = im->idata + (l+y*im->xsize) * im->channels; | |
1519 | count = r - l; | |
1520 | for (i = 0; i < count; ++i) { | |
1521 | for (ch = 0; ch < im->channels; ++ch) | |
6607600c | 1522 | vals[i].channel[ch] = Sample8ToF(*data++); |
faa9b3e7 TC |
1523 | } |
1524 | return count; | |
1525 | } | |
1526 | else { | |
1527 | return 0; | |
1528 | } | |
1529 | } | |
1530 | ||
1531 | /* | |
1532 | =item i_plinf_d(im, l, r, y, vals) | |
1533 | ||
1534 | Writes a line of data into the image, using the pixels at vals. | |
1535 | ||
1536 | The line runs from (l,y) inclusive to (r,y) non-inclusive | |
1537 | ||
1538 | vals should point at (r-l) pixels. | |
1539 | ||
1540 | l should never be less than zero (to avoid confusion about where to | |
1541 | get the pixels in vals). | |
1542 | ||
1543 | Returns the number of pixels copied (eg. if r, l or y is out of range) | |
1544 | ||
1545 | =cut | |
1546 | */ | |
63b018fd | 1547 | static |
faa9b3e7 | 1548 | int |
97ac0a96 | 1549 | i_plinf_d(i_img *im, int l, int r, int y, const i_fcolor *vals) { |
faa9b3e7 TC |
1550 | int ch, count, i; |
1551 | unsigned char *data; | |
1552 | if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) { | |
1553 | if (r > im->xsize) | |
1554 | r = im->xsize; | |
1555 | data = im->idata + (l+y*im->xsize) * im->channels; | |
1556 | count = r - l; | |
1557 | for (i = 0; i < count; ++i) { | |
1558 | for (ch = 0; ch < im->channels; ++ch) { | |
1559 | if (im->ch_mask & (1 << ch)) | |
6607600c | 1560 | *data = SampleFTo8(vals[i].channel[ch]); |
faa9b3e7 TC |
1561 | ++data; |
1562 | } | |
1563 | } | |
1564 | return count; | |
1565 | } | |
1566 | else { | |
1567 | return 0; | |
1568 | } | |
1569 | } | |
1570 | ||
1571 | /* | |
1572 | =item i_gsamp_d(i_img *im, int l, int r, int y, i_sample_t *samps, int *chans, int chan_count) | |
1573 | ||
1574 | Reads sample values from im for the horizontal line (l, y) to (r-1,y) | |
1575 | for the channels specified by chans, an array of int with chan_count | |
1576 | elements. | |
1577 | ||
1578 | Returns the number of samples read (which should be (r-l) * bits_set(chan_mask) | |
1579 | ||
1580 | =cut | |
1581 | */ | |
63b018fd AMH |
1582 | static |
1583 | int | |
1584 | i_gsamp_d(i_img *im, int l, int r, int y, i_sample_t *samps, | |
18accb2a | 1585 | const int *chans, int chan_count) { |
faa9b3e7 TC |
1586 | int ch, count, i, w; |
1587 | unsigned char *data; | |
1588 | ||
1589 | if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) { | |
1590 | if (r > im->xsize) | |
1591 | r = im->xsize; | |
1592 | data = im->idata + (l+y*im->xsize) * im->channels; | |
1593 | w = r - l; | |
1594 | count = 0; | |
1595 | ||
1596 | if (chans) { | |
1597 | /* make sure we have good channel numbers */ | |
1598 | for (ch = 0; ch < chan_count; ++ch) { | |
1599 | if (chans[ch] < 0 || chans[ch] >= im->channels) { | |
1600 | i_push_errorf(0, "No channel %d in this image", chans[ch]); | |
1601 | return 0; | |
1602 | } | |
1603 | } | |
1604 | for (i = 0; i < w; ++i) { | |
1605 | for (ch = 0; ch < chan_count; ++ch) { | |
1606 | *samps++ = data[chans[ch]]; | |
1607 | ++count; | |
1608 | } | |
1609 | data += im->channels; | |
1610 | } | |
1611 | } | |
1612 | else { | |
c7481ae1 TC |
1613 | if (chan_count <= 0 || chan_count > im->channels) { |
1614 | i_push_errorf(0, "chan_count %d out of range, must be >0, <= channels", | |
1615 | chan_count); | |
1616 | return 0; | |
1617 | } | |
faa9b3e7 TC |
1618 | for (i = 0; i < w; ++i) { |
1619 | for (ch = 0; ch < chan_count; ++ch) { | |
1620 | *samps++ = data[ch]; | |
1621 | ++count; | |
1622 | } | |
1623 | data += im->channels; | |
1624 | } | |
1625 | } | |
1626 | ||
1627 | return count; | |
1628 | } | |
1629 | else { | |
1630 | return 0; | |
1631 | } | |
1632 | } | |
1633 | ||
1634 | /* | |
