Commit | Line | Data |
---|---|---|
02d1d628 AMH |
1 | #include "image.h" |
2 | #include "io.h" | |
3 | ||
4 | /* | |
5 | =head1 NAME | |
6 | ||
7 | image.c - implements most of the basic functions of Imager and much of the rest | |
8 | ||
9 | =head1 SYNOPSIS | |
10 | ||
11 | i_img *i; | |
12 | i_color *c; | |
13 | c = i_color_new(red, green, blue, alpha); | |
14 | ICL_DESTROY(c); | |
15 | i = i_img_new(); | |
16 | i_img_destroy(i); | |
17 | // and much more | |
18 | ||
19 | =head1 DESCRIPTION | |
20 | ||
21 | image.c implements the basic functions to create and destroy image and | |
22 | color objects for Imager. | |
23 | ||
24 | =head1 FUNCTION REFERENCE | |
25 | ||
26 | Some of these functions are internal. | |
27 | ||
28 | =over 4 | |
29 | ||
30 | =cut | |
31 | */ | |
32 | ||
33 | #define XAXIS 0 | |
34 | #define YAXIS 1 | |
142c26ff | 35 | #define XYAXIS 2 |
02d1d628 AMH |
36 | |
37 | #define minmax(a,b,i) ( ((a>=i)?a: ( (b<=i)?b:i )) ) | |
38 | ||
39 | /* Hack around an obscure linker bug on solaris - probably due to builtin gcc thingies */ | |
40 | void fake() { ceil(1); } | |
41 | ||
42 | /* | |
43 | =item ICL_new_internal(r, g, b, a) | |
44 | ||
45 | Return a new color object with values passed to it. | |
46 | ||
47 | r - red component (range: 0 - 255) | |
48 | g - green component (range: 0 - 255) | |
49 | b - blue component (range: 0 - 255) | |
50 | a - alpha component (range: 0 - 255) | |
51 | ||
52 | =cut | |
53 | */ | |
54 | ||
55 | i_color * | |
56 | ICL_new_internal(unsigned char r,unsigned char g,unsigned char b,unsigned char a) { | |
57 | i_color *cl=NULL; | |
58 | ||
59 | mm_log((1,"ICL_new_internal(r %d,g %d,b %d,a %d)\n",cl,r,g,b,a)); | |
60 | ||
61 | if ( (cl=mymalloc(sizeof(i_color))) == NULL) m_fatal(2,"malloc() error\n"); | |
62 | cl->rgba.r=r; | |
63 | cl->rgba.g=g; | |
64 | cl->rgba.b=b; | |
65 | cl->rgba.a=a; | |
66 | mm_log((1,"(0x%x) <- ICL_new_internal\n",cl)); | |
67 | return cl; | |
68 | } | |
69 | ||
70 | ||
71 | /* | |
72 | =item ICL_set_internal(cl, r, g, b, a) | |
73 | ||
74 | Overwrite a color with new values. | |
75 | ||
76 | cl - pointer to color object | |
77 | r - red component (range: 0 - 255) | |
78 | g - green component (range: 0 - 255) | |
79 | b - blue component (range: 0 - 255) | |
80 | a - alpha component (range: 0 - 255) | |
81 | ||
82 | =cut | |
83 | */ | |
84 | ||
85 | i_color * | |
86 | ICL_set_internal(i_color *cl,unsigned char r,unsigned char g,unsigned char b,unsigned char a) { | |
87 | mm_log((1,"ICL_set_internal(cl* 0x%x,r %d,g %d,b %d,a %d)\n",cl,r,g,b,a)); | |
88 | if (cl == NULL) | |
89 | if ( (cl=mymalloc(sizeof(i_color))) == NULL) | |
90 | m_fatal(2,"malloc() error\n"); | |
91 | cl->rgba.r=r; | |
92 | cl->rgba.g=g; | |
93 | cl->rgba.b=b; | |
94 | cl->rgba.a=a; | |
95 | mm_log((1,"(0x%x) <- ICL_set_internal\n",cl)); | |
96 | return cl; | |
97 | } | |
98 | ||
99 | ||
100 | /* | |
101 | =item ICL_add(dst, src, ch) | |
102 | ||
103 | Add src to dst inplace - dst is modified. | |
104 | ||
105 | dst - pointer to destination color object | |
106 | src - pointer to color object that is added | |
107 | ch - number of channels | |
108 | ||
109 | =cut | |
110 | */ | |
111 | ||
112 | void | |
113 | ICL_add(i_color *dst,i_color *src,int ch) { | |
114 | int tmp,i; | |
115 | for(i=0;i<ch;i++) { | |
116 | tmp=dst->channel[i]+src->channel[i]; | |
117 | dst->channel[i]= tmp>255 ? 255:tmp; | |
118 | } | |
119 | } | |
120 | ||
121 | /* | |
122 | =item ICL_info(cl) | |
123 | ||
124 | Dump color information to log - strictly for debugging. | |
125 | ||
126 | cl - pointer to color object | |
127 | ||
128 | =cut | |
129 | */ | |
130 | ||
131 | void | |
132 | ICL_info(i_color *cl) { | |
133 | mm_log((1,"i_color_info(cl* 0x%x)\n",cl)); | |
134 | mm_log((1,"i_color_info: (%d,%d,%d,%d)\n",cl->rgba.r,cl->rgba.g,cl->rgba.b,cl->rgba.a)); | |
135 | } | |
136 | ||
137 | /* | |
138 | =item ICL_DESTROY | |
139 | ||
140 | Destroy ancillary data for Color object. | |
141 | ||
142 | cl - pointer to color object | |
143 | ||
144 | =cut | |
145 | */ | |
146 | ||
147 | void | |
148 | ICL_DESTROY(i_color *cl) { | |
149 | mm_log((1,"ICL_DESTROY(cl* 0x%x)\n",cl)); | |
150 | myfree(cl); | |
151 | } | |
152 | ||
153 | /* | |
154 | =item IIM_new(x, y, ch) | |
155 | ||
156 | Creates a new image object I<x> pixels wide, and I<y> pixels high with I<ch> channels. | |
157 | ||
158 | =cut | |
159 | */ | |
160 | ||
161 | ||
162 | i_img * | |
163 | IIM_new(int x,int y,int ch) { | |
164 | i_img *im; | |
165 | mm_log((1,"IIM_new(x %d,y %d,ch %d)\n",x,y,ch)); | |
166 | ||
167 | im=i_img_empty_ch(NULL,x,y,ch); | |
168 | ||
