]>
Commit | Line | Data |
---|---|---|
696cb85d TC |
1 | #define IMAGER_NO_CONTEXT |
2 | ||
92bda632 TC |
3 | #include "imager.h" |
4 | #include "imageri.h" | |
02d1d628 AMH |
5 | |
6 | /* | |
7 | =head1 NAME | |
8 | ||
9 | image.c - implements most of the basic functions of Imager and much of the rest | |
10 | ||
11 | =head1 SYNOPSIS | |
12 | ||
13 | i_img *i; | |
14 | i_color *c; | |
15 | c = i_color_new(red, green, blue, alpha); | |
16 | ICL_DESTROY(c); | |
3c5a01b3 | 17 | i = i_img_8_new(); |
02d1d628 AMH |
18 | i_img_destroy(i); |
19 | // and much more | |
20 | ||
21 | =head1 DESCRIPTION | |
22 | ||
23 | image.c implements the basic functions to create and destroy image and | |
24 | color objects for Imager. | |
25 | ||
26 | =head1 FUNCTION REFERENCE | |
27 | ||
28 | Some of these functions are internal. | |
29 | ||
b8c2033e | 30 | =over |
02d1d628 AMH |
31 | |
32 | =cut | |
33 | */ | |
34 | ||
44d86483 TC |
35 | im_context_t (*im_get_context)(void) = NULL; |
36 | ||
02d1d628 AMH |
37 | #define XAXIS 0 |
38 | #define YAXIS 1 | |
142c26ff | 39 | #define XYAXIS 2 |
02d1d628 AMH |
40 | |
41 | #define minmax(a,b,i) ( ((a>=i)?a: ( (b<=i)?b:i )) ) | |
42 | ||
43 | /* Hack around an obscure linker bug on solaris - probably due to builtin gcc thingies */ | |
8d14daab | 44 | void i_linker_bug_fake(void) { ceil(1); } |
faa9b3e7 | 45 | |
bd8052a6 | 46 | /* |
abffffed TC |
47 | =item im_img_alloc(aIMCTX) |
48 | X<im_img_alloc API>X<i_img_alloc API> | |
bd8052a6 | 49 | =category Image Implementation |
abffffed TC |
50 | =synopsis i_img *im = im_img_alloc(aIMCTX); |
51 | =synopsis i_img *im = i_img_alloc(); | |
bd8052a6 TC |
52 | |
53 | Allocates a new i_img structure. | |
54 | ||
55 | When implementing a new image type perform the following steps in your | |
56 | image object creation function: | |
57 | ||
58 | =over | |
59 | ||
60 | =item 1. | |
61 | ||
62 | allocate the image with i_img_alloc(). | |
63 | ||
64 | =item 2. | |
65 | ||
66 | initialize any function pointers or other data as needed, you can | |
67 | overwrite the whole block if you need to. | |
68 | ||
69 | =item 3. | |
70 | ||
71 | initialize Imager's internal data by calling i_img_init() on the image | |
72 | object. | |
73 | ||
74 | =back | |
75 | ||
76 | =cut | |
77 | */ | |
78 | ||
79 | i_img * | |
696cb85d | 80 | im_img_alloc(pIMCTX) { |
bd8052a6 TC |
81 | return mymalloc(sizeof(i_img)); |
82 | } | |
83 | ||
84 | /* | |
abffffed TC |
85 | =item im_img_init(aIMCTX, image) |
86 | X<im_img_init API>X<i_img_init API> | |
bd8052a6 | 87 | =category Image Implementation |
abffffed TC |
88 | =synopsis im_img_init(aIMCTX, im); |
89 | =synopsis i_img_init(im); | |
bd8052a6 | 90 | |
5715f7c3 | 91 | Imager internal initialization of images. |
bd8052a6 | 92 | |
abffffed | 93 | See L</im_img_alloc(aIMCTX)> for more information. |
bd8052a6 TC |
94 | |
95 | =cut | |
96 | */ | |
97 | ||
98 | void | |
696cb85d | 99 | im_img_init(pIMCTX, i_img *img) { |
bd8052a6 | 100 | img->im_data = NULL; |
696cb85d | 101 | img->context = aIMCTX; |
31a13473 | 102 | im_context_refinc(aIMCTX, "img_init"); |
bd8052a6 | 103 | } |
02d1d628 AMH |
104 | |
105 | /* | |
106 | =item ICL_new_internal(r, g, b, a) | |
107 | ||
108 | Return a new color object with values passed to it. | |
109 | ||
110 | r - red component (range: 0 - 255) | |
111 | g - green component (range: 0 - 255) | |
112 | b - blue component (range: 0 - 255) | |
113 | a - alpha component (range: 0 - 255) | |
114 | ||
115 | =cut | |
116 | */ | |
117 | ||
118 | i_color * | |
119 | ICL_new_internal(unsigned char r,unsigned char g,unsigned char b,unsigned char a) { | |
4cac9410 | 120 | i_color *cl = NULL; |
23d3b73e | 121 | dIMCTX; |
02d1d628 | 122 | |
23d3b73e | 123 | im_log((aIMCTX,1,"ICL_new_internal(r %d,g %d,b %d,a %d)\n", r, g, b, a)); |
02d1d628 | 124 | |
8ebac85f | 125 | if ( (cl=mymalloc(sizeof(i_color))) == NULL) im_fatal(aIMCTX, 2,"malloc() error\n"); |
4cac9410 AMH |
126 | cl->rgba.r = r; |
127 | cl->rgba.g = g; | |
128 | cl->rgba.b = b; | |
129 | cl->rgba.a = a; | |
23d3b73e | 130 | im_log((aIMCTX,1,"(%p) <- ICL_new_internal\n",cl)); |
02d1d628 AMH |
131 | return cl; |
132 | } | |
133 | ||
134 | ||
135 | /* | |
136 | =item ICL_set_internal(cl, r, g, b, a) | |
137 | ||
138 | Overwrite a color with new values. | |
139 | ||
140 | cl - pointer to color object | |
141 | r - red component (range: 0 - 255) | |
142 | g - green component (range: 0 - 255) | |
143 | b - blue component (range: 0 - 255) | |
144 | a - alpha component (range: 0 - 255) | |
145 | ||
146 | =cut | |
147 | */ | |
148 | ||
149 | i_color * | |
150 | ICL_set_internal(i_color *cl,unsigned char r,unsigned char g,unsigned char b,unsigned char a) { | |
23d3b73e TC |
151 | dIMCTX; |
152 | im_log((aIMCTX,1,"ICL_set_internal(cl* %p,r %d,g %d,b %d,a %d)\n",cl,r,g,b,a)); | |
