Commit | Line | Data |
---|---|---|
658f724e | 1 | #include "imager.h" |
874c55db | 2 | #include "imageri.h" |
658f724e TC |
3 | |
4 | /* | |
5 | * i_scale_mixing() is based on code contained in pnmscale.c, part of | |
6 | * the netpbm distribution. No code was copied from pnmscale but | |
7 | * the algorthm was and for this I thank the netpbm crew. | |
8 | * | |
9 | * Tony | |
10 | */ | |
11 | ||
12 | /* pnmscale.c - read a portable anymap and scale it | |
13 | ** | |
14 | ** Copyright (C) 1989, 1991 by Jef Poskanzer. | |
15 | ** | |
16 | ** Permission to use, copy, modify, and distribute this software and its | |
17 | ** documentation for any purpose and without fee is hereby granted, provided | |
18 | ** that the above copyright notice appear in all copies and that both that | |
19 | ** copyright notice and this permission notice appear in supporting | |
20 | ** documentation. This software is provided "as is" without express or | |
21 | ** implied warranty. | |
22 | ** | |
23 | */ | |
24 | ||
25 | ||
26 | static void | |
27 | zero_row(i_fcolor *row, int width, int channels); | |
a10945af TC |
28 | |
29 | #code | |
658f724e | 30 | static void |
a10945af | 31 | IM_SUFFIX(accum_output_row)(i_fcolor *accum, double fraction, IM_COLOR const *in, |
658f724e TC |
32 | int width, int channels); |
33 | static void | |
a10945af TC |
34 | IM_SUFFIX(horizontal_scale)(IM_COLOR *out, int out_width, |
35 | i_fcolor const *in, int in_width, | |
36 | int channels); | |
37 | #/code | |
658f724e TC |
38 | |
39 | /* | |
40 | =item i_scale_mixing | |
41 | ||
42 | Returns a new image scaled to the given size. | |
43 | ||
44 | Unlike i_scale_axis() this does a simple coverage of pixels from | |
45 | source to target and doesn't resample. | |
46 | ||
47 | Adapted from pnmscale. | |
48 | ||
49 | =cut | |
50 | */ | |
51 | i_img * | |
52 | i_scale_mixing(i_img *src, int x_out, int y_out) { | |
53 | i_img *result; | |
658f724e | 54 | i_fcolor *accum_row = NULL; |
874c55db | 55 | int x, y, ch; |
a10945af | 56 | int accum_row_bytes; |
658f724e TC |
57 | double rowsleft, fracrowtofill; |
58 | int rowsread; | |
59 | double y_scale; | |
60 | ||
61 | mm_log((1, "i_scale_mixing(src %p, x_out %d, y_out %d)\n", | |
62 | src, x_out, y_out)); | |
63 | ||
64 | i_clear_error(); | |
65 | ||
66 | if (x_out <= 0) { | |
67 | i_push_errorf(0, "output width %d invalid", x_out); | |
68 | return NULL; | |
69 | } | |
70 | if (y_out <= 0) { | |
71 | i_push_errorf(0, "output height %d invalid", y_out); | |
72 | return NULL; | |
73 | } | |
74 | ||
658f724e TC |
75 | if (x_out == src->xsize && y_out == src->ysize) { |
76 | return i_copy(src); | |
77 | } | |
78 | ||
79 | y_scale = y_out / (double)src->ysize; | |
80 | ||
81 | result = i_sametype_chans(src, x_out, y_out, src->channels); | |
82 | if (!result) | |
83 | return NULL; | |
84 | ||
a10945af TC |
85 | accum_row_bytes = sizeof(i_fcolor) * src->xsize; |