169 | mm_log((1,"(0x%x) <- IIM_new\n",im)); | |
170 | return im; | |
171 | } | |
172 | ||
173 | ||
174 | void | |
175 | IIM_DESTROY(i_img *im) { | |
176 | mm_log((1,"IIM_DESTROY(im* 0x%x)\n",im)); | |
177 | /* myfree(cl); */ | |
178 | } | |
179 | ||
180 | ||
181 | ||
182 | /* | |
183 | =item i_img_new() | |
184 | ||
185 | Create new image reference - notice that this isn't an object yet and | |
186 | this should be fixed asap. | |
187 | ||
188 | =cut | |
189 | */ | |
190 | ||
191 | ||
192 | i_img * | |
193 | i_img_new() { | |
194 | i_img *im; | |
195 | ||
196 | mm_log((1,"i_img_struct()\n")); | |
197 | if ( (im=mymalloc(sizeof(i_img))) == NULL) | |
198 | m_fatal(2,"malloc() error\n"); | |
199 | ||
200 | im->xsize=0; | |
201 | im->ysize=0; | |
202 | im->channels=3; | |
203 | im->ch_mask=MAXINT; | |
204 | im->bytes=0; | |
205 | im->data=NULL; | |
206 | ||
207 | im->i_f_ppix=i_ppix_d; | |
208 | im->i_f_gpix=i_gpix_d; | |
209 | im->ext_data=NULL; | |
210 | ||
211 | mm_log((1,"(0x%x) <- i_img_struct\n",im)); | |
212 | return im; | |
213 | } | |
214 | ||
215 | /* | |
216 | =item i_img_empty(im, x, y) | |
217 | ||
218 | Re-new image reference (assumes 3 channels) | |
219 | ||
220 | im - Image pointer | |
221 | x - xsize of destination image | |
222 | y - ysize of destination image | |
223 | ||
224 | =cut | |
225 | */ | |
226 | ||
227 | i_img * | |
228 | i_img_empty(i_img *im,int x,int y) { | |
229 | mm_log((1,"i_img_empty(*im 0x%x,x %d,y %d)\n",im,x,y)); | |
230 | if (im==NULL) | |
231 | if ( (im=mymalloc(sizeof(i_img))) == NULL) | |
232 | m_fatal(2,"malloc() error\n"); | |
233 | ||
234 | im->xsize=x; | |
235 | im->ysize=y; | |
236 | im->channels=3; | |
237 | im->ch_mask=MAXINT; | |
238 | im->bytes=x*y*im->channels; | |
239 | if ( (im->data=mymalloc(im->bytes)) == NULL) m_fatal(2,"malloc() error\n"); | |
240 | memset(im->data,0,(size_t)im->bytes); | |
241 | ||
242 | im->i_f_ppix=i_ppix_d; | |
243 | im->i_f_gpix=i_gpix_d; | |
244 | im->ext_data=NULL; | |
245 | ||
246 | mm_log((1,"(0x%x) <- i_img_empty\n",im)); | |
247 | return im; | |
248 | } | |
249 | ||
250 | /* | |
251 | =item i_img_empty_ch(im, x, y, ch) | |
252 | ||
253 | Re-new image reference | |
254 | ||
255 | im - Image pointer | |
142c26ff AMH |
256 | x - xsize of destination image |
257 | y - ysize of destination image | |
02d1d628 AMH |
258 | ch - number of channels |
259 | ||
260 | =cut | |
261 | */ | |
262 | ||
263 | i_img * | |
264 | i_img_empty_ch(i_img *im,int x,int y,int ch) { | |
265 | mm_log((1,"i_img_empty_ch(*im 0x%x,x %d,y %d,ch %d)\n",im,x,y,ch)); | |
266 | if (im==NULL) | |
267 | if ( (im=mymalloc(sizeof(i_img))) == NULL) | |
268 | m_fatal(2,"malloc() error\n"); | |
269 | ||
270 | im->xsize=x; | |
271 | im->ysize=y; | |
272 | im->channels=ch; | |
273 | im->ch_mask=MAXINT; | |
274 | im->bytes=x*y*im->channels; | |
275 | if ( (im->data=mymalloc(im->bytes)) == NULL) m_fatal(2,"malloc() error\n"); | |
276 | memset(im->data,0,(size_t)im->bytes); | |
277 | ||
278 | im->i_f_ppix=i_ppix_d; | |
279 | im->i_f_gpix=i_gpix_d; | |
280 | im->ext_data=NULL; | |
281 | ||
282 | mm_log((1,"(0x%x) <- i_img_empty_ch\n",im)); | |
283 | return im; | |
284 | } | |
285 | ||
286 | /* | |
287 | =item i_img_exorcise(im) | |
288 | ||
289 | Free image data. | |
290 | ||
291 | im - Image pointer | |
292 | ||
293 | =cut | |
294 | */ | |
295 | ||
296 | void | |
297 | i_img_exorcise(i_img *im) { | |
298 | mm_log((1,"i_img_exorcise(im* 0x%x)\n",im)); | |
299 | if (im->data != NULL) { myfree(im->data); } | |
300 | im->data=NULL; | |
301 | im->xsize=0; | |
302 | im->ysize=0; | |
303 | im->channels=0; | |
304 | ||
305 | im->i_f_ppix=i_ppix_d; | |
306 | im->i_f_gpix=i_gpix_d; | |
307 | im->ext_data=NULL; | |
308 | } | |
309 | ||
310 | /* | |
311 | =item i_img_destroy(im) | |
312 | ||
313 | Destroy image and free data via exorcise. | |
314 | ||
315 | im - Image pointer | |
316 | ||
317 | =cut | |
318 | */ | |
319 | ||
320 | void | |
321 | i_img_destroy(i_img *im) { | |
322 | mm_log((1,"i_img_destroy(im* 0x%x)\n",im)); | |
323 | i_img_exorcise(im); | |
324 | if (im) { myfree(im); } | |
325 | } | |
326 | ||
327 | /* | |
328 | =item i_img_info(im, info) | |
329 | ||
330 | Return image information | |
331 | ||
332 | im - Image pointer | |
333 | info - pointer to array to return data | |
334 | ||
335 | info is an array of 4 integers with the following values: | |
336 | ||
337 | info[0] - width | |
338 | info[1] - height | |
339 | info[2] - channels | |
340 | info[3] - channel mask | |
341 | ||
342 | =cut | |
343 | */ | |
344 | ||
345 | ||
346 | void | |
347 | i_img_info(i_img *im,int *info) { | |