02d1d628 AMH |
153 | if (cl == NULL) |
154 | if ( (cl=mymalloc(sizeof(i_color))) == NULL) | |
8ebac85f | 155 | im_fatal(aIMCTX, 2,"malloc() error\n"); |
02d1d628 AMH |
156 | cl->rgba.r=r; |
157 | cl->rgba.g=g; | |
158 | cl->rgba.b=b; | |
159 | cl->rgba.a=a; | |
23d3b73e | 160 | im_log((aIMCTX,1,"(%p) <- ICL_set_internal\n",cl)); |
02d1d628 AMH |
161 | return cl; |
162 | } | |
163 | ||
164 | ||
165 | /* | |
166 | =item ICL_add(dst, src, ch) | |
167 | ||
168 | Add src to dst inplace - dst is modified. | |
169 | ||
170 | dst - pointer to destination color object | |
171 | src - pointer to color object that is added | |
172 | ch - number of channels | |
173 | ||
174 | =cut | |
175 | */ | |
176 | ||
177 | void | |
178 | ICL_add(i_color *dst,i_color *src,int ch) { | |
179 | int tmp,i; | |
180 | for(i=0;i<ch;i++) { | |
181 | tmp=dst->channel[i]+src->channel[i]; | |
182 | dst->channel[i]= tmp>255 ? 255:tmp; | |
183 | } | |
184 | } | |
185 | ||
186 | /* | |
187 | =item ICL_info(cl) | |
188 | ||
189 | Dump color information to log - strictly for debugging. | |
190 | ||
191 | cl - pointer to color object | |
192 | ||
193 | =cut | |
194 | */ | |
195 | ||
196 | void | |
97ac0a96 | 197 | ICL_info(i_color const *cl) { |
23d3b73e TC |
198 | dIMCTX; |
199 | im_log((aIMCTX, 1,"i_color_info(cl* %p)\n",cl)); | |
200 | im_log((aIMCTX, 1,"i_color_info: (%d,%d,%d,%d)\n",cl->rgba.r,cl->rgba.g,cl->rgba.b,cl->rgba.a)); | |
02d1d628 AMH |
201 | } |
202 | ||
203 | /* | |
204 | =item ICL_DESTROY | |
205 | ||
206 | Destroy ancillary data for Color object. | |
207 | ||
208 | cl - pointer to color object | |
209 | ||
210 | =cut | |
211 | */ | |
212 | ||
213 | void | |
214 | ICL_DESTROY(i_color *cl) { | |
23d3b73e TC |
215 | dIMCTX; |
216 | im_log((aIMCTX, 1,"ICL_DESTROY(cl* %p)\n",cl)); | |
02d1d628 AMH |
217 | myfree(cl); |
218 | } | |
219 | ||
faa9b3e7 TC |
220 | /* |
221 | =item i_fcolor_new(double r, double g, double b, double a) | |
222 | ||
223 | =cut | |
224 | */ | |
225 | i_fcolor *i_fcolor_new(double r, double g, double b, double a) { | |
226 | i_fcolor *cl = NULL; | |
23d3b73e | 227 | dIMCTX; |
faa9b3e7 | 228 | |
23d3b73e | 229 | im_log((aIMCTX, 1,"i_fcolor_new(r %g,g %g,b %g,a %g)\n", r, g, b, a)); |
faa9b3e7 | 230 | |
8ebac85f | 231 | if ( (cl=mymalloc(sizeof(i_fcolor))) == NULL) im_fatal(aIMCTX, 2,"malloc() error\n"); |
faa9b3e7 TC |
232 | cl->rgba.r = r; |
233 | cl->rgba.g = g; | |
234 | cl->rgba.b = b; | |
235 | cl->rgba.a = a; | |
23d3b73e | 236 | im_log((aIMCTX, 1,"(%p) <- i_fcolor_new\n",cl)); |
faa9b3e7 TC |
237 | |
238 | return cl; | |
239 | } | |
240 | ||
241 | /* | |
242 | =item i_fcolor_destroy(i_fcolor *cl) | |
243 | ||
244 | =cut | |
245 | */ | |
246 | void i_fcolor_destroy(i_fcolor *cl) { | |
247 | myfree(cl); | |
248 | } | |
249 | ||
02d1d628 AMH |
250 | /* |
251 | =item i_img_exorcise(im) | |
252 | ||
253 | Free image data. | |
254 | ||
255 | im - Image pointer | |
256 | ||
257 | =cut | |
258 | */ | |
259 | ||
260 | void | |
261 | i_img_exorcise(i_img *im) { | |
23d3b73e TC |
262 | dIMCTXim(im); |
263 | im_log((aIMCTX,1,"i_img_exorcise(im* %p)\n",im)); | |
faa9b3e7 TC |
264 | i_tags_destroy(&im->tags); |
265 | if (im->i_f_destroy) | |
266 | (im->i_f_destroy)(im); | |
267 | if (im->idata != NULL) { myfree(im->idata); } | |
268 | im->idata = NULL; | |
4cac9410 AMH |
269 | im->xsize = 0; |
270 | im->ysize = 0; | |
271 | im->channels = 0; | |
02d1d628 | 272 | |
02d1d628 AMH |
273 | im->ext_data=NULL; |
274 | } | |
275 | ||
276 | /* | |
5715f7c3 | 277 | =item i_img_destroy(C<img>) |
6cfee9d1 | 278 | =order 90 |
9167a5c6 TC |
279 | =category Image creation/destruction |
280 | =synopsis i_img_destroy(img) | |
02d1d628 | 281 | |
9167a5c6 | 282 | Destroy an image object |
02d1d628 AMH |
283 | |
284 | =cut | |
285 | */ | |
286 | ||
287 | void | |
288 | i_img_destroy(i_img *im) { | |
31a13473 | 289 | dIMCTXim(im); |
23d3b73e | 290 | im_log((aIMCTX, 1,"i_img_destroy(im %p)\n",im)); |
02d1d628 AMH |
291 | i_img_exorcise(im); |
292 | if (im) { myfree(im); } | |
31a13473 | 293 | im_context_refdec(aIMCTX, "img_destroy"); |
02d1d628 AMH |
294 | } |
295 | ||
296 | /* | |
297 | =item i_img_info(im, info) | |
298 | ||
92bda632 TC |
299 | =category Image |
300 | ||
02d1d628 AMH |
301 | Return image information |
302 | ||
303 | im - Image pointer | |
304 | info - pointer to array to return data | |
305 | ||
306 | info is an array of 4 integers with the following values: | |
307 | ||
308 | info[0] - width | |
309 | info[1] - height | |
310 | info[2] - channels | |
311 | info[3] - channel mask | |
312 | ||
313 | =cut | |
314 | */ | |
315 | ||
316 | ||
317 | void | |
8d14daab | 318 | i_img_info(i_img *im, i_img_dim *info) { |
23d3b73e TC |
319 | dIMCTXim(im); |
320 | im_log((aIMCTX,1,"i_img_info(im %p)\n",im)); | |
02d1d628 | 321 | if (im != NULL) { |