1635 | =item i_gsampf_d(i_img *im, int l, int r, int y, i_fsample_t *samps, int *chans, int chan_count) | |
1636 | ||
1637 | Reads sample values from im for the horizontal line (l, y) to (r-1,y) | |
1638 | for the channels specified by chan_mask, where bit 0 is the first | |
1639 | channel. | |
1640 | ||
1641 | Returns the number of samples read (which should be (r-l) * bits_set(chan_mask) | |
1642 | ||
1643 | =cut | |
1644 | */ | |
63b018fd AMH |
1645 | static |
1646 | int | |
1647 | i_gsampf_d(i_img *im, int l, int r, int y, i_fsample_t *samps, | |
18accb2a | 1648 | const int *chans, int chan_count) { |
faa9b3e7 TC |
1649 | int ch, count, i, w; |
1650 | unsigned char *data; | |
1651 | for (ch = 0; ch < chan_count; ++ch) { | |
1652 | if (chans[ch] < 0 || chans[ch] >= im->channels) { | |
1653 | i_push_errorf(0, "No channel %d in this image", chans[ch]); | |
1654 | } | |
1655 | } | |
1656 | if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) { | |
1657 | if (r > im->xsize) | |
1658 | r = im->xsize; | |
1659 | data = im->idata + (l+y*im->xsize) * im->channels; | |
1660 | w = r - l; | |
1661 | count = 0; | |
1662 | ||
1663 | if (chans) { | |
1664 | /* make sure we have good channel numbers */ | |
1665 | for (ch = 0; ch < chan_count; ++ch) { | |
1666 | if (chans[ch] < 0 || chans[ch] >= im->channels) { | |
1667 | i_push_errorf(0, "No channel %d in this image", chans[ch]); | |
1668 | return 0; | |
1669 | } | |
1670 | } | |
1671 | for (i = 0; i < w; ++i) { | |
1672 | for (ch = 0; ch < chan_count; ++ch) { | |
6607600c | 1673 | *samps++ = Sample8ToF(data[chans[ch]]); |
faa9b3e7 TC |
1674 | ++count; |
1675 | } | |
1676 | data += im->channels; | |
1677 | } | |
1678 | } | |
1679 | else { | |
c7481ae1 TC |
1680 | if (chan_count <= 0 || chan_count > im->channels) { |
1681 | i_push_errorf(0, "chan_count %d out of range, must be >0, <= channels", | |
1682 | chan_count); | |
1683 | return 0; | |
1684 | } | |
faa9b3e7 TC |
1685 | for (i = 0; i < w; ++i) { |
1686 | for (ch = 0; ch < chan_count; ++ch) { | |
6607600c | 1687 | *samps++ = Sample8ToF(data[ch]); |
faa9b3e7 TC |
1688 | ++count; |
1689 | } | |
1690 | data += im->channels; | |
1691 | } | |
1692 | } | |
1693 | return count; | |
1694 | } | |
1695 | else { | |
1696 | return 0; | |
1697 | } | |
1698 | } | |
1699 | ||
1700 | /* | |
1701 | =back | |
1702 | ||
1703 | =head2 Image method wrappers | |
1704 | ||
1705 | These functions provide i_fsample_t functions in terms of their | |
1706 | i_sample_t versions. | |
1707 | ||
1708 | =over | |
1709 | ||
1710 | =item i_ppixf_fp(i_img *im, int x, int y, i_fcolor *pix) | |
1711 | ||
1712 | =cut | |
1713 | */ | |
1714 | ||
97ac0a96 | 1715 | int i_ppixf_fp(i_img *im, int x, int y, const i_fcolor *pix) { |
faa9b3e7 TC |
1716 | i_color temp; |
1717 | int ch; | |
1718 | ||
1719 | for (ch = 0; ch < im->channels; ++ch) | |
1720 | temp.channel[ch] = SampleFTo8(pix->channel[ch]); | |
1721 | ||
1722 | return i_ppix(im, x, y, &temp); | |
1723 | } | |
1724 | ||
1725 | /* | |
1726 | =item i_gpixf_fp(i_img *im, int x, int y, i_fcolor *pix) | |
1727 | ||
1728 | =cut | |
1729 | */ | |
1730 | int i_gpixf_fp(i_img *im, int x, int y, i_fcolor *pix) { | |
1731 | i_color temp; | |
1732 | int ch; | |
1733 | ||
1734 | if (i_gpix(im, x, y, &temp)) { | |
1735 | for (ch = 0; ch < im->channels; ++ch) | |
1736 | pix->channel[ch] = Sample8ToF(temp.channel[ch]); | |
1737 | return 0; | |
1738 | } | |
1739 | else | |
1740 | return -1; | |
1741 | } | |
1742 | ||
1743 | /* | |
1744 | =item i_plinf_fp(i_img *im, int l, int r, int y, i_fcolor *pix) | |
1745 | ||
1746 | =cut | |
1747 | */ | |
97ac0a96 | 1748 | int i_plinf_fp(i_img *im, int l, int r, int y, const i_fcolor *pix) { |
faa9b3e7 TC |
1749 | i_color *work; |
1750 | ||
1751 | if (y >= 0 && y < im->ysize && l < im->xsize && l >= 0) { | |
1752 | if (r > im->xsize) | |
1753 | r = im->xsize; | |