348 | mm_log((1,"i_img_info(im 0x%x)\n",im)); | |
349 | if (im != NULL) { | |
350 | mm_log((1,"i_img_info: xsize=%d ysize=%d channels=%d mask=%ud\n",im->xsize,im->ysize,im->channels,im->ch_mask)); | |
351 | mm_log((1,"i_img_info: data=0x%d\n",im->data)); | |
352 | info[0]=im->xsize; | |
353 | info[1]=im->ysize; | |
354 | info[2]=im->channels; | |
355 | info[3]=im->ch_mask; | |
356 | } else { | |
357 | info[0]=0; | |
358 | info[1]=0; | |
359 | info[2]=0; | |
360 | info[3]=0; | |
361 | } | |
362 | } | |
363 | ||
364 | /* | |
365 | =item i_img_setmask(im, ch_mask) | |
366 | ||
367 | Set the image channel mask for I<im> to I<ch_mask>. | |
368 | ||
369 | =cut | |
370 | */ | |
371 | void | |
372 | i_img_setmask(i_img *im,int ch_mask) { im->ch_mask=ch_mask; } | |
373 | ||
374 | ||
375 | /* | |
376 | =item i_img_getmask(im) | |
377 | ||
378 | Get the image channel mask for I<im>. | |
379 | ||
380 | =cut | |
381 | */ | |
382 | int | |
383 | i_img_getmask(i_img *im) { return im->ch_mask; } | |
384 | ||
385 | /* | |
386 | =item i_img_getchannels(im) | |
387 | ||
388 | Get the number of channels in I<im>. | |
389 | ||
390 | =cut | |
391 | */ | |
392 | int | |
393 | i_img_getchannels(i_img *im) { return im->channels; } | |
394 | ||
395 | ||
396 | /* | |
397 | =item i_ppix(im, x, y, col) | |
398 | ||
399 | Sets the pixel at (I<x>,I<y>) in I<im> to I<col>. | |
400 | ||
401 | Returns true if the pixel could be set, false if x or y is out of | |
402 | range. | |
403 | ||
404 | =cut | |
405 | */ | |
406 | int | |
407 | i_ppix(i_img *im,int x,int y,i_color *val) { return im->i_f_ppix(im,x,y,val); } | |
408 | ||
409 | /* | |
410 | =item i_gpix(im, x, y, &col) | |
411 | ||
412 | Get the pixel at (I<x>,I<y>) in I<im> into I<col>. | |
413 | ||
414 | Returns true if the pixel could be retrieved, false otherwise. | |
415 | ||
416 | =cut | |
417 | */ | |
418 | int | |
419 | i_gpix(i_img *im,int x,int y,i_color *val) { return im->i_f_gpix(im,x,y,val); } | |
420 | ||
421 | /* | |
422 | =item i_ppix_d(im, x, y, col) | |
423 | ||
424 | Internal function. | |
425 | ||
426 | This is the function kept in the i_f_ppix member of an i_img object. | |
427 | It does a normal store of a pixel into the image with range checking. | |
428 | ||
429 | Returns true if the pixel could be set, false otherwise. | |
430 | ||
431 | =cut | |
432 | */ | |
433 | int | |
434 | i_ppix_d(i_img *im,int x,int y,i_color *val) { | |
435 | int ch; | |
436 | ||
437 | if ( x>-1 && x<im->xsize && y>-1 && y<im->ysize ) { | |
438 | for(ch=0;ch<im->channels;ch++) | |
439 | if (im->ch_mask&(1<<ch)) | |
440 | im->data[(x+y*im->xsize)*im->channels+ch]=val->channel[ch]; | |
441 | return 0; | |
442 | } | |
443 | return -1; /* error was clipped */ | |
444 | } | |
445 | ||
446 | /* | |
447 | =item i_gpix_d(im, x, y, &col) | |
448 | ||
449 | Internal function. | |
450 | ||
451 | This is the function kept in the i_f_gpix member of an i_img object. | |
452 | It does normal retrieval of a pixel from the image with range checking. | |
453 | ||
454 | Returns true if the pixel could be set, false otherwise. | |
455 | ||
456 | =cut | |
457 | */ | |
458 | int | |
459 | i_gpix_d(i_img *im,int x,int y,i_color *val) { | |
460 | int ch; | |
461 | if (x>-1 && x<im->xsize && y>-1 && y<im->ysize) { | |
462 | for(ch=0;ch<im->channels;ch++) | |
463 | val->channel[ch]=im->data[(x+y*im->xsize)*im->channels+ch]; | |
464 | return 0; | |
465 | } | |
466 | return -1; /* error was cliped */ | |
467 | } | |
468 | ||
469 | /* | |
470 | =item i_ppix_pch(im, x, y, ch) | |
471 | ||
472 | Get the value from the channel I<ch> for pixel (I<x>,I<y>) from I<im> | |
473 | scaled to [0,1]. | |
474 | ||
475 | Returns zero if x or y is out of range. | |
476 | ||
477 | Warning: this ignores the vptr interface for images. | |
478 | ||
479 | =cut | |
480 | */ | |
481 | float | |
482 | i_gpix_pch(i_img *im,int x,int y,int ch) { | |
483 | if (x>-1 && x<im->xsize && y>-1 && y<im->ysize) return ((float)im->data[(x+y*im->xsize)*im->channels+ch]/255); | |
484 | else return 0; | |
485 | } | |
486 | ||
487 | ||
488 | /* | |
489 | =item i_copyto_trans(im, src, x1, y1, x2, y2, tx, ty, trans) | |
490 | ||
491 | (x1,y1) (x2,y2) specifies the region to copy (in the source coordinates) | |
492 | (tx,ty) specifies the upper left corner for the target image. | |
493 | pass NULL in trans for non transparent i_colors. | |
494 | ||
495 | =cut | |
496 | */ | |
497 | ||
498 | void | |
499 | i_copyto_trans(i_img *im,i_img *src,int x1,int y1,int x2,int y2,int tx,int ty,i_color *trans) { | |
500 | i_color pv; | |
501 | int x,y,t,ttx,tty,tt,ch; | |
502 | ||