23d3b73e | 322 | im_log((aIMCTX,1,"i_img_info: xsize=%" i_DF " ysize=%" i_DF " channels=%d " |
8d14daab TC |
323 | "mask=%ud\n", |
324 | i_DFc(im->xsize), i_DFc(im->ysize), im->channels,im->ch_mask)); | |
23d3b73e | 325 | im_log((aIMCTX,1,"i_img_info: idata=%p\n",im->idata)); |
4cac9410 AMH |
326 | info[0] = im->xsize; |
327 | info[1] = im->ysize; | |
328 | info[2] = im->channels; | |
329 | info[3] = im->ch_mask; | |
02d1d628 | 330 | } else { |
4cac9410 AMH |
331 | info[0] = 0; |
332 | info[1] = 0; | |
333 | info[2] = 0; | |
334 | info[3] = 0; | |
02d1d628 AMH |
335 | } |
336 | } | |
337 | ||
338 | /* | |
5715f7c3 | 339 | =item i_img_setmask(C<im>, C<ch_mask>) |
6cfee9d1 | 340 | =category Image Information |
372ba12c | 341 | =synopsis // only channel 0 writable |
d5477d3d TC |
342 | =synopsis i_img_setmask(img, 0x01); |
343 | ||
5715f7c3 | 344 | Set the image channel mask for C<im> to C<ch_mask>. |
02d1d628 | 345 | |
6cfee9d1 TC |
346 | The image channel mask gives some control over which channels can be |
347 | written to in the image. | |
348 | ||
02d1d628 AMH |
349 | =cut |
350 | */ | |
351 | void | |
352 | i_img_setmask(i_img *im,int ch_mask) { im->ch_mask=ch_mask; } | |
353 | ||
354 | ||
355 | /* | |
5715f7c3 | 356 | =item i_img_getmask(C<im>) |
6cfee9d1 TC |
357 | =category Image Information |
358 | =synopsis int mask = i_img_getmask(img); | |
d5477d3d | 359 | |
5715f7c3 | 360 | Get the image channel mask for C<im>. |
02d1d628 AMH |
361 | |
362 | =cut | |
363 | */ | |
364 | int | |
365 | i_img_getmask(i_img *im) { return im->ch_mask; } | |
366 | ||
367 | /* | |
5715f7c3 | 368 | =item i_img_getchannels(C<im>) |
6cfee9d1 TC |
369 | =category Image Information |
370 | =synopsis int channels = i_img_getchannels(img); | |
d5477d3d | 371 | |
5715f7c3 | 372 | Get the number of channels in C<im>. |
02d1d628 AMH |
373 | |
374 | =cut | |
375 | */ | |
376 | int | |
377 | i_img_getchannels(i_img *im) { return im->channels; } | |
378 | ||
d5477d3d | 379 | /* |
5715f7c3 | 380 | =item i_img_get_width(C<im>) |
6cfee9d1 TC |
381 | =category Image Information |
382 | =synopsis i_img_dim width = i_img_get_width(im); | |
02d1d628 | 383 | |
d5477d3d TC |
384 | Returns the width in pixels of the image. |
385 | ||
386 | =cut | |
387 | */ | |
388 | i_img_dim | |
389 | i_img_get_width(i_img *im) { | |
390 | return im->xsize; | |
391 | } | |
392 | ||
393 | /* | |
5715f7c3 | 394 | =item i_img_get_height(C<im>) |
6cfee9d1 TC |
395 | =category Image Information |
396 | =synopsis i_img_dim height = i_img_get_height(im); | |
d5477d3d TC |
397 | |
398 | Returns the height in pixels of the image. | |
399 | ||
400 | =cut | |
401 | */ | |
402 | i_img_dim | |
403 | i_img_get_height(i_img *im) { | |
404 | return im->ysize; | |
405 | } | |
02d1d628 | 406 | |
35db02fc TC |
407 | /* |
408 | =item i_img_color_model(im) | |
409 | =category Image Information | |
410 | =synopsis i_color_model_t cm = i_img_color_model(im); | |
411 | ||
412 | Returns the color model for the image. | |
413 | ||
414 | A future version of Imager will allow for images with extra channels | |
415 | beyond gray/rgb and alpha. | |
416 | ||
417 | =cut | |
418 | */ | |
419 | i_color_model_t | |
420 | i_img_color_model(i_img *im) { | |
421 | return (i_color_model_t)im->channels; | |
422 | } | |
423 | ||
424 | /* | |
425 | =item i_img_alpha_channel(im, &channel) | |
426 | =category Image Information | |
427 | =synopsis int alpha_channel; | |
428 | =synopsis int has_alpha = i_img_alpha_channel(im, &alpha_channel); | |
429 | ||
430 | Work out the alpha channel for an image. | |
431 | ||
432 | If the image has an alpha channel, sets C<*channel> to the alpha | |
433 | channel index and returns non-zero. | |
434 | ||
435 | If the image has no alpha channel, returns zero and C<*channel> is not | |
436 | modified. | |
437 | ||
438 | C<channel> may be C<NULL>. | |
439 | ||
440 | =cut | |
441 | */ | |
442 | ||
443 | int | |
444 | i_img_alpha_channel(i_img *im, int *channel) { | |
445 | i_color_model_t model = i_img_color_model(im); | |
446 | switch (model) { | |
447 | case icm_gray_alpha: | |
448 | case icm_rgb_alpha: | |
449 | if (channel) *channel = (int)model - 1; | |
450 | return 1; | |
451 | ||
452 | default: | |
453 | return 0; | |
454 | } | |
455 | } | |
456 | ||
457 | /* | |
458 | =item i_img_color_channels(im) | |
459 | =category Image Information | |
460 | =synopsis int color_channels = i_img_color_channels(im); | |
461 | ||
462 | Returns the number of color channels in the image. For now this is | |
463 | always 1 (for grayscale) or 3 (for RGB) but may be 0 in some special | |
464 | cases in a future release of Imager. | |
465 | ||
466 | =cut | |
467 | */ | |
468 | ||
469 | int | |
470 | i_img_color_channels(i_img *im) { | |
471 | i_color_model_t model = i_img_color_model(im); | |
472 | switch (model) { | |