1754 | if (r > l) { | |
1755 | int ret; | |
1756 | int i, ch; | |
1757 | work = mymalloc(sizeof(i_color) * (r-l)); | |
1758 | for (i = 0; i < r-l; ++i) { | |
1759 | for (ch = 0; ch < im->channels; ++ch) | |
1760 | work[i].channel[ch] = SampleFTo8(pix[i].channel[ch]); | |
1761 | } | |
1762 | ret = i_plin(im, l, r, y, work); | |
1763 | myfree(work); | |
1764 | ||
1765 | return ret; | |
1766 | } | |
1767 | else { | |
1768 | return 0; | |
1769 | } | |
1770 | } | |
1771 | else { | |
1772 | return 0; | |
1773 | } | |
1774 | } | |
1775 | ||
1776 | /* | |
1777 | =item i_glinf_fp(i_img *im, int l, int r, int y, i_fcolor *pix) | |
1778 | ||
1779 | =cut | |
1780 | */ | |
1781 | int i_glinf_fp(i_img *im, int l, int r, int y, i_fcolor *pix) { | |
1782 | i_color *work; | |
1783 | ||
1784 | if (y >= 0 && y < im->ysize && l < im->xsize && l >= 0) { | |
1785 | if (r > im->xsize) | |
1786 | r = im->xsize; | |
1787 | if (r > l) { | |
1788 | int ret; | |
1789 | int i, ch; | |
1790 | work = mymalloc(sizeof(i_color) * (r-l)); | |
1791 | ret = i_plin(im, l, r, y, work); | |
1792 | for (i = 0; i < r-l; ++i) { | |
1793 | for (ch = 0; ch < im->channels; ++ch) | |
1794 | pix[i].channel[ch] = Sample8ToF(work[i].channel[ch]); | |
1795 | } | |
1796 | myfree(work); | |
1797 | ||
1798 | return ret; | |
1799 | } | |
1800 | else { | |
1801 | return 0; | |
1802 | } | |
1803 | } | |
1804 | else { | |
1805 | return 0; | |
1806 | } | |
1807 | } | |
1808 | ||
1809 | /* | |
1810 | =item i_gsampf_fp(i_img *im, int l, int r, int y, i_fsample_t *samp, int *chans, int chan_count) | |
1811 | ||
1812 | =cut | |
1813 | */ | |
1814 | int i_gsampf_fp(i_img *im, int l, int r, int y, i_fsample_t *samp, | |
18accb2a | 1815 | int const *chans, int chan_count) { |
faa9b3e7 TC |
1816 | i_sample_t *work; |
1817 | ||
1818 | if (y >= 0 && y < im->ysize && l < im->xsize && l >= 0) { | |
1819 | if (r > im->xsize) | |
1820 | r = im->xsize; | |
1821 | if (r > l) { | |
1822 | int ret; | |
1823 | int i; | |
1824 | work = mymalloc(sizeof(i_sample_t) * (r-l)); | |
1825 | ret = i_gsamp(im, l, r, y, work, chans, chan_count); | |
1826 | for (i = 0; i < ret; ++i) { | |
1827 | samp[i] = Sample8ToF(work[i]); | |
1828 | } | |
1829 | myfree(work); | |
1830 | ||
1831 | return ret; | |
1832 | } | |
1833 | else { | |
1834 | return 0; | |
1835 | } | |
1836 | } | |
1837 | else { | |
1838 | return 0; | |
1839 | } | |
1840 | } | |
1841 | ||
1842 | /* | |
1843 | =back | |
1844 | ||
1845 | =head2 Palette wrapper functions | |
1846 | ||
1847 | Used for virtual images, these forward palette calls to a wrapped image, | |
1848 | assuming the wrapped image is the first pointer in the structure that | |
1849 | im->ext_data points at. | |
1850 | ||
1851 | =over | |
1852 | ||
97ac0a96 | 1853 | =item i_addcolors_forward(i_img *im, const i_color *colors, int count) |
faa9b3e7 TC |
1854 | |
1855 | =cut | |
1856 | */ | |
97ac0a96 | 1857 | int i_addcolors_forward(i_img *im, const i_color *colors, int count) { |
faa9b3e7 TC |
1858 | return i_addcolors(*(i_img **)im->ext_data, colors, count); |
1859 | } | |
1860 | ||
1861 | /* | |
1862 | =item i_getcolors_forward(i_img *im, int i, i_color *color, int count) | |
1863 | ||
1864 | =cut | |
1865 | */ | |
1866 | int i_getcolors_forward(i_img *im, int i, i_color *color, int count) { | |
1867 | return i_getcolors(*(i_img **)im->ext_data, i, color, count); | |
1868 | } | |
1869 | ||
1870 | /* | |
97ac0a96 | 1871 | =item i_setcolors_forward(i_img *im, int i, const i_color *color, int count) |
faa9b3e7 TC |
1872 | |
1873 | =cut | |
1874 | */ | |
97ac0a96 | 1875 | int i_setcolors_forward(i_img *im, int i, const i_color *color, int count) { |
faa9b3e7 TC |
1876 | return i_setcolors(*(i_img **)im->ext_data, i, color, count); |
1877 | } | |
1878 | ||
1879 | /* | |
1880 | =item i_colorcount_forward(i_img *im) | |