503 | mm_log((1,"i_copyto_trans(im* 0x%x,src 0x%x,x1 %d,y1 %d,x2 %d,y2 %d,tx %d,ty %d,trans* 0x%x)\n",im,src,x1,y1,x2,y2,tx,ty,trans)); | |
504 | ||
505 | if (x2<x1) { t=x1; x1=x2; x2=t; } | |
506 | if (y2<y1) { t=y1; y1=y2; y2=t; } | |
507 | ||
508 | ttx=tx; | |
509 | for(x=x1;x<x2;x++) | |
510 | { | |
511 | tty=ty; | |
512 | for(y=y1;y<y2;y++) | |
513 | { | |
514 | i_gpix(src,x,y,&pv); | |
515 | if ( trans != NULL) | |
516 | { | |
517 | tt=0; | |
518 | for(ch=0;ch<im->channels;ch++) if (trans->channel[ch]!=pv.channel[ch]) tt++; | |
519 | if (tt) i_ppix(im,ttx,tty,&pv); | |
520 | } else i_ppix(im,ttx,tty,&pv); | |
521 | tty++; | |
522 | } | |
523 | ttx++; | |
524 | } | |
525 | } | |
526 | ||
527 | /* | |
528 | =item i_copyto(dest, src, x1, y1, x2, y2, tx, ty) | |
529 | ||
530 | Copies image data from the area (x1,y1)-[x2,y2] in the source image to | |
531 | a rectangle the same size with it's top-left corner at (tx,ty) in the | |
532 | destination image. | |
533 | ||
534 | If x1 > x2 or y1 > y2 then the corresponding co-ordinates are swapped. | |
535 | ||
536 | =cut | |
537 | */ | |
538 | ||
539 | void | |
540 | i_copyto(i_img *im,i_img *src,int x1,int y1,int x2,int y2,int tx,int ty) { | |
541 | i_color pv; | |
542 | int x,y,t,ttx,tty; | |
543 | ||
544 | if (x2<x1) { t=x1; x1=x2; x2=t; } | |
545 | if (y2<y1) { t=y1; y1=y2; y2=t; } | |
546 | ||
547 | mm_log((1,"i_copyto(im* 0x%x,src 0x%x,x1 %d,y1 %d,x2 %d,y2 %d,tx %d,ty %d)\n",im,src,x1,y1,x2,y2,tx,ty)); | |
548 | ||
549 | tty=ty; | |
550 | for(y=y1;y<y2;y++) { | |
551 | ttx=tx; | |
552 | for(x=x1;x<x2;x++) { | |
553 | i_gpix(src,x,y,&pv); | |
554 | i_ppix(im,ttx,tty,&pv); | |
555 | ttx++; | |
556 | } | |
557 | tty++; | |
558 | } | |
559 | } | |
560 | ||
561 | /* | |
562 | =item i_copy(im, src) | |
563 | ||
564 | Copies the contents of the image I<src> over the image I<im>. | |
565 | ||
566 | =cut | |
567 | */ | |
568 | ||
569 | void | |
570 | i_copy(i_img *im,i_img *src) { | |
571 | i_color pv; | |
572 | int x,y,y1,x1; | |
573 | ||
574 | mm_log((1,"i_copy(im* 0x%x,src 0x%x)\n",im,src)); | |
575 | ||
576 | x1=src->xsize; | |
577 | y1=src->ysize; | |
578 | i_img_empty_ch(im,x1,y1,src->channels); | |
579 | ||
580 | for(y=0;y<y1;y++) for(x=0;x<x1;x++) { | |
581 | i_gpix(src,x,y,&pv); | |
582 | i_ppix(im,x,y,&pv); | |
583 | } | |
584 | } | |
585 | ||
586 | ||
587 | /* | |
588 | =item i_rubthru(im, src, tx, ty) | |
589 | ||
590 | Takes the image I<src> and applies it at an original (I<tx>,I<ty>) in I<im>. | |
591 | ||
592 | The alpha channel of each pixel in I<src> is used to control how much | |
593 | the existing colour in I<im> is replaced, if it is 255 then the colour | |
594 | is completely replaced, if it is 0 then the original colour is left | |
595 | unmodified. | |
596 | ||
597 | =cut | |
598 | */ | |
142c26ff | 599 | |
02d1d628 AMH |
600 | void |
601 | i_rubthru(i_img *im,i_img *src,int tx,int ty) { | |
602 | i_color pv,orig,dest; | |
603 | int x,y,ttx,tty; | |
604 | ||
605 | mm_log((1,"i_rubthru(im 0x%x,src 0x%x,tx %d,ty %d)\n",im,src,tx,ty)); | |
606 | ||
607 | if (im->channels != 3) { fprintf(stderr,"Destination is not in rgb mode.\n"); exit(3); } | |
608 | if (src->channels != 4) { fprintf(stderr,"Source is not in rgba mode.\n"); exit(3); } | |
609 | ||
610 | ttx=tx; | |
611 | for(x=0;x<src->xsize;x++) | |
612 | { | |
613 | tty=ty; | |
614 | for(y=0;y<src->ysize;y++) | |
615 | { | |
616 | /* fprintf(stderr,"reading (%d,%d) writing (%d,%d).\n",x,y,ttx,tty); */ | |
617 | i_gpix(src,x,y,&pv); | |
618 | i_gpix(im,ttx,tty,&orig); | |
619 | dest.rgb.r=(pv.rgba.a*pv.rgba.r+(255-pv.rgba.a)*orig.rgb.r)/255; | |
620 | dest.rgb.g=(pv.rgba.a*pv.rgba.g+(255-pv.rgba.a)*orig.rgb.g)/255; | |
621 | dest.rgb.b=(pv.rgba.a*pv.rgba.b+(255-pv.rgba.a)*orig.rgb.b)/255; | |
622 | i_ppix(im,ttx,tty,&dest); | |
623 | tty++; | |
624 | } | |
625 | ttx++; | |
626 | } | |
627 | } | |
628 | ||
142c26ff AMH |
629 | |
630 | /* | |
631 | =item i_flipxy(im, axis) | |
632 | ||
633 | Flips the image inplace around the axis specified. | |
634 | Returns 0 if parameters are invalid. | |
635 | ||
636 | im - Image pointer | |
637 | axis - 0 = x, 1 = y, 2 = both | |
638 | ||
639 | =cut | |
640 | */ | |
641 | ||
642 | undef_int | |
643 | i_flipxy(i_img *im, int direction) { | |
644 | int x, x2, y, y2, xm, ym; | |
645 | int xs = im->xsize; | |
646 | int ys = im->ysize; | |
647 | ||
648 | mm_log((1, "i_flipxy(im %p, direction %d)\n", im, direction )); | |
649 | ||
650 | if (!im) return 0; | |
651 | ||
652 | switch (direction) { | |
653 | case XAXIS: /* Horizontal flip */ | |
654 | xm = xs/2; | |
655 | ym = ys; | |