86 | if (accum_row_bytes / sizeof(i_fcolor) != src->xsize) { | |
87 | i_push_error(0, "integer overflow allocating accumulator row buffer"); | |
88 | return NULL; | |
89 | } | |
90 | ||
91 | accum_row = mymalloc(accum_row_bytes); | |
92 | ||
93 | #code src->bits <= 8 | |
94 | IM_COLOR *in_row = NULL; | |
95 | IM_COLOR *xscale_row = NULL; | |
96 | int in_row_bytes, out_row_bytes; | |
97 | ||
98 | in_row_bytes = sizeof(IM_COLOR) * src->xsize; | |
99 | if (in_row_bytes / sizeof(IM_COLOR) != src->xsize) { | |
100 | i_push_error(0, "integer overflow allocating input row buffer"); | |
101 | return NULL; | |
102 | } | |
103 | out_row_bytes = sizeof(IM_COLOR) * x_out; | |
104 | if (out_row_bytes / sizeof(IM_COLOR) != x_out) { | |
105 | i_push_error(0, "integer overflow allocating output row buffer"); | |
106 | return NULL; | |
107 | } | |
108 | ||
658f724e | 109 | in_row = mymalloc(in_row_bytes); |
658f724e TC |
110 | xscale_row = mymalloc(out_row_bytes); |
111 | ||
112 | rowsread = 0; | |
113 | rowsleft = 0.0; | |
114 | for (y = 0; y < y_out; ++y) { | |
115 | if (y_out == src->ysize) { | |
a10945af | 116 | /* no vertical scaling, just load it */ |
a10945af | 117 | #ifdef IM_EIGHT_BIT |
e4bf9335 | 118 | int x, ch; |
a10945af TC |
119 | /* load and convert to doubles */ |
120 | IM_GLIN(src, 0, src->xsize, y, in_row); | |
121 | for (x = 0; x < src->xsize; ++x) { | |
122 | for (ch = 0; ch < src->channels; ++ch) { | |
123 | accum_row[x].channel[ch] = in_row[x].channel[ch]; | |
124 | } | |
125 | } | |
126 | #else | |
127 | IM_GLIN(src, 0, src->xsize, y, accum_row); | |
128 | #endif | |
874c55db TC |
129 | /* alpha adjust if needed */ |
130 | if (src->channels == 2 || src->channels == 4) { | |
131 | for (x = 0; x < src->xsize; ++x) { | |
132 | for (ch = 0; ch < src->channels-1; ++ch) { | |
133 | accum_row[x].channel[ch] *= | |
134 | accum_row[x].channel[src->channels-1] / IM_SAMPLE_MAX; | |
135 | } | |
136 | } | |
137 | } | |
658f724e TC |
138 | } |
139 | else { | |
140 | fracrowtofill = 1.0; | |
141 | zero_row(accum_row, src->xsize, src->channels); | |
142 | while (fracrowtofill > 0) { | |
143 | if (rowsleft <= 0) { | |
144 | if (rowsread < src->ysize) { | |
a10945af | 145 | IM_GLIN(src, 0, src->xsize, rowsread, in_row); |
658f724e TC |
146 | ++rowsread; |
147 | } | |
148 | /* else just use the last row read */ | |
149 | ||
150 | rowsleft = y_scale; | |
151 | } | |
152 | if (rowsleft < fracrowtofill) { | |
a10945af TC |
153 | IM_SUFFIX(accum_output_row)(accum_row, rowsleft, in_row, |
154 | src->xsize, src->channels); | |
658f724e TC |
155 | fracrowtofill -= rowsleft; |
156 | rowsleft = 0; | |
157 | } | |
158 | else { | |
a10945af TC |
159 | IM_SUFFIX(accum_output_row)(accum_row, fracrowtofill, in_row, |
160 | src->xsize, src->channels); | |
658f724e TC |
161 | rowsleft -= fracrowtofill; |
162 | fracrowtofill = 0; | |
163 | } | |
164 | } | |
a10945af TC |
165 | } |
166 | /* we've accumulated a vertically scaled row */ | |