1881 | ||
1882 | =cut | |
1883 | */ | |
1884 | int i_colorcount_forward(i_img *im) { | |
1885 | return i_colorcount(*(i_img **)im->ext_data); | |
1886 | } | |
1887 | ||
1888 | /* | |
1889 | =item i_maxcolors_forward(i_img *im) | |
1890 | ||
1891 | =cut | |
1892 | */ | |
1893 | int i_maxcolors_forward(i_img *im) { | |
1894 | return i_maxcolors(*(i_img **)im->ext_data); | |
1895 | } | |
1896 | ||
1897 | /* | |
97ac0a96 | 1898 | =item i_findcolor_forward(i_img *im, const i_color *color, i_palidx *entry) |
faa9b3e7 TC |
1899 | |
1900 | =cut | |
1901 | */ | |
97ac0a96 | 1902 | int i_findcolor_forward(i_img *im, const i_color *color, i_palidx *entry) { |
faa9b3e7 TC |
1903 | return i_findcolor(*(i_img **)im->ext_data, color, entry); |
1904 | } | |
1905 | ||
1906 | /* | |
1907 | =back | |
1908 | ||
bd8052a6 TC |
1909 | =head2 Fallback handler |
1910 | ||
1911 | =over | |
1912 | ||
1913 | =item i_gsamp_bits_fb | |
1914 | ||
1915 | =cut | |
1916 | */ | |
1917 | ||
1918 | int | |
1919 | i_gsamp_bits_fb(i_img *im, int l, int r, int y, unsigned *samps, | |
1920 | const int *chans, int chan_count, int bits) { | |
1921 | if (bits < 1 || bits > 32) { | |
1922 | i_push_error(0, "Invalid bits, must be 1..32"); | |
1923 | return -1; | |
1924 | } | |
1925 | ||
1926 | if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) { | |
1927 | double scale; | |
1928 | int ch, count, i, w; | |
1929 | ||
1930 | if (bits == 32) | |
1931 | scale = 4294967295.0; | |
1932 | else | |
1933 | scale = (double)(1 << bits) - 1; | |
1934 | ||
1935 | if (r > im->xsize) | |
1936 | r = im->xsize; | |
1937 | w = r - l; | |
1938 | count = 0; | |
1939 | ||
1940 | if (chans) { | |
1941 | /* make sure we have good channel numbers */ | |
1942 | for (ch = 0; ch < chan_count; ++ch) { | |
1943 | if (chans[ch] < 0 || chans[ch] >= im->channels) { | |
1944 | i_push_errorf(0, "No channel %d in this image", chans[ch]); | |
1945 | return -1; | |
1946 | } | |
1947 | } | |
1948 | for (i = 0; i < w; ++i) { | |
1949 | i_fcolor c; | |
1950 | i_gpixf(im, l+i, y, &c); | |
1951 | for (ch = 0; ch < chan_count; ++ch) { | |
1952 | *samps++ = (unsigned)(c.channel[ch] * scale + 0.5); | |
1953 | ++count; | |
1954 | } | |
1955 | } | |
1956 | } | |
1957 | else { | |
1958 | if (chan_count <= 0 || chan_count > im->channels) { | |
1959 | i_push_error(0, "Invalid channel count"); | |
1960 | return -1; | |
1961 | } | |
1962 | for (i = 0; i < w; ++i) { | |
1963 | i_fcolor c; | |
1964 | i_gpixf(im, l+i, y, &c); | |
1965 | for (ch = 0; ch < chan_count; ++ch) { | |
1966 | *samps++ = (unsigned)(c.channel[ch] * scale + 0.5); | |
1967 | ++count; | |
1968 | } | |
1969 | } | |
1970 | } | |
1971 | ||
1972 | return count; | |
1973 | } | |
1974 | else { | |
1975 | i_push_error(0, "Image position outside of image"); | |
1976 | return -1; | |
1977 | } | |
1978 | } | |
1979 | ||
1980 | /* | |
1981 | =back | |
1982 | ||
faa9b3e7 TC |
1983 | =head2 Stream reading and writing wrapper functions |
1984 | ||
1985 | =over | |
1986 | ||
02d1d628 AMH |
1987 | =item i_gen_reader(i_gen_read_data *info, char *buf, int length) |
1988 | ||
1989 | Performs general read buffering for file readers that permit reading | |
1990 | to be done through a callback. | |
1991 | ||
1992 | The final callback gets two parameters, a I<need> value, and a I<want> | |
1993 | value, where I<need> is the amount of data that the file library needs | |
1994 | to read, and I<want> is the amount of space available in the buffer | |
1995 | maintained by these functions. | |
1996 | ||
1997 | This means if you need to read from a stream that you don't know the | |
1998 | length of, you can return I<need> bytes, taking the performance hit of | |
1999 | possibly expensive callbacks (eg. back to perl code), or if you are | |
2000 | reading from a stream where it doesn't matter if some data is lost, or | |