656 | for(y=0; y<ym; y++) { | |
657 | x2 = xs-1; | |
658 | for(x=0; x<xm; x++) { | |
659 | i_color val1, val2; | |
660 | i_gpix(im, x, y, &val1); | |
661 | i_gpix(im, x2, y, &val2); | |
662 | i_ppix(im, x, y, &val2); | |
663 | i_ppix(im, x2, y, &val1); | |
664 | x2--; | |
665 | } | |
666 | } | |
667 | break; | |
668 | case YAXIS: | |
669 | xm = xs; | |
670 | ym = ys/2; | |
671 | y2 = ys-1; | |
672 | for(y=0; y<ym; y++) { | |
673 | for(x=0; x<xm; x++) { | |
674 | i_color val1, val2; | |
675 | i_gpix(im, x, y, &val1); | |
676 | i_gpix(im, x, y2, &val2); | |
677 | i_ppix(im, x, y, &val2); | |
678 | i_ppix(im, x, y2, &val1); | |
679 | } | |
680 | y2--; | |
681 | } | |
682 | break; | |
683 | case XYAXIS: | |
684 | xm = xs/2; | |
685 | ym = ys/2; | |
686 | y2 = ys-1; | |
687 | for(y=0; y<ym; y++) { | |
688 | x2 = xs-1; | |
689 | for(x=0; x<xm; x++) { | |
690 | i_color val1, val2; | |
691 | i_gpix(im, x, y, &val1); | |
692 | i_gpix(im, x2, y2, &val2); | |
693 | i_ppix(im, x, y, &val2); | |
694 | i_ppix(im, x2, y2, &val1); | |
695 | ||
696 | i_gpix(im, x2, y, &val1); | |
697 | i_gpix(im, x, y2, &val2); | |
698 | i_ppix(im, x2, y, &val2); | |
699 | i_ppix(im, x, y2, &val1); | |
700 | x2--; | |
701 | } | |
702 | y2--; | |
703 | } | |
704 | break; | |
705 | default: | |
706 | mm_log((1, "i_flipxy: direction is invalid\n" )); | |
707 | return 0; | |
708 | } | |
709 | return 1; | |
710 | } | |
711 | ||
712 | ||
713 | ||
714 | ||
715 | ||
716 | static | |
02d1d628 AMH |
717 | float |
718 | Lanczos(float x) { | |
719 | float PIx, PIx2; | |
720 | ||
721 | PIx = PI * x; | |
722 | PIx2 = PIx / 2.0; | |
723 | ||
724 | if ((x >= 2.0) || (x <= -2.0)) return (0.0); | |
725 | else if (x == 0.0) return (1.0); | |
726 | else return(sin(PIx) / PIx * sin(PIx2) / PIx2); | |
727 | } | |
728 | ||
729 | /* | |
730 | =item i_scaleaxis(im, value, axis) | |
731 | ||
732 | Returns a new image object which is I<im> scaled by I<value> along | |
733 | wither the x-axis (I<axis> == 0) or the y-axis (I<axis> == 1). | |
734 | ||
735 | =cut | |
736 | */ | |
737 | ||
738 | i_img* | |
739 | i_scaleaxis(i_img *im, float Value, int Axis) { | |
740 | int hsize, vsize, i, j, k, l, lMax, iEnd, jEnd; | |
741 | int LanczosWidthFactor; | |
742 | float *l0, *l1, OldLocation; | |
743 | int T, TempJump1, TempJump2; | |
744 | float F, PictureValue[MAXCHANNELS]; | |
745 | short psave; | |
746 | i_color val,val1,val2; | |
747 | i_img *new_img; | |
748 | ||
749 | mm_log((1,"i_scaleaxis(im 0x%x,Value %.2f,Axis %d)\n",im,Value,Axis)); | |
750 | ||
751 | if (Axis == XAXIS) { | |
752 | hsize = (int) ((float) im->xsize * Value); | |
753 | vsize = im->ysize; | |
754 | ||
755 | jEnd = hsize; | |
756 | iEnd = vsize; | |
757 | ||
758 | TempJump1 = (hsize - 1) * 3; | |
759 | TempJump2 = hsize * (vsize - 1) * 3 + TempJump1; | |
760 | } else { | |
761 | hsize = im->xsize; | |
762 | vsize = (int) ((float) im->ysize * Value); | |
763 | ||
764 | jEnd = vsize; | |
765 | iEnd = hsize; | |
766 | ||
767 | TempJump1 = 0; | |
768 | TempJump2 = 0; | |
769 | } | |
770 | ||
771 | new_img=i_img_empty_ch(NULL,hsize,vsize,im->channels); | |
772 | ||
773 | if (Value >=1) LanczosWidthFactor = 1; | |
774 | else LanczosWidthFactor = (int) (1.0/Value); | |
775 | ||
776 | lMax = LanczosWidthFactor << 1; | |
777 | ||
778 | l0 = (float *) mymalloc(lMax * sizeof(float)); | |
779 | l1 = (float *) mymalloc(lMax * sizeof(float)); | |
780 | ||
781 | for (j=0; j<jEnd; j++) { | |
782 | OldLocation = ((float) j) / Value; | |
783 | T = (int) (OldLocation); | |
784 | F = OldLocation - (float) T; | |
785 | ||
786 | for (l = 0; l < lMax; l++) { | |
787 | l0[lMax-l-1] = Lanczos(((float) (lMax-l-1) + F) / (float) LanczosWidthFactor); | |
788 | l1[l] = Lanczos(((float) (l + 1) - F) / (float) LanczosWidthFactor); | |
789 | } | |
790 | ||
791 | if (Axis== XAXIS) { | |
792 | ||
793 | for (i=0; i<iEnd; i++) { | |
794 | for (k=0; k<im->channels; k++) PictureValue[k] = 0.0; | |
795 | for (l=0; l < lMax; l++) { | |
796 | i_gpix(im,T+l+1, i, &val1); | |
797 | i_gpix(im,T-lMax+l+1, i, &val2); | |
798 | for (k=0; k<im->channels; k++) { | |
799 | PictureValue[k] += l1[l] * val1.channel[k]; | |
800 | PictureValue[k] += l0[lMax-l-1] * val2.channel[k]; | |
801 | } | |
802 | } | |
803 | for(k=0;k<im->channels;k++) { | |
804 | psave = (short)( PictureValue[k] / LanczosWidthFactor); | |
805 | val.channel[k]=minmax(0,255,psave); | |
806 | } | |
807 | i_ppix(new_img,j,i,&val); | |
808 | } | |
809 | ||
810 | } else { | |
811 | ||
812 | for (i=0; i<iEnd; i++) { | |
813 | for (k=0; k<im->channels; k++) PictureValue[k] = 0.0; | |
814 | for (l=0; l < lMax; l++) { | |