167 | if (x_out == src->xsize) { | |
a10945af | 168 | #if IM_EIGHT_BIT |
e4bf9335 | 169 | int x, ch; |
a10945af | 170 | /* no need to scale, but we need to convert it */ |
874c55db TC |
171 | if (result->channels == 2 || result->channels == 4) { |
172 | int alpha_chan = result->channels - 1; | |
173 | for (x = 0; x < x_out; ++x) { | |
174 | double alpha = accum_row[x].channel[alpha_chan] / IM_SAMPLE_MAX; | |
175 | if (alpha) { | |
176 | for (ch = 0; ch < alpha_chan; ++ch) { | |
177 | int val = accum_row[x].channel[ch] / alpha + 0.5; | |
178 | xscale_row[x].channel[ch] = IM_LIMIT(val); | |
179 | } | |
180 | } | |
181 | xscale_row[x].channel[alpha_chan] = IM_LIMIT(accum_row[x].channel[alpha_chan]+0.5); | |
182 | } | |
183 | } | |
184 | else { | |
185 | for (x = 0; x < x_out; ++x) { | |
186 | for (ch = 0; ch < result->channels; ++ch) | |
187 | xscale_row[x].channel[ch] = IM_LIMIT(accum_row[x].channel[ch]+0.5); | |
188 | } | |
658f724e | 189 | } |
a10945af TC |
190 | IM_PLIN(result, 0, x_out, y, xscale_row); |
191 | #else | |
192 | IM_PLIN(result, 0, x_out, y, accum_row); | |
193 | #endif | |
194 | } | |
195 | else { | |
196 | IM_SUFFIX(horizontal_scale)(xscale_row, x_out, accum_row, | |
197 | src->xsize, src->channels); | |
198 | IM_PLIN(result, 0, x_out, y, xscale_row); | |
658f724e TC |
199 | } |
200 | } | |
658f724e | 201 | myfree(in_row); |
658f724e | 202 | myfree(xscale_row); |
a10945af TC |
203 | #/code |
204 | myfree(accum_row); | |
658f724e TC |
205 | |
206 | return result; | |
207 | } | |
208 | ||
209 | static void | |
210 | zero_row(i_fcolor *row, int width, int channels) { | |
211 | int x; | |
212 | int ch; | |
213 | ||
214 | /* with IEEE floats we could just use memset() but that's not | |
a10945af TC |
215 | safe in general under ANSI C. |
216 | memset() is slightly faster. | |
217 | */ | |
658f724e TC |
218 | for (x = 0; x < width; ++x) { |
219 | for (ch = 0; ch < channels; ++ch) | |
220 | row[x].channel[ch] = 0.0; | |
221 | } | |
222 | } | |
223 | ||
a10945af TC |
224 | #code |
225 | ||
658f724e | 226 | static void |
a10945af | 227 | IM_SUFFIX(accum_output_row)(i_fcolor *accum, double fraction, IM_COLOR const *in, |
658f724e TC |
228 | int width, int channels) { |
229 | int x, ch; | |
230 | ||
a10945af TC |
231 | /* it's tempting to change this into a pointer iteration loop but |
232 | modern CPUs do the indexing as part of the instruction */ | |
874c55db TC |
233 | if (channels == 2 || channels == 4) { |
234 | for (x = 0; x < width; ++x) { | |
235 | for (ch = 0; ch < channels-1; ++ch) { | |
236 | accum[x].channel[ch] += in[x].channel[ch] * fraction * in[x].channel[channels-1] / IM_SAMPLE_MAX; | |
237 | } | |
238 | accum[x].channel[channels-1] += in[x].channel[channels-1] * fraction; | |
239 | } | |
240 | } | |
241 | else { | |
242 | for (x = 0; x < width; ++x) { | |
243 | for (ch = 0; ch < channels; ++ch) { | |
244 | accum[x].channel[ch] += in[x].channel[ch] * fraction; | |