2001 | if the total length of the stream is known, you can return I<want> | |
2002 | bytes. | |
2003 | ||
2004 | =cut | |
2005 | */ | |
2006 | ||
2007 | int | |
2008 | i_gen_reader(i_gen_read_data *gci, char *buf, int length) { | |
2009 | int total; | |
2010 | ||
2011 | if (length < gci->length - gci->cpos) { | |
2012 | /* simplest case */ | |
2013 | memcpy(buf, gci->buffer+gci->cpos, length); | |
2014 | gci->cpos += length; | |
2015 | return length; | |
2016 | } | |
2017 | ||
2018 | total = 0; | |
2019 | memcpy(buf, gci->buffer+gci->cpos, gci->length-gci->cpos); | |
2020 | total += gci->length - gci->cpos; | |
2021 | length -= gci->length - gci->cpos; | |
2022 | buf += gci->length - gci->cpos; | |
2023 | if (length < (int)sizeof(gci->buffer)) { | |
2024 | int did_read; | |
2025 | int copy_size; | |
2026 | while (length | |
2027 | && (did_read = (gci->cb)(gci->userdata, gci->buffer, length, | |
2028 | sizeof(gci->buffer))) > 0) { | |
2029 | gci->cpos = 0; | |
2030 | gci->length = did_read; | |
2031 | ||
b33c08f8 | 2032 | copy_size = i_min(length, gci->length); |
02d1d628 AMH |
2033 | memcpy(buf, gci->buffer, copy_size); |
2034 | gci->cpos += copy_size; | |
2035 | buf += copy_size; | |
2036 | total += copy_size; | |
2037 | length -= copy_size; | |
2038 | } | |
2039 | } | |
2040 | else { | |
2041 | /* just read the rest - too big for our buffer*/ | |
2042 | int did_read; | |
2043 | while ((did_read = (gci->cb)(gci->userdata, buf, length, length)) > 0) { | |
2044 | length -= did_read; | |
2045 | total += did_read; | |
2046 | buf += did_read; | |
2047 | } | |
2048 | } | |
2049 | return total; | |
2050 | } | |
2051 | ||
2052 | /* | |
2053 | =item i_gen_read_data_new(i_read_callback_t cb, char *userdata) | |
2054 | ||
2055 | For use by callback file readers to initialize the reader buffer. | |
2056 | ||
2057 | Allocates, initializes and returns the reader buffer. | |
2058 | ||
2059 | See also L<image.c/free_gen_read_data> and L<image.c/i_gen_reader>. | |
2060 | ||
2061 | =cut | |
2062 | */ | |
2063 | i_gen_read_data * | |
2064 | i_gen_read_data_new(i_read_callback_t cb, char *userdata) { | |
2065 | i_gen_read_data *self = mymalloc(sizeof(i_gen_read_data)); | |
2066 | self->cb = cb; | |
2067 | self->userdata = userdata; | |
2068 | self->length = 0; | |
2069 | self->cpos = 0; | |
2070 | ||
2071 | return self; | |
2072 | } | |
2073 | ||
2074 | /* | |
b33c08f8 | 2075 | =item i_free_gen_read_data(i_gen_read_data *) |
02d1d628 AMH |
2076 | |
2077 | Cleans up. | |
2078 | ||
2079 | =cut | |
2080 | */ | |
b33c08f8 | 2081 | void i_free_gen_read_data(i_gen_read_data *self) { |
02d1d628 AMH |
2082 | myfree(self); |
2083 | } | |
2084 | ||
2085 | /* | |
2086 | =item i_gen_writer(i_gen_write_data *info, char const *data, int size) | |
2087 | ||
2088 | Performs write buffering for a callback based file writer. | |
2089 | ||
2090 | Failures are considered fatal, if a write fails then data will be | |
2091 | dropped. | |
2092 | ||
2093 | =cut | |
2094 | */ | |
2095 | int | |
2096 | i_gen_writer( | |
2097 | i_gen_write_data *self, | |
2098 | char const *data, | |
2099 | int size) | |
2100 | { | |
2101 | if (self->filledto && self->filledto+size > self->maxlength) { | |
2102 | if (self->cb(self->userdata, self->buffer, self->filledto)) { | |
2103 | self->filledto = 0; | |
2104 | } | |
2105 | else { | |
2106 | self->filledto = 0; | |
2107 | return 0; | |
2108 | } | |
2109 | } | |
2110 | if (self->filledto+size <= self->maxlength) { | |
2111 | /* just save it */ | |
2112 | memcpy(self->buffer+self->filledto, data, size); | |
2113 | self->filledto += size; | |
2114 | return 1; | |
2115 | } | |
2116 | /* doesn't fit - hand it off */ | |
2117 | return self->cb(self->userdata, data, size); | |
2118 | } | |
2119 | ||
2120 | /* | |