815 | i_gpix(im,i, T+l+1, &val1); | |
816 | i_gpix(im,i, T-lMax+l+1, &val2); | |
817 | for (k=0; k<im->channels; k++) { | |
818 | PictureValue[k] += l1[l] * val1.channel[k]; | |
819 | PictureValue[k] += l0[lMax-l-1] * val2.channel[k]; | |
820 | } | |
821 | } | |
822 | for (k=0; k<im->channels; k++) { | |
823 | psave = (short)( PictureValue[k] / LanczosWidthFactor); | |
824 | val.channel[k]=minmax(0,255,psave); | |
825 | } | |
826 | i_ppix(new_img,i,j,&val); | |
827 | } | |
828 | ||
829 | } | |
830 | } | |
831 | myfree(l0); | |
832 | myfree(l1); | |
833 | ||
834 | mm_log((1,"(0x%x) <- i_scaleaxis\n",new_img)); | |
835 | ||
836 | return new_img; | |
837 | } | |
838 | ||
839 | ||
840 | /* | |
841 | =item i_scale_nn(im, scx, scy) | |
842 | ||
843 | Scale by using nearest neighbor | |
844 | Both axes scaled at the same time since | |
845 | nothing is gained by doing it in two steps | |
846 | ||
847 | =cut | |
848 | */ | |
849 | ||
850 | ||
851 | i_img* | |
852 | i_scale_nn(i_img *im, float scx, float scy) { | |
853 | ||
854 | int nxsize,nysize,nx,ny; | |
855 | i_img *new_img; | |
856 | i_color val; | |
857 | ||
858 | mm_log((1,"i_scale_nn(im 0x%x,scx %.2f,scy %.2f)\n",im,scx,scy)); | |
859 | ||
860 | nxsize = (int) ((float) im->xsize * scx); | |
861 | nysize = (int) ((float) im->ysize * scy); | |
862 | ||
863 | new_img=i_img_empty_ch(NULL,nxsize,nysize,im->channels); | |
864 | ||
865 | for(ny=0;ny<nysize;ny++) for(nx=0;nx<nxsize;nx++) { | |
866 | i_gpix(im,((float)nx)/scx,((float)ny)/scy,&val); | |
867 | i_ppix(new_img,nx,ny,&val); | |
868 | } | |
869 | ||
870 | mm_log((1,"(0x%x) <- i_scale_nn\n",new_img)); | |
871 | ||
872 | return new_img; | |
873 | } | |
874 | ||
875 | ||
876 | /* | |
877 | =item i_transform(im, opx, opxl, opy, opyl, parm, parmlen) | |
878 | ||
879 | Spatially transforms I<im> returning a new image. | |
880 | ||
881 | opx for a length of opxl and opy for a length of opy are arrays of | |
882 | operators that modify the x and y positions to retreive the pixel data from. | |
883 | ||
884 | parm and parmlen define extra parameters that the operators may use. | |
885 | ||
886 | Note that this function is largely superseded by the more flexible | |
887 | L<transform.c/i_transform2>. | |
888 | ||
889 | Returns the new image. | |
890 | ||
891 | The operators for this function are defined in L<stackmach.c>. | |
892 | ||
893 | =cut | |
894 | */ | |
895 | i_img* | |
896 | i_transform(i_img *im, int *opx,int opxl,int *opy,int opyl,double parm[],int parmlen) { | |
897 | double rx,ry; | |
898 | int nxsize,nysize,nx,ny; | |
899 | i_img *new_img; | |
900 | i_color val; | |
901 | ||
902 | mm_log((1,"i_transform(im 0x%x, opx 0x%x, opxl %d, opy 0x%x, opyl %d, parm 0x%x, parmlen %d)\n",im,opx,opxl,opy,opyl,parm,parmlen)); | |
903 | ||
904 | nxsize = im->xsize; | |
905 | nysize = im->ysize ; | |
906 | ||
907 | new_img=i_img_empty_ch(NULL,nxsize,nysize,im->channels); | |
908 | /* fprintf(stderr,"parm[2]=%f\n",parm[2]); */ | |
909 | for(ny=0;ny<nysize;ny++) for(nx=0;nx<nxsize;nx++) { | |
910 | /* parm[parmlen-2]=(double)nx; | |
911 | parm[parmlen-1]=(double)ny; */ | |
912 | ||
913 | parm[0]=(double)nx; | |
914 | parm[1]=(double)ny; | |
915 | ||
916 | /* fprintf(stderr,"(%d,%d) ->",nx,ny); */ | |
917 | rx=op_run(opx,opxl,parm,parmlen); | |
918 | ry=op_run(opy,opyl,parm,parmlen); | |
919 | /* fprintf(stderr,"(%f,%f)\n",rx,ry); */ | |
920 | i_gpix(im,rx,ry,&val); | |
921 | i_ppix(new_img,nx,ny,&val); | |
922 | } | |
923 | ||
924 | mm_log((1,"(0x%x) <- i_transform\n",new_img)); | |
925 | return new_img; | |
926 | } | |
927 | ||
928 | /* | |
929 | =item i_img_diff(im1, im2) | |
930 | ||
931 | Calculates the sum of the squares of the differences between | |
932 | correspoding channels in two images. | |
933 | ||
934 | If the images are not the same size then only the common area is | |
935 | compared, hence even if images are different sizes this function | |
936 | can return zero. | |
937 | ||
938 | =cut | |
939 | */ | |
940 | float | |
941 | i_img_diff(i_img *im1,i_img *im2) { | |
942 | int x,y,ch,xb,yb,chb; | |
943 | float tdiff; | |
944 | i_color val1,val2; | |
945 | ||
946 | mm_log((1,"i_img_diff(im1 0x%x,im2 0x%x)\n",im1,im2)); | |
947 | ||
948 | xb=(im1->xsize<im2->xsize)?im1->xsize:im2->xsize; | |
949 | yb=(im1->ysize<im2->ysize)?im1->ysize:im2->ysize; | |
950 | chb=(im1->channels<im2->channels)?im1->channels:im2->channels; | |
951 | ||
952 | mm_log((1,"i_img_diff: xb=%d xy=%d chb=%d\n",xb,yb,chb)); | |
953 | ||
954 | tdiff=0; | |
955 | for(y=0;y<yb;y++) for(x=0;x<xb;x++) { | |
956 | i_gpix(im1,x,y,&val1); | |
957 | i_gpix(im2,x,y,&val2); | |