473 | case icm_gray_alpha: | |
474 | case icm_rgb_alpha: | |
475 | return (int)model - 1; | |
476 | ||
477 | case icm_gray: | |
478 | case icm_rgb: | |
479 | return (int)model; | |
480 | ||
481 | default: | |
482 | return 0; | |
483 | } | |
484 | } | |
485 | ||
02d1d628 | 486 | /* |
5715f7c3 | 487 | =item i_copyto_trans(C<im>, C<src>, C<x1>, C<y1>, C<x2>, C<y2>, C<tx>, C<ty>, C<trans>) |
02d1d628 | 488 | |
92bda632 TC |
489 | =category Image |
490 | ||
5715f7c3 TC |
491 | (C<x1>,C<y1>) (C<x2>,C<y2>) specifies the region to copy (in the |
492 | source coordinates) (C<tx>,C<ty>) specifies the upper left corner for | |
493 | the target image. pass NULL in C<trans> for non transparent i_colors. | |
02d1d628 AMH |
494 | |
495 | =cut | |
496 | */ | |
497 | ||
498 | void | |
8d14daab | 499 | i_copyto_trans(i_img *im,i_img *src,i_img_dim x1,i_img_dim y1,i_img_dim x2,i_img_dim y2,i_img_dim tx,i_img_dim ty,const i_color *trans) { |
02d1d628 | 500 | i_color pv; |
8d14daab TC |
501 | i_img_dim x,y,t,ttx,tty,tt; |
502 | int ch; | |
23d3b73e | 503 | dIMCTXim(im); |
02d1d628 | 504 | |
23d3b73e | 505 | im_log((aIMCTX, 1,"i_copyto_trans(im* %p,src %p, p1(" i_DFp "), p2(" i_DFp "), " |
8d14daab TC |
506 | "to(" i_DFp "), trans* %p)\n", |
507 | im, src, i_DFcp(x1, y1), i_DFcp(x2, y2), i_DFcp(tx, ty), trans)); | |
4cac9410 | 508 | |
02d1d628 AMH |
509 | if (x2<x1) { t=x1; x1=x2; x2=t; } |
510 | if (y2<y1) { t=y1; y1=y2; y2=t; } | |
511 | ||
512 | ttx=tx; | |
513 | for(x=x1;x<x2;x++) | |
514 | { | |
515 | tty=ty; | |
516 | for(y=y1;y<y2;y++) | |
517 | { | |
518 | i_gpix(src,x,y,&pv); | |
519 | if ( trans != NULL) | |
520 | { | |
521 | tt=0; | |
522 | for(ch=0;ch<im->channels;ch++) if (trans->channel[ch]!=pv.channel[ch]) tt++; | |
523 | if (tt) i_ppix(im,ttx,tty,&pv); | |
524 | } else i_ppix(im,ttx,tty,&pv); | |
525 | tty++; | |
526 | } | |
527 | ttx++; | |
528 | } | |
529 | } | |
530 | ||
02d1d628 | 531 | /* |
5715f7c3 | 532 | =item i_copy(source) |
92bda632 TC |
533 | |
534 | =category Image | |
535 | ||
5715f7c3 | 536 | Creates a new image that is a copy of the image C<source>. |
92bda632 TC |
537 | |
538 | Tags are not copied, only the image data. | |
02d1d628 | 539 | |
92bda632 | 540 | Returns: i_img * |
02d1d628 AMH |
541 | |
542 | =cut | |
543 | */ | |
544 | ||
92bda632 TC |
545 | i_img * |
546 | i_copy(i_img *src) { | |
8d14daab | 547 | i_img_dim y, y1, x1; |
23d3b73e | 548 | dIMCTXim(src); |
92bda632 TC |
549 | i_img *im = i_sametype(src, src->xsize, src->ysize); |
550 | ||
23d3b73e | 551 | im_log((aIMCTX,1,"i_copy(src %p)\n", src)); |
02d1d628 | 552 | |
92bda632 TC |
553 | if (!im) |
554 | return NULL; | |
02d1d628 | 555 | |
4cac9410 AMH |
556 | x1 = src->xsize; |
557 | y1 = src->ysize; | |
faa9b3e7 TC |
558 | if (src->type == i_direct_type) { |
559 | if (src->bits == i_8_bits) { | |
560 | i_color *pv; | |
faa9b3e7 TC |
561 | pv = mymalloc(sizeof(i_color) * x1); |
562 | ||
563 | for (y = 0; y < y1; ++y) { | |
564 | i_glin(src, 0, x1, y, pv); | |
565 | i_plin(im, 0, x1, y, pv); | |
566 | } | |
567 | myfree(pv); | |
568 | } | |
569 | else { | |
faa9b3e7 | 570 | i_fcolor *pv; |
af3c2450 | 571 | |
faa9b3e7 TC |
572 | pv = mymalloc(sizeof(i_fcolor) * x1); |
573 | for (y = 0; y < y1; ++y) { | |
574 | i_glinf(src, 0, x1, y, pv); | |
575 | i_plinf(im, 0, x1, y, pv); | |
576 | } | |
577 | myfree(pv); | |
578 | } | |
579 | } | |
580 | else { | |
faa9b3e7 TC |
581 | i_palidx *vals; |
582 | ||
faa9b3e7 TC |
583 | vals = mymalloc(sizeof(i_palidx) * x1); |
584 | for (y = 0; y < y1; ++y) { | |
585 | i_gpal(src, 0, x1, y, vals); | |
586 | i_ppal(im, 0, x1, y, vals); | |
587 | } | |
588 | myfree(vals); | |
02d1d628 | 589 | } |
92bda632 TC |
590 | |
591 | return im; | |
02d1d628 AMH |
592 | } |
593 | ||
8d14daab | 594 | /* |
02d1d628 | 595 | |
8d14daab | 596 | http://en.wikipedia.org/wiki/Lanczos_resampling |
142c26ff | 597 | |
8d14daab | 598 | */ |
142c26ff AMH |
599 | |
600 | static | |
02d1d628 AMH |
601 | float |
602 | Lanczos(float x) { | |
603 | float PIx, PIx2; | |
604 | ||
605 | PIx = PI * x; | |
606 | PIx2 = PIx / 2.0; | |
607 | ||
608 | if ((x >= 2.0) || (x <= -2.0)) return (0.0); | |
609 | else if (x == 0.0) return (1.0); | |
610 | else return(sin(PIx) / PIx * sin(PIx2) / PIx2); | |
611 | } | |
612 | ||
b4e32feb | 613 | |
02d1d628 AMH |
614 | /* |
615 | =item i_scaleaxis(im, value, axis) | |
616 | ||
617 | Returns a new image object which is I<im> scaled by I<value> along | |
618 | wither the x-axis (I<axis> == 0) or the y-axis (I<axis> == 1). | |
619 | ||
620 | =cut | |
621 | */ | |
622 | ||
623 | i_img* | |
8d14daab TC |
624 | i_scaleaxis(i_img *im, double Value, int Axis) { |
625 | i_img_dim hsize, vsize, i, j, k, l, lMax, iEnd, jEnd; | |
626 | i_img_dim LanczosWidthFactor; | |
627 | float *l0, *l1; | |
628 | double OldLocation; | |