2121 | =item i_gen_write_data_new(i_write_callback_t cb, char *userdata, int max_length) | |
2122 | ||
2123 | Allocates and initializes the data structure used by i_gen_writer. | |
2124 | ||
b33c08f8 | 2125 | This should be released with L<image.c/i_free_gen_write_data> |
02d1d628 AMH |
2126 | |
2127 | =cut | |
2128 | */ | |
2129 | i_gen_write_data *i_gen_write_data_new(i_write_callback_t cb, | |
2130 | char *userdata, int max_length) | |
2131 | { | |
2132 | i_gen_write_data *self = mymalloc(sizeof(i_gen_write_data)); | |
2133 | self->cb = cb; | |
2134 | self->userdata = userdata; | |
b33c08f8 | 2135 | self->maxlength = i_min(max_length, sizeof(self->buffer)); |
02d1d628 AMH |
2136 | if (self->maxlength < 0) |
2137 | self->maxlength = sizeof(self->buffer); | |
2138 | self->filledto = 0; | |
2139 | ||
2140 | return self; | |
2141 | } | |
2142 | ||
2143 | /* | |
b33c08f8 | 2144 | =item i_free_gen_write_data(i_gen_write_data *info, int flush) |
02d1d628 AMH |
2145 | |
2146 | Cleans up the write buffer. | |
2147 | ||
2148 | Will flush any left-over data if I<flush> is non-zero. | |
2149 | ||
2150 | Returns non-zero if flush is zero or if info->cb() returns non-zero. | |
2151 | ||
2152 | Return zero only if flush is non-zero and info->cb() returns zero. | |
2153 | ie. if it fails. | |
2154 | ||
2155 | =cut | |
2156 | */ | |
2157 | ||
b33c08f8 | 2158 | int i_free_gen_write_data(i_gen_write_data *info, int flush) |
02d1d628 AMH |
2159 | { |
2160 | int result = !flush || | |
2161 | info->filledto == 0 || | |
2162 | info->cb(info->userdata, info->buffer, info->filledto); | |
2163 | myfree(info); | |
2164 | ||
2165 | return result; | |
2166 | } | |
2167 | ||
8b302e44 TC |
2168 | struct magic_entry { |
2169 | unsigned char *magic; | |
2170 | size_t magic_size; | |
2171 | char *name; | |
2172 | unsigned char *mask; | |
2173 | }; | |
2174 | ||
2175 | static int | |
2176 | test_magic(unsigned char *buffer, size_t length, struct magic_entry const *magic) { | |
8b302e44 TC |
2177 | if (length < magic->magic_size) |
2178 | return 0; | |
2179 | if (magic->mask) { | |
2180 | int i; | |
2181 | unsigned char *bufp = buffer, | |
2182 | *maskp = magic->mask, | |
2183 | *magicp = magic->magic; | |
e10bf46e | 2184 | |
8b302e44 TC |
2185 | for (i = 0; i < magic->magic_size; ++i) { |
2186 | int mask = *maskp == 'x' ? 0xFF : *maskp == ' ' ? 0 : *maskp; | |
2187 | ++maskp; | |
2188 | ||
2189 | if ((*bufp++ & mask) != (*magicp++ & mask)) | |
2190 | return 0; | |
2191 | } | |
2192 | ||
2193 | return 1; | |
2194 | } | |
2195 | else { | |
2196 | return !memcmp(magic->magic, buffer, magic->magic_size); | |
2197 | } | |
2198 | } | |
e10bf46e | 2199 | |
84e51293 AMH |
2200 | /* |
2201 | =item i_test_format_probe(io_glue *data, int length) | |
2202 | ||
676d5bb5 | 2203 | Check the beginning of the supplied file for a 'magic number' |
84e51293 AMH |
2204 | |
2205 | =cut | |
2206 | */ | |
e10bf46e | 2207 | |
db7a8754 TC |
2208 | #define FORMAT_ENTRY(magic, type) \ |
2209 | { (unsigned char *)(magic ""), sizeof(magic)-1, type } | |
8b302e44 | 2210 | #define FORMAT_ENTRY2(magic, type, mask) \ |
c0f79ae6 | 2211 | { (unsigned char *)(magic ""), sizeof(magic)-1, type, (unsigned char *)(mask) } |
ea1136fc TC |
2212 | |
2213 | const char * | |
2214 | i_test_format_probe(io_glue *data, int length) { | |
8b302e44 | 2215 | static const struct magic_entry formats[] = { |
db7a8754 TC |
2216 | FORMAT_ENTRY("\xFF\xD8", "jpeg"), |
2217 | FORMAT_ENTRY("GIF87a", "gif"), | |
2218 | FORMAT_ENTRY("GIF89a", "gif"), | |
2219 | FORMAT_ENTRY("MM\0*", "tiff"), | |
2220 | FORMAT_ENTRY("II*\0", "tiff"), | |
2221 | FORMAT_ENTRY("BM", "bmp"), | |
2222 | FORMAT_ENTRY("\x89PNG\x0d\x0a\x1a\x0a", "png"), | |
2223 | FORMAT_ENTRY("P1", "pnm"), | |
2224 | FORMAT_ENTRY("P2", "pnm"), | |
2225 | FORMAT_ENTRY("P3", "pnm"), | |