958 | ||
959 | for(ch=0;ch<chb;ch++) tdiff+=(val1.channel[ch]-val2.channel[ch])*(val1.channel[ch]-val2.channel[ch]); | |
960 | } | |
961 | mm_log((1,"i_img_diff <- (%.2f)\n",tdiff)); | |
962 | return tdiff; | |
963 | } | |
964 | ||
965 | /* just a tiny demo of haar wavelets */ | |
966 | ||
967 | i_img* | |
968 | i_haar(i_img *im) { | |
969 | int mx,my; | |
970 | int fx,fy; | |
971 | int x,y; | |
972 | int ch,c; | |
973 | i_img *new_img,*new_img2; | |
974 | i_color val1,val2,dval1,dval2; | |
975 | ||
976 | mx=im->xsize; | |
977 | my=im->ysize; | |
978 | fx=(mx+1)/2; | |
979 | fy=(my+1)/2; | |
980 | ||
981 | ||
982 | /* horizontal pass */ | |
983 | ||
984 | new_img=i_img_empty_ch(NULL,fx*2,fy*2,im->channels); | |
985 | new_img2=i_img_empty_ch(NULL,fx*2,fy*2,im->channels); | |
986 | ||
987 | c=0; | |
988 | for(y=0;y<my;y++) for(x=0;x<fx;x++) { | |
989 | i_gpix(im,x*2,y,&val1); | |
990 | i_gpix(im,x*2+1,y,&val2); | |
991 | for(ch=0;ch<im->channels;ch++) { | |
992 | dval1.channel[ch]=(val1.channel[ch]+val2.channel[ch])/2; | |
993 | dval2.channel[ch]=(255+val1.channel[ch]-val2.channel[ch])/2; | |
994 | } | |
995 | i_ppix(new_img,x,y,&dval1); | |
996 | i_ppix(new_img,x+fx,y,&dval2); | |
997 | } | |
998 | ||
999 | for(y=0;y<fy;y++) for(x=0;x<mx;x++) { | |
1000 | i_gpix(new_img,x,y*2,&val1); | |
1001 | i_gpix(new_img,x,y*2+1,&val2); | |
1002 | for(ch=0;ch<im->channels;ch++) { | |
1003 | dval1.channel[ch]=(val1.channel[ch]+val2.channel[ch])/2; | |
1004 | dval2.channel[ch]=(255+val1.channel[ch]-val2.channel[ch])/2; | |
1005 | } | |
1006 | i_ppix(new_img2,x,y,&dval1); | |
1007 | i_ppix(new_img2,x,y+fy,&dval2); | |
1008 | } | |
1009 | ||
1010 | i_img_destroy(new_img); | |
1011 | return new_img2; | |
1012 | } | |
1013 | ||
1014 | /* | |
1015 | =item i_count_colors(im, maxc) | |
1016 | ||
1017 | returns number of colors or -1 | |
1018 | to indicate that it was more than max colors | |
1019 | ||
1020 | =cut | |
1021 | */ | |
1022 | int | |
1023 | i_count_colors(i_img *im,int maxc) { | |
1024 | struct octt *ct; | |
1025 | int x,y; | |
1026 | int xsize,ysize; | |
1027 | i_color val; | |
1028 | int colorcnt; | |
1029 | ||
1030 | mm_log((1,"i_count_colors(im 0x%08X,maxc %d)\n")); | |
1031 | ||
1032 | xsize=im->xsize; | |
1033 | ysize=im->ysize; | |
1034 | ct=octt_new(); | |
1035 | ||
1036 | colorcnt=0; | |
1037 | for(y=0;y<ysize;y++) for(x=0;x<xsize;x++) { | |
1038 | i_gpix(im,x,y,&val); | |
1039 | colorcnt+=octt_add(ct,val.rgb.r,val.rgb.g,val.rgb.b); | |
1040 | if (colorcnt > maxc) { octt_delete(ct); return -1; } | |
1041 | } | |
1042 | octt_delete(ct); | |
1043 | return colorcnt; | |
1044 | } | |
1045 | ||
1046 | ||
1047 | symbol_table_t symbol_table={i_has_format,ICL_set_internal,ICL_info, | |
1048 | i_img_new,i_img_empty,i_img_empty_ch,i_img_exorcise, | |
1049 | i_img_info,i_img_setmask,i_img_getmask,i_ppix,i_gpix, | |
1050 | i_box,i_draw,i_arc,i_copyto,i_copyto_trans,i_rubthru}; | |
1051 | ||
1052 | ||
1053 | /* | |
1054 | =item i_gen_reader(i_gen_read_data *info, char *buf, int length) | |
1055 | ||
1056 | Performs general read buffering for file readers that permit reading | |
1057 | to be done through a callback. | |
1058 | ||
1059 | The final callback gets two parameters, a I<need> value, and a I<want> | |
1060 | value, where I<need> is the amount of data that the file library needs | |
1061 | to read, and I<want> is the amount of space available in the buffer | |
1062 | maintained by these functions. | |
1063 | ||
1064 | This means if you need to read from a stream that you don't know the | |
1065 | length of, you can return I<need> bytes, taking the performance hit of | |
1066 | possibly expensive callbacks (eg. back to perl code), or if you are | |
1067 | reading from a stream where it doesn't matter if some data is lost, or | |
1068 | if the total length of the stream is known, you can return I<want> | |
1069 | bytes. | |
1070 | ||
1071 | =cut | |
1072 | */ | |
1073 | ||
1074 | int | |
1075 | i_gen_reader(i_gen_read_data *gci, char *buf, int length) { | |
1076 | int total; | |
1077 | ||
1078 | if (length < gci->length - gci->cpos) { | |
1079 | /* simplest case */ | |
1080 | memcpy(buf, gci->buffer+gci->cpos, length); | |
1081 | gci->cpos += length; | |
1082 | return length; | |
1083 | } | |
1084 | ||
1085 | total = 0; | |
1086 | memcpy(buf, gci->buffer+gci->cpos, gci->length-gci->cpos); | |
1087 | total += gci->length - gci->cpos; | |
1088 | length -= gci->length - gci->cpos; | |
1089 | buf += gci->length - gci->cpos; | |
1090 | if (length < (int)sizeof(gci->buffer)) { | |
1091 | int did_read; | |
1092 | int copy_size; | |