629 | i_img_dim T; | |
630 | double t; | |
02d1d628 AMH |
631 | float F, PictureValue[MAXCHANNELS]; |
632 | short psave; | |
633 | i_color val,val1,val2; | |
634 | i_img *new_img; | |
95c08d71 TC |
635 | int has_alpha = i_img_has_alpha(im); |
636 | int color_chans = i_img_color_channels(im); | |
696cb85d | 637 | dIMCTXim(im); |
02d1d628 | 638 | |
de470892 | 639 | i_clear_error(); |
23d3b73e | 640 | im_log((aIMCTX, 1,"i_scaleaxis(im %p,Value %.2f,Axis %d)\n",im,Value,Axis)); |
02d1d628 AMH |
641 | |
642 | if (Axis == XAXIS) { | |
8d14daab | 643 | hsize = (i_img_dim)(0.5 + im->xsize * Value); |
1501d9b3 TC |
644 | if (hsize < 1) { |
645 | hsize = 1; | |
b0950e71 | 646 | Value = 1.0 / im->xsize; |
1501d9b3 | 647 | } |
02d1d628 AMH |
648 | vsize = im->ysize; |
649 | ||
650 | jEnd = hsize; | |
651 | iEnd = vsize; | |
02d1d628 AMH |
652 | } else { |
653 | hsize = im->xsize; | |
8d14daab | 654 | vsize = (i_img_dim)(0.5 + im->ysize * Value); |
07d70837 | 655 | |
1501d9b3 TC |
656 | if (vsize < 1) { |
657 | vsize = 1; | |
b0950e71 | 658 | Value = 1.0 / im->ysize; |
1501d9b3 TC |
659 | } |
660 | ||
02d1d628 AMH |
661 | jEnd = vsize; |
662 | iEnd = hsize; | |
02d1d628 AMH |
663 | } |
664 | ||
23d3b73e | 665 | new_img = i_img_8_new(hsize, vsize, im->channels); |
de470892 TC |
666 | if (!new_img) { |
667 | i_push_error(0, "cannot create output image"); | |
668 | return NULL; | |
669 | } | |
02d1d628 | 670 | |
0bcbaf60 | 671 | /* 1.4 is a magic number, setting it to 2 will cause rather blurred images */ |
8d14daab | 672 | LanczosWidthFactor = (Value >= 1) ? 1 : (i_img_dim) (1.4/Value); |
02d1d628 AMH |
673 | lMax = LanczosWidthFactor << 1; |
674 | ||
07d70837 AMH |
675 | l0 = mymalloc(lMax * sizeof(float)); |
676 | l1 = mymalloc(lMax * sizeof(float)); | |
02d1d628 AMH |
677 | |
678 | for (j=0; j<jEnd; j++) { | |
8d14daab TC |
679 | OldLocation = ((double) j) / Value; |
680 | T = (i_img_dim) (OldLocation); | |
681 | F = OldLocation - T; | |
02d1d628 | 682 | |
07d70837 | 683 | for (l = 0; l<lMax; l++) { |
02d1d628 | 684 | l0[lMax-l-1] = Lanczos(((float) (lMax-l-1) + F) / (float) LanczosWidthFactor); |
07d70837 AMH |
685 | l1[l] = Lanczos(((float) (l+1) - F) / (float) LanczosWidthFactor); |
686 | } | |
687 | ||
688 | /* Make sure filter is normalized */ | |
689 | t = 0.0; | |
690 | for(l=0; l<lMax; l++) { | |
691 | t+=l0[l]; | |
692 | t+=l1[l]; | |
02d1d628 | 693 | } |
8d14daab | 694 | t /= (double)LanczosWidthFactor; |
02d1d628 | 695 | |
07d70837 AMH |
696 | for(l=0; l<lMax; l++) { |
697 | l0[l] /= t; | |
698 | l1[l] /= t; | |
699 | } | |
700 | ||
701 | if (Axis == XAXIS) { | |
02d1d628 AMH |
702 | |
703 | for (i=0; i<iEnd; i++) { | |
704 | for (k=0; k<im->channels; k++) PictureValue[k] = 0.0; | |
0bcbaf60 | 705 | for (l=0; l<lMax; l++) { |
8d14daab TC |
706 | i_img_dim mx = T-lMax+l+1; |
707 | i_img_dim Mx = T+l+1; | |
0bcbaf60 AMH |
708 | mx = (mx < 0) ? 0 : mx; |
709 | Mx = (Mx >= im->xsize) ? im->xsize-1 : Mx; | |
710 | ||
711 | i_gpix(im, Mx, i, &val1); | |
712 | i_gpix(im, mx, i, &val2); | |
95c08d71 TC |
713 | |
714 | if (has_alpha) { | |
715 | i_sample_t alpha1 = val1.channel[color_chans]; | |
716 | i_sample_t alpha2 = val2.channel[color_chans]; | |
717 | for (k=0; k < color_chans; k++) { | |
718 | PictureValue[k] += l1[l] * val1.channel[k] * alpha1 / 255; | |
719 | PictureValue[k] += l0[lMax-l-1] * val2.channel[k] * alpha2 / 255; | |
720 | } | |
721 | PictureValue[color_chans] += l1[l] * val1.channel[color_chans]; | |
722 | PictureValue[color_chans] += l0[lMax-l-1] * val2.channel[color_chans]; | |
723 | } | |
724 | else { | |
725 | for (k=0; k<im->channels; k++) { | |
726 | PictureValue[k] += l1[l] * val1.channel[k]; | |
727 | PictureValue[k] += l0[lMax-l-1] * val2.channel[k]; | |
728 | } | |
729 | } | |
730 | } | |
731 | ||
732 | if (has_alpha) { | |
733 | float fa = PictureValue[color_chans] / LanczosWidthFactor; | |
734 | int alpha = minmax(0, 255, fa+0.5); | |
735 | if (alpha) { | |
736 | for (k = 0; k < color_chans; ++k) { | |
737 | psave = (short)(0.5+(PictureValue[k] / LanczosWidthFactor * 255 / fa)); | |
738 | val.channel[k]=minmax(0,255,psave); | |
739 | } | |
740 | val.channel[color_chans] = alpha; | |
741 | } | |
742 | else { | |
743 | /* zero alpha, so the pixel has no color */ | |
744 | for (k = 0; k < im->channels; ++k) | |
745 | val.channel[k] = 0; | |
02d1d628 AMH |
746 | } |
747 | } | |
95c08d71 TC |
748 | else { |
749 | for(k=0;k<im->channels;k++) { | |
750 | psave = (short)(0.5+(PictureValue[k] / LanczosWidthFactor)); | |
751 | val.channel[k]=minmax(0,255,psave); | |
752 | } | |
02d1d628 | 753 | } |
07d70837 | 754 | i_ppix(new_img, j, i, &val); |
02d1d628 AMH |
755 | } |
756 | ||
757 | } else { | |
758 | ||
759 | for (i=0; i<iEnd; i++) { | |
760 | for (k=0; k<im->channels; k++) PictureValue[k] = 0.0; | |