2226 | FORMAT_ENTRY("P4", "pnm"), | |
2227 | FORMAT_ENTRY("P5", "pnm"), | |
2228 | FORMAT_ENTRY("P6", "pnm"), | |
8b302e44 TC |
2229 | FORMAT_ENTRY("/* XPM", "xpm"), |
2230 | FORMAT_ENTRY("\x8aMNG", "mng"), | |
2231 | FORMAT_ENTRY("\x8aJNG", "jng"), | |
2232 | /* SGI RGB - with various possible parameters to avoid false positives | |
2233 | on similar files | |
2234 | values are: 2 byte magic, rle flags (0 or 1), bytes/sample (1 or 2) | |
2235 | */ | |
d5477d3d TC |
2236 | FORMAT_ENTRY("\x01\xDA\x00\x01", "sgi"), |
2237 | FORMAT_ENTRY("\x01\xDA\x00\x02", "sgi"), | |
2238 | FORMAT_ENTRY("\x01\xDA\x01\x01", "sgi"), | |
2239 | FORMAT_ENTRY("\x01\xDA\x01\x02", "sgi"), | |
8b302e44 TC |
2240 | |
2241 | FORMAT_ENTRY2("FORM ILBM", "ilbm", "xxxx xxxx"), | |
2242 | ||
2243 | /* different versions of PCX format | |
2244 | http://www.fileformat.info/format/pcx/ | |
2245 | */ | |
2246 | FORMAT_ENTRY("\x0A\x00\x01", "pcx"), | |
681d28fc | 2247 | FORMAT_ENTRY("\x0A\x02\x01", "pcx"), |
8b302e44 TC |
2248 | FORMAT_ENTRY("\x0A\x03\x01", "pcx"), |
2249 | FORMAT_ENTRY("\x0A\x04\x01", "pcx"), | |
2250 | FORMAT_ENTRY("\x0A\x05\x01", "pcx"), | |
2251 | ||
2252 | /* FITS - http://fits.gsfc.nasa.gov/ */ | |
2253 | FORMAT_ENTRY("SIMPLE =", "fits"), | |
2254 | ||
2255 | /* PSD - Photoshop */ | |
2256 | FORMAT_ENTRY("8BPS\x00\x01", "psd"), | |
2257 | ||
2258 | /* EPS - Encapsulated Postscript */ | |
2259 | /* only reading 18 chars, so we don't include the F in EPSF */ | |
2260 | FORMAT_ENTRY("%!PS-Adobe-2.0 EPS", "eps"), | |
681d28fc TC |
2261 | |
2262 | /* Utah RLE */ | |
2263 | FORMAT_ENTRY("\x52\xCC", "utah"), | |
33fc0c9e TC |
2264 | |
2265 | /* GZIP compressed, only matching deflate for now */ | |
2266 | FORMAT_ENTRY("\x1F\x8B\x08", "gzip"), | |
2267 | ||
2268 | /* bzip2 compressed */ | |
2269 | FORMAT_ENTRY("BZh", "bzip2"), | |
e10bf46e | 2270 | }; |
8b302e44 | 2271 | static const struct magic_entry more_formats[] = { |
681d28fc TC |
2272 | /* these were originally both listed as ico, but cur files can |
2273 | include hotspot information */ | |
2274 | FORMAT_ENTRY("\x00\x00\x01\x00", "ico"), /* Windows icon */ | |
2275 | FORMAT_ENTRY("\x00\x00\x02\x00", "cur"), /* Windows cursor */ | |
603dfac7 TC |
2276 | FORMAT_ENTRY2("\x00\x00\x00\x00\x00\x00\x00\x07", |
2277 | "xwd", " xxxx"), /* X Windows Dump */ | |
ea1136fc | 2278 | }; |
db7a8754 | 2279 | |
e10bf46e | 2280 | unsigned int i; |
db7a8754 | 2281 | unsigned char head[18]; |
84e51293 | 2282 | ssize_t rc; |
e10bf46e AMH |
2283 | |
2284 | io_glue_commit_types(data); | |
84e51293 AMH |
2285 | rc = data->readcb(data, head, 18); |
2286 | if (rc == -1) return NULL; | |
2287 | data->seekcb(data, -rc, SEEK_CUR); | |
e10bf46e AMH |
2288 | |
2289 | for(i=0; i<sizeof(formats)/sizeof(formats[0]); i++) { | |
8b302e44 TC |
2290 | struct magic_entry const *entry = formats + i; |
2291 | ||
2292 | if (test_magic(head, rc, entry)) | |
2293 | return entry->name; | |
e10bf46e AMH |
2294 | } |
2295 | ||
ea1136fc | 2296 | if ((rc == 18) && |
db7a8754 TC |
2297 | tga_header_verify(head)) |
2298 | return "tga"; | |
2299 | ||
ea1136fc | 2300 | for(i=0; i<sizeof(more_formats)/sizeof(more_formats[0]); i++) { |
8b302e44 TC |
2301 | struct magic_entry const *entry = more_formats + i; |
2302 | ||
2303 | if (test_magic(head, rc, entry)) | |
2304 | return entry->name; | |
ea1136fc TC |
2305 | } |
2306 | ||
2307 | return NULL; | |
e10bf46e AMH |
2308 | } |
2309 | ||
9c106321 TC |
2310 | /* |
2311 | =item i_img_is_monochrome(img, &zero_is_white) | |
2312 | ||
e5ee047b TC |
2313 | =category Image Information |
2314 | ||
9c106321 TC |
2315 | Tests an image to check it meets our monochrome tests. |
2316 | ||
2317 | The idea is that a file writer can use this to test where it should | |
e5ee047b TC |
2318 | write the image in whatever bi-level format it uses, eg. C<pbm> for |