245 | } | |
658f724e TC |
246 | } |
247 | } | |
248 | } | |
249 | ||
250 | static void | |
a10945af | 251 | IM_SUFFIX(horizontal_scale)(IM_COLOR *out, int out_width, |
658f724e TC |
252 | i_fcolor const *in, int in_width, |
253 | int channels) { | |
254 | double frac_col_to_fill, frac_col_left; | |
255 | int in_x; | |
256 | int out_x; | |
257 | double x_scale = (double)out_width / in_width; | |
258 | int ch; | |
259 | double accum[MAXCHANNELS] = { 0 }; | |
260 | ||
261 | frac_col_to_fill = 1.0; | |
262 | out_x = 0; | |
263 | for (in_x = 0; in_x < in_width; ++in_x) { | |
264 | frac_col_left = x_scale; | |
265 | while (frac_col_left >= frac_col_to_fill) { | |
266 | for (ch = 0; ch < channels; ++ch) | |
267 | accum[ch] += frac_col_to_fill * in[in_x].channel[ch]; | |
268 | ||
874c55db TC |
269 | if (channels == 2 || channels == 4) { |
270 | int alpha_chan = channels - 1; | |
271 | double alpha = accum[alpha_chan] / IM_SAMPLE_MAX; | |
272 | if (alpha) { | |
273 | for (ch = 0; ch < alpha_chan; ++ch) { | |
274 | IM_WORK_T val = IM_ROUND(accum[ch] / alpha); | |
275 | out[out_x].channel[ch] = IM_LIMIT(val); | |
276 | } | |
277 | } | |
278 | out[out_x].channel[alpha_chan] = IM_LIMIT(IM_ROUND(accum[alpha_chan])); | |
658f724e | 279 | } |
874c55db TC |
280 | else { |
281 | for (ch = 0; ch < channels; ++ch) { | |
282 | IM_WORK_T val = IM_ROUND(accum[ch]); | |
283 | out[out_x].channel[ch] = IM_LIMIT(val); | |
284 | } | |
285 | } | |
286 | for (ch = 0; ch < channels; ++ch) | |
287 | accum[ch] = 0; | |
658f724e TC |
288 | frac_col_left -= frac_col_to_fill; |
289 | frac_col_to_fill = 1.0; | |
290 | ++out_x; | |
291 | } | |
292 | ||
293 | if (frac_col_left > 0) { | |
294 | for (ch = 0; ch < channels; ++ch) { | |
295 | accum[ch] += frac_col_left * in[in_x].channel[ch]; | |
296 | } | |
297 | frac_col_to_fill -= frac_col_left; | |
298 | } | |
299 | } | |
300 | ||
301 | if (out_x < out_width-1 || out_x > out_width) { | |
302 | i_fatal(3, "Internal error: out_x %d out of range (width %d)", out_x, out_width); | |
303 | } | |
304 | ||
305 | if (out_x < out_width) { | |
306 | for (ch = 0; ch < channels; ++ch) { | |
307 | accum[ch] += frac_col_to_fill * in[in_width-1].channel[ch]; | |
874c55db TC |
308 | } |
309 | if (channels == 2 || channels == 4) { | |
310 | int alpha_chan = channels - 1; | |
311 | double alpha = accum[alpha_chan] / IM_SAMPLE_MAX; | |
312 | if (alpha) { | |
313 | for (ch = 0; ch < alpha_chan; ++ch) { | |
314 | IM_WORK_T val = IM_ROUND(accum[ch] / alpha); | |
315 | out[out_x].channel[ch] = IM_LIMIT(val); | |
316 | } | |
317 | } | |
318 | out[out_x].channel[alpha_chan] = IM_LIMIT(IM_ROUND(accum[alpha_chan])); | |
319 | } | |
320 | else { | |
321 | for (ch = 0; ch < channels; ++ch) { | |
322 | IM_WORK_T val = IM_ROUND(accum[ch]); | |
323 | out[out_x].channel[ch] = IM_LIMIT(val); | |
324 | } | |
658f724e TC |
325 | } |
326 | } | |
327 | } | |
a10945af TC |
328 | |
329 | #/code |