761 | for (l=0; l < lMax; l++) { | |
8d14daab TC |
762 | i_img_dim mx = T-lMax+l+1; |
763 | i_img_dim Mx = T+l+1; | |
0bcbaf60 AMH |
764 | mx = (mx < 0) ? 0 : mx; |
765 | Mx = (Mx >= im->ysize) ? im->ysize-1 : Mx; | |
766 | ||
767 | i_gpix(im, i, Mx, &val1); | |
768 | i_gpix(im, i, mx, &val2); | |
95c08d71 TC |
769 | if (has_alpha) { |
770 | i_sample_t alpha1 = val1.channel[color_chans]; | |
771 | i_sample_t alpha2 = val2.channel[color_chans]; | |
772 | for (k=0; k < color_chans; k++) { | |
773 | PictureValue[k] += l1[l] * val1.channel[k] * alpha1 / 255; | |
774 | PictureValue[k] += l0[lMax-l-1] * val2.channel[k] * alpha2 / 255; | |
775 | } | |
776 | PictureValue[color_chans] += l1[l] * val1.channel[color_chans]; | |
777 | PictureValue[color_chans] += l0[lMax-l-1] * val2.channel[color_chans]; | |
778 | } | |
779 | else { | |
780 | for (k=0; k<im->channels; k++) { | |
781 | PictureValue[k] += l1[l] * val1.channel[k]; | |
782 | PictureValue[k] += l0[lMax-l-1] * val2.channel[k]; | |
783 | } | |
02d1d628 AMH |
784 | } |
785 | } | |
95c08d71 TC |
786 | if (has_alpha) { |
787 | float fa = PictureValue[color_chans] / LanczosWidthFactor; | |
788 | int alpha = minmax(0, 255, fa+0.5); | |
789 | if (alpha) { | |
790 | for (k = 0; k < color_chans; ++k) { | |
791 | psave = (short)(0.5+(PictureValue[k] / LanczosWidthFactor * 255 / fa)); | |
792 | val.channel[k]=minmax(0,255,psave); | |
793 | } | |
794 | val.channel[color_chans] = alpha; | |
795 | } | |
796 | else { | |
797 | for (k = 0; k < im->channels; ++k) | |
798 | val.channel[k] = 0; | |
799 | } | |
800 | } | |
801 | else { | |
802 | for(k=0;k<im->channels;k++) { | |
803 | psave = (short)(0.5+(PictureValue[k] / LanczosWidthFactor)); | |
804 | val.channel[k]=minmax(0,255,psave); | |
805 | } | |
02d1d628 | 806 | } |
07d70837 | 807 | i_ppix(new_img, i, j, &val); |
02d1d628 AMH |
808 | } |
809 | ||
810 | } | |
811 | } | |
812 | myfree(l0); | |
813 | myfree(l1); | |
814 | ||
23d3b73e | 815 | im_log((aIMCTX, 1,"(%p) <- i_scaleaxis\n", new_img)); |
02d1d628 AMH |
816 | |
817 | return new_img; | |
818 | } | |
819 | ||
820 | ||
821 | /* | |
822 | =item i_scale_nn(im, scx, scy) | |
823 | ||
824 | Scale by using nearest neighbor | |
825 | Both axes scaled at the same time since | |
826 | nothing is gained by doing it in two steps | |
827 | ||
828 | =cut | |
829 | */ | |
830 | ||
831 | ||
832 | i_img* | |
8d14daab | 833 | i_scale_nn(i_img *im, double scx, double scy) { |
02d1d628 | 834 | |
8d14daab | 835 | i_img_dim nxsize,nysize,nx,ny; |
02d1d628 AMH |
836 | i_img *new_img; |
837 | i_color val; | |
696cb85d | 838 | dIMCTXim(im); |
02d1d628 | 839 | |
23d3b73e | 840 | im_log((aIMCTX, 1,"i_scale_nn(im %p,scx %.2f,scy %.2f)\n",im,scx,scy)); |
02d1d628 | 841 | |
8d14daab | 842 | nxsize = (i_img_dim) ((double) im->xsize * scx); |
1501d9b3 TC |
843 | if (nxsize < 1) { |
844 | nxsize = 1; | |
b3afeed5 | 845 | scx = 1.0 / im->xsize; |
1501d9b3 | 846 | } |
8d14daab | 847 | nysize = (i_img_dim) ((double) im->ysize * scy); |
1501d9b3 TC |
848 | if (nysize < 1) { |
849 | nysize = 1; | |
b3afeed5 | 850 | scy = 1.0 / im->ysize; |
1501d9b3 | 851 | } |
b3afeed5 | 852 | im_assert(scx != 0 && scy != 0); |
02d1d628 AMH |
853 | |
854 | new_img=i_img_empty_ch(NULL,nxsize,nysize,im->channels); | |
855 | ||
856 | for(ny=0;ny<nysize;ny++) for(nx=0;nx<nxsize;nx++) { | |
8d14daab | 857 | i_gpix(im,((double)nx)/scx,((double)ny)/scy,&val); |
02d1d628 AMH |
858 | i_ppix(new_img,nx,ny,&val); |
859 | } | |
860 | ||
23d3b73e | 861 | im_log((aIMCTX, 1,"(%p) <- i_scale_nn\n",new_img)); |
02d1d628 AMH |
862 | |
863 | return new_img; | |
864 | } | |
865 | ||
faa9b3e7 | 866 | /* |
5715f7c3 | 867 | =item i_sametype(C<im>, C<xsize>, C<ysize>) |
faa9b3e7 | 868 | |
9167a5c6 TC |
869 | =category Image creation/destruction |
870 | =synopsis i_img *img = i_sametype(src, width, height); | |
92bda632 | 871 | |
faa9b3e7 TC |
872 | Returns an image of the same type (sample size, channels, paletted/direct). |
873 | ||
874 | For paletted images the palette is copied from the source. | |
875 | ||
876 | =cut | |
877 | */ | |
878 | ||
696cb85d TC |
879 | i_img * |
880 | i_sametype(i_img *src, i_img_dim xsize, i_img_dim ysize) { | |
881 | dIMCTXim(src); | |
882 | ||
faa9b3e7 TC |
883 | if (src->type == i_direct_type) { |
884 | if (src->bits == 8) { | |
885 | return i_img_empty_ch(NULL, xsize, ysize, src->channels); | |
886 | } | |
af3c2450 | 887 | else if (src->bits == i_16_bits) { |
faa9b3e7 TC |
888 | return i_img_16_new(xsize, ysize, src->channels); |
889 | } | |
af3c2450 TC |
890 | else if (src->bits == i_double_bits) { |
891 | return i_img_double_new(xsize, ysize, src->channels); | |
892 | } | |
faa9b3e7 TC |
893 | else { |
894 | i_push_error(0, "Unknown image bits"); | |
895 | return NULL; | |
896 | } | |
897 | } | |
898 | else { | |
899 | i_color col; | |
900 | int i; | |
901 | ||
902 | i_img *targ = i_img_pal_new(xsize, ysize, src->channels, i_maxcolors(src)); | |
903 | for (i = 0; i < i_colorcount(src); ++i) { | |
904 | i_getcolors(src, i, &col, 1); | |
905 | i_addcolors(targ, &col, 1); | |
906 | } | |
907 | ||
908 | return targ; | |
909 | } | |
910 | } | |
02d1d628 | 911 | |
dff75dee | 912 | /* |
5715f7c3 | 913 | =item i_sametype_chans(C<im>, C<xsize>, C<ysize>, C<channels>) |
dff75dee | 914 | |
9167a5c6 TC |
915 | =category Image creation/destruction |
916 | =synopsis i_img *img = i_sametype_chans(src, width, height, channels); | |
92bda632 | 917 | |
dff75dee TC |
918 | Returns an image of the same type (sample size). |
919 | ||
920 | For paletted images the equivalent direct type is returned. | |
921 | ||
922 | =cut | |
923 | */ | |
924 | ||
696cb85d TC |
925 | i_img * |
926 | i_sametype_chans(i_img *src, i_img_dim xsize, i_img_dim ysize, int channels) { | |
927 | dIMCTXim(src); | |
928 | ||
dff75dee TC |
929 | if (src->bits == 8) { |
930 | return i_img_empty_ch(NULL, xsize, ysize, channels); | |
931 | } | |
932 | else if (src->bits == i_16_bits) { | |
933 | return i_img_16_new(xsize, ysize, channels); | |
934 | } | |
935 | else if (src->bits == i_double_bits) { | |
936 | return i_img_double_new(xsize, ysize, channels); | |
937 | } | |
938 | else { | |
939 | i_push_error(0, "Unknown image bits"); | |
940 | return NULL; | |
941 | } | |
942 | } | |
943 | ||
02d1d628 AMH |
944 | /* |
945 | =item i_transform(im, opx, opxl, opy, opyl, parm, parmlen) | |
946 | ||
947 | Spatially transforms I<im> returning a new image. | |
948 | ||
949 | opx for a length of opxl and opy for a length of opy are arrays of | |
950 | operators that modify the x and y positions to retreive the pixel data from. | |
951 | ||
952 | parm and parmlen define extra parameters that the operators may use. | |
953 | ||
954 | Note that this function is largely superseded by the more flexible | |
955 | L<transform.c/i_transform2>. | |
956 | ||
957 | Returns the new image. | |
958 | ||
959 | The operators for this function are defined in L<stackmach.c>. | |
960 | ||
961 | =cut | |
962 | */ | |
963 | i_img* | |
964 | i_transform(i_img *im, int *opx,int opxl,int *opy,int opyl,double parm[],int parmlen) { | |
965 | double rx,ry; | |
8d14daab | 966 | i_img_dim nxsize,nysize,nx,ny; |
02d1d628 AMH |
967 | i_img *new_img; |
968 | i_color val; | |
696cb85d | 969 | dIMCTXim(im); |
02d1d628 | 970 | |
23d3b73e | 971 | im_log((aIMCTX, 1,"i_transform(im %p, opx %p, opxl %d, opy %p, opyl %d, parm %p, parmlen %d)\n",im,opx,opxl,opy,opyl,parm,parmlen)); |
02d1d628 AMH |
972 | |
973 | nxsize = im->xsize; | |
974 | nysize = im->ysize ; | |
975 | ||
976 | new_img=i_img_empty_ch(NULL,nxsize,nysize,im->channels); | |
977 | /* fprintf(stderr,"parm[2]=%f\n",parm[2]); */ | |
978 | for(ny=0;ny<nysize;ny++) for(nx=0;nx<nxsize;nx++) { | |
979 | /* parm[parmlen-2]=(double)nx; | |
980 | parm[parmlen-1]=(double)ny; */ | |
981 | ||
982 | parm[0]=(double)nx; | |
983 | parm[1]=(double)ny; | |
984 | ||
985 | /* fprintf(stderr,"(%d,%d) ->",nx,ny); */ | |
b33c08f8 TC |
986 | rx=i_op_run(opx,opxl,parm,parmlen); |
987 | ry=i_op_run(opy,opyl,parm,parmlen); | |
02d1d628 AMH |
988 | /* fprintf(stderr,"(%f,%f)\n",rx,ry); */ |
989 | i_gpix(im,rx,ry,&val); | |
990 | i_ppix(new_img,nx,ny,&val); | |
991 | } | |
992 | ||
23d3b73e | 993 | im_log((aIMCTX, 1,"(%p) <- i_transform\n",new_img)); |
02d1d628 AMH |
994 | return new_img; |
995 | } | |
996 | ||
997 | /* | |
998 | =item i_img_diff(im1, im2) | |
999 | ||
1000 | Calculates the sum of the squares of the differences between | |
1001 | correspoding channels in two images. | |
1002 | ||
1003 | If the images are not the same size then only the common area is | |
1004 | compared, hence even if images are different sizes this function | |
1005 | can return zero. | |
1006 | ||
1007 | =cut | |
1008 | */ | |
e41cfe8f | 1009 | |
02d1d628 AMH |
1010 | float |
1011 | i_img_diff(i_img *im1,i_img *im2) { | |
8d14daab TC |
1012 | i_img_dim x, y, xb, yb; |
1013 | int ch, chb; | |
02d1d628 AMH |
1014 | float tdiff; |
1015 | i_color val1,val2; | |
696cb85d | 1016 | dIMCTXim(im1); |
02d1d628 | 1017 | |
23d3b73e | 1018 | im_log((aIMCTX, 1,"i_img_diff(im1 %p,im2 %p)\n",im1,im2)); |
02d1d628 AMH |
1019 | |
1020 | xb=(im1->xsize<im2->xsize)?im1->xsize:im2->xsize; | |
1021 | yb=(im1->ysize<im2->ysize)?im1->ysize:im2->ysize; | |
1022 | chb=(im1->channels<im2->channels)?im1->channels:im2->channels; | |
1023 | ||
23d3b73e | 1024 | im_log((aIMCTX, 1,"i_img_diff: b=(" i_DFp ") chb=%d\n", |
8d14daab | 1025 | i_DFcp(xb,yb), chb)); |
02d1d628 AMH |
1026 | |
1027 | tdiff=0; | |
1028 | for(y=0;y<yb;y++) for(x=0;x<xb;x++) { | |
1029 | i_gpix(im1,x,y,&val1); | |
1030 | i_gpix(im2,x,y,&val2); | |
1031 | ||
1032 | for(ch=0;ch<chb;ch++) tdiff+=(val1.channel[ch]-val2.channel[ch])*(val1.channel[ch]-val2.channel[ch]); | |
1033 | } | |
23d3b73e | 1034 | im_log((aIMCTX, 1,"i_img_diff <- (%.2f)\n",tdiff)); |
02d1d628 AMH |
1035 | return tdiff; |
1036 | } | |
1037 | ||
e41cfe8f TC |
1038 | /* |
1039 | =item i_img_diffd(im1, im2) | |
1040 | ||
1041 | Calculates the sum of the squares of the differences between | |
1042 | correspoding channels in two images. | |
1043 | ||
1044 | If the images are not the same size then only the common area is | |
1045 | compared, hence even if images are different sizes this function | |
1046 | can return zero. | |
1047 | ||
1048 | This is like i_img_diff() but looks at floating point samples instead. | |
1049 | ||
1050 | =cut | |
1051 | */ | |
1052 | ||
1053 | double | |
1054 | i_img_diffd(i_img *im1,i_img *im2) { | |
8d14daab TC |
1055 | i_img_dim x, y, xb, yb; |
1056 | int ch, chb; | |
e41cfe8f TC |
1057 | double tdiff; |
1058 | i_fcolor val1,val2; | |
23d3b73e | 1059 | dIMCTXim(im1); |
e41cfe8f | 1060 | |
23d3b73e | 1061 | im_log((aIMCTX, 1,"i_img_diffd(im1 %p,im2 %p)\n",im1,im2)); |
e41cfe8f TC |
1062 | |
1063 | xb=(im1->xsize<im2->xsize)?im1->xsize:im2->xsize; | |
1064 | yb=(im1->ysize<im2->ysize)?im1->ysize:im2->ysize; | |
1065 | chb=(im1->channels<im2->channels)?im1->channels:im2->channels; | |
1066 | ||
23d3b73e | 1067 | im_log((aIMCTX, 1,"i_img_diffd: b(" i_DFp ") chb=%d\n", |
8d14daab | 1068 | i_DFcp(xb, yb), chb)); |
e41cfe8f TC |
1069 | |
1070 | tdiff=0; | |
1071 | for(y=0;y<yb;y++) for(x=0;x<xb;x++) { | |
1072 | i_gpixf(im1,x,y,&val1); | |
1073 | i_gpixf(im2,x,y,&val2); | |
1074 | ||
1075 | for(ch=0;ch<chb;ch++) { | |
1076 | double sdiff = val1.channel[ch]-val2.channel[ch]; | |
1077 | tdiff += sdiff * sdiff; | |
1078 | } | |
1079 | } | |
23d3b73e | 1080 | im_log((aIMCTX, 1,"i_img_diffd <- (%.2f)\n",tdiff)); |
e41cfe8f TC |
1081 | |
1082 | return tdiff; | |
1083 | } | |
1084 | ||
4498c8bd TC |
1085 | int |
1086 | i_img_samef(i_img *im1,i_img *im2, double epsilon, char const *what) { | |
8d14daab TC |
1087 | i_img_dim x,y,xb,yb; |
1088 | int ch, chb; | |
4498c8bd | 1089 | i_fcolor val1,val2; |
23d3b73e | 1090 | dIMCTXim(im1); |
4498c8bd TC |
1091 | |
1092 | if (what == NULL) | |
1093 | what = "(null)"; | |
1094 | ||
23d3b73e | 1095 | im_log((aIMCTX,1,"i_img_samef(im1 %p,im2 %p, epsilon %g, what '%s')\n", im1, im2, epsilon, what)); |
4498c8bd TC |
1096 | |
1097 | xb=(im1->xsize<im2->xsize)?im1->xsize:im2->xsize; | |
1098 | yb=(im1->ysize<im2->ysize)?im1->ysize:im2->ysize; | |
1099 | chb=(im1->channels<im2->channels)?im1->channels:im2->channels; | |
1100 | ||
23d3b73e | 1101 | im_log((aIMCTX, 1,"i_img_samef: b(" i_DFp ") chb=%d\n", |
8d14daab | 1102 | i_DFcp(xb, yb), chb)); |
4498c8bd TC |
1103 | |
1104 | for(y = 0; y < yb; y++) { | |
1105 | for(x = 0; x < xb; x++) { | |
1106 | i_gpixf(im1, x, y, &val1); | |
1107 | i_gpixf(im2, x, y, &val2); | |
1108 | ||
1109 | for(ch = 0; ch < chb; ch++) { | |
1110 | double sdiff = val1.channel[ch] - val2.channel[ch]; | |
1111 | if (fabs(sdiff) > epsilon) { | |
23d3b73e | 1112 | im_log((aIMCTX, 1,"i_img_samef <- different %g @(" i_DFp ")\n", |
8d14daab | 1113 | sdiff, i_DFcp(x, y))); |
4498c8bd TC |
1114 | return 0; |
1115 | } | |
1116 | } | |
1117 | } | |
1118 | } | |
23d3b73e | 1119 | im_log((aIMCTX, 1,"i_img_samef <- same\n")); |
4498c8bd TC |
1120 | |
1121 | return 1; | |
1122 | } | |
1123 | ||
02d1d628 AMH |
1124 | /* just a tiny demo of haar wavelets */ |
1125 | ||
1126 | i_img* | |
1127 | i_haar(i_img *im) { | |
8d14daab TC |
1128 | i_img_dim mx,my; |
1129 | i_img_dim fx,fy; | |
1130 | i_img_dim x,y; | |
98747309 | 1131 | int ch; |
02d1d628 AMH |
1132 | i_img *new_img,*new_img2; |
1133 | i_color val1,val2,dval1,dval2; | |
696cb85d | 1134 | dIMCTXim(im); |
02d1d628 AMH |
1135 | |
1136 | mx=im->xsize; | |
1137 | my=im->ysize; | |
1138 | fx=(mx+1)/2; | |
1139 | fy=(my+1)/2; | |
1140 | ||
1141 | ||
1142 | /* horizontal pass */ | |
1143 | ||
1144 | new_img=i_img_empty_ch(NULL,fx*2,fy*2,im->channels); | |
1145 | new_img2=i_img_empty_ch(NULL,fx*2,fy*2,im->channels); | |
1146 | ||
02d1d628 AMH |
1147 | for(y=0;y<my;y++) for(x=0;x<fx;x++) { |
1148 | i_gpix(im,x*2,y,&val1); | |
1149 | i_gpix(im,x*2+1,y,&val2); | |
1150 | for(ch=0;ch<im->channels;ch++) { | |
1151 | dval1.channel[ch]=(val1.channel[ch]+val2.channel[ch])/2; | |
1152 | dval2.channel[ch]=(255+val1.channel[ch]-val2.channel[ch])/2; | |
1153 | } | |
1154 | i_ppix(new_img,x,y,&dval1); | |
1155 | i_ppix(new_img,x+fx,y,&dval2); | |
1156 | } | |
1157 | ||
1158 | for(y=0;y<fy;y++) for(x=0;x<mx;x++) { | |
1159 | i_gpix(new_img,x,y*2,&val1); | |
1160 | i_gpix(new_img,x,y*2+1,&val2); | |
1161 | for(ch=0;ch<im->channels;ch++) { | |
1162 | dval1.channel[ch]=(val1.channel[ch]+val2.channel[ch])/2; | |
1163 | dval2.channel[ch]=(255+val1.channel[ch]-val2.channel[