1093 | while (length | |
1094 | && (did_read = (gci->cb)(gci->userdata, gci->buffer, length, | |
1095 | sizeof(gci->buffer))) > 0) { | |
1096 | gci->cpos = 0; | |
1097 | gci->length = did_read; | |
1098 | ||
1099 | copy_size = min(length, gci->length); | |
1100 | memcpy(buf, gci->buffer, copy_size); | |
1101 | gci->cpos += copy_size; | |
1102 | buf += copy_size; | |
1103 | total += copy_size; | |
1104 | length -= copy_size; | |
1105 | } | |
1106 | } | |
1107 | else { | |
1108 | /* just read the rest - too big for our buffer*/ | |
1109 | int did_read; | |
1110 | while ((did_read = (gci->cb)(gci->userdata, buf, length, length)) > 0) { | |
1111 | length -= did_read; | |
1112 | total += did_read; | |
1113 | buf += did_read; | |
1114 | } | |
1115 | } | |
1116 | return total; | |
1117 | } | |
1118 | ||
1119 | /* | |
1120 | =item i_gen_read_data_new(i_read_callback_t cb, char *userdata) | |
1121 | ||
1122 | For use by callback file readers to initialize the reader buffer. | |
1123 | ||
1124 | Allocates, initializes and returns the reader buffer. | |
1125 | ||
1126 | See also L<image.c/free_gen_read_data> and L<image.c/i_gen_reader>. | |
1127 | ||
1128 | =cut | |
1129 | */ | |
1130 | i_gen_read_data * | |
1131 | i_gen_read_data_new(i_read_callback_t cb, char *userdata) { | |
1132 | i_gen_read_data *self = mymalloc(sizeof(i_gen_read_data)); | |
1133 | self->cb = cb; | |
1134 | self->userdata = userdata; | |
1135 | self->length = 0; | |
1136 | self->cpos = 0; | |
1137 | ||
1138 | return self; | |
1139 | } | |
1140 | ||
1141 | /* | |
1142 | =item free_gen_read_data(i_gen_read_data *) | |
1143 | ||
1144 | Cleans up. | |
1145 | ||
1146 | =cut | |
1147 | */ | |
1148 | void free_gen_read_data(i_gen_read_data *self) { | |
1149 | myfree(self); | |
1150 | } | |
1151 | ||
1152 | /* | |
1153 | =item i_gen_writer(i_gen_write_data *info, char const *data, int size) | |
1154 | ||
1155 | Performs write buffering for a callback based file writer. | |
1156 | ||
1157 | Failures are considered fatal, if a write fails then data will be | |
1158 | dropped. | |
1159 | ||
1160 | =cut | |
1161 | */ | |
1162 | int | |
1163 | i_gen_writer( | |
1164 | i_gen_write_data *self, | |
1165 | char const *data, | |
1166 | int size) | |
1167 | { | |
1168 | if (self->filledto && self->filledto+size > self->maxlength) { | |
1169 | if (self->cb(self->userdata, self->buffer, self->filledto)) { | |
1170 | self->filledto = 0; | |
1171 | } | |
1172 | else { | |
1173 | self->filledto = 0; | |
1174 | return 0; | |
1175 | } | |
1176 | } | |
1177 | if (self->filledto+size <= self->maxlength) { | |
1178 | /* just save it */ | |
1179 | memcpy(self->buffer+self->filledto, data, size); | |
1180 | self->filledto += size; | |
1181 | return 1; | |
1182 | } | |
1183 | /* doesn't fit - hand it off */ | |
1184 | return self->cb(self->userdata, data, size); | |
1185 | } | |
1186 | ||
1187 | /* | |
1188 | =item i_gen_write_data_new(i_write_callback_t cb, char *userdata, int max_length) | |
1189 | ||
1190 | Allocates and initializes the data structure used by i_gen_writer. | |
1191 | ||
1192 | This should be released with L<image.c/free_gen_write_data> | |
1193 | ||
1194 | =cut | |
1195 | */ | |
1196 | i_gen_write_data *i_gen_write_data_new(i_write_callback_t cb, | |
1197 | char *userdata, int max_length) | |
1198 | { | |
1199 | i_gen_write_data *self = mymalloc(sizeof(i_gen_write_data)); | |
1200 | self->cb = cb; | |
1201 | self->userdata = userdata; | |
1202 | self->maxlength = min(max_length, sizeof(self->buffer)); | |
1203 | if (self->maxlength < 0) | |
1204 | self->maxlength = sizeof(self->buffer); | |
1205 | self->filledto = 0; | |
1206 | ||
1207 | return self; | |
1208 | } | |
1209 | ||
1210 | /* | |
1211 | =item free_gen_write_data(i_gen_write_data *info, int flush) | |
1212 | ||
1213 | Cleans up the write buffer. | |
1214 | ||
1215 | Will flush any left-over data if I<flush> is non-zero. | |
1216 | ||
1217 | Returns non-zero if flush is zero or if info->cb() returns non-zero. | |
1218 | ||
1219 | Return zero only if flush is non-zero and info->cb() returns zero. | |
1220 | ie. if it fails. | |
1221 | ||
1222 | =cut | |
1223 | */ | |
1224 | ||
1225 | int free_gen_write_data(i_gen_write_data *info, int flush) | |
1226 | { | |
1227 | int result = !flush || | |
1228 | info->filledto == 0 || | |
1229 | info->cb(info->userdata, info->buffer, info->filledto); | |
1230 | myfree(info); | |
1231 | ||
1232 | return result; | |
1233 | } | |
1234 | ||
1235 | /* | |
1236 | =back | |
1237 | ||
1238 | =head1 SEE ALSO | |
1239 | ||
1240 | L<Imager>, L<gif.c> | |
1241 | ||
1242 | =cut | |
1243 | */ |