2319 | C<pnm>. | |
9c106321 TC |
2320 | |
2321 | For performance of encoders we require monochrome images: | |
2322 | ||
2323 | =over | |
2324 | ||
2325 | =item * | |
e10bf46e | 2326 | |
9c106321 | 2327 | be paletted |
e10bf46e | 2328 | |
9c106321 TC |
2329 | =item * |
2330 | ||
e5ee047b TC |
2331 | have a palette of two colors, containing only C<(0,0,0)> and |
2332 | C<(255,255,255)> in either order. | |
9c106321 TC |
2333 | |
2334 | =back | |
2335 | ||
e5ee047b | 2336 | C<zero_is_white> is set to non-zero if the first palette entry is white. |
9c106321 TC |
2337 | |
2338 | =cut | |
2339 | */ | |
2340 | ||
2341 | int | |
2342 | i_img_is_monochrome(i_img *im, int *zero_is_white) { | |
2343 | if (im->type == i_palette_type | |
2344 | && i_colorcount(im) == 2) { | |
2345 | i_color colors[2]; | |
2346 | i_getcolors(im, 0, colors, 2); | |
2347 | if (im->channels == 3) { | |
2348 | if (colors[0].rgb.r == 255 && | |
2349 | colors[0].rgb.g == 255 && | |
2350 | colors[0].rgb.b == 255 && | |
2351 | colors[1].rgb.r == 0 && | |
2352 | colors[1].rgb.g == 0 && | |
2353 | colors[1].rgb.b == 0) { | |
bd8052a6 | 2354 | *zero_is_white = 1; |
9c106321 TC |
2355 | return 1; |
2356 | } | |
2357 | else if (colors[0].rgb.r == 0 && | |
2358 | colors[0].rgb.g == 0 && | |
2359 | colors[0].rgb.b == 0 && | |
2360 | colors[1].rgb.r == 255 && | |
2361 | colors[1].rgb.g == 255 && | |
2362 | colors[1].rgb.b == 255) { | |
bd8052a6 | 2363 | *zero_is_white = 0; |
9c106321 TC |
2364 | return 1; |
2365 | } | |
2366 | } | |
2367 | else if (im->channels == 1) { | |
2368 | if (colors[0].channel[0] == 255 && | |
bd8052a6 TC |
2369 | colors[1].channel[0] == 0) { |
2370 | *zero_is_white = 1; | |
9c106321 TC |
2371 | return 1; |
2372 | } | |
2373 | else if (colors[0].channel[0] == 0 && | |
bd8052a6 TC |
2374 | colors[1].channel[0] == 255) { |
2375 | *zero_is_white = 0; | |
9c106321 TC |
2376 | return 1; |
2377 | } | |
2378 | } | |
2379 | } | |
2380 | ||
2381 | *zero_is_white = 0; | |
2382 | return 0; | |
2383 | } | |
e10bf46e | 2384 | |
6e4af7d4 TC |
2385 | /* |
2386 | =item i_get_file_background(im, &bg) | |
2387 | ||
797a9f9c TC |
2388 | =category Files |
2389 | ||
6e4af7d4 TC |
2390 | Retrieve the file write background color tag from the image. |
2391 | ||
2392 | If not present, returns black. | |
2393 | ||
2394 | =cut | |
2395 | */ | |
2396 | ||
2397 | void | |
2398 | i_get_file_background(i_img *im, i_color *bg) { | |
2399 | if (!i_tags_get_color(&im->tags, "i_background", 0, bg)) { | |
2400 | /* black default */ | |
2401 | bg->channel[0] = bg->channel[1] = bg->channel[2] = 0; | |
2402 | } | |
2403 | /* always full alpha */ | |
2404 | bg->channel[3] = 255; | |
2405 | } | |
2406 | ||
fa90de94 TC |
2407 | /* |
2408 | =item i_get_file_backgroundf(im, &bg) | |
2409 | ||
797a9f9c TC |
2410 | =category Files |
2411 | ||
fa90de94 TC |
2412 | Retrieve the file write background color tag from the image as a |
2413 | floating point color. | |
2414 | ||
2415 | Implemented in terms of i_get_file_background(). | |
2416 | ||
2417 | If not present, returns black. | |
2418 | ||
2419 | =cut | |
2420 | */ | |
2421 | ||
2422 | void | |
2423 | i_get_file_backgroundf(i_img *im, i_fcolor *fbg) { | |
2424 | i_color bg; | |
2425 | ||
2426 | i_get_file_background(im, &bg); | |
2427 | fbg->rgba.r = Sample8ToF(bg.rgba.r); | |
2428 | fbg->rgba.g = Sample8ToF(bg.rgba.g); | |
2429 | fbg->rgba.b = Sample8ToF(bg.rgba.b); | |
2430 | fbg->rgba.a = 1.0; | |
2431 | } | |
2432 | ||
02d1d628 AMH |
2433 | /* |
2434 | =back | |
2435 | ||
b8c2033e AMH |
2436 | =head1 AUTHOR |
2437 | ||
2438 | Arnar M. Hrafnkelsson <addi@umich.edu> | |
2439 | ||
2440 | Tony Cook <tony@develop-help.com> | |
2441 | ||
02d1d628 AMH |
2442 | =head1 SEE ALSO |
2443 | ||
2444 | L<Imager>, L<gif.c> | |
2445 | ||
2446 | =cut | |
2447 | */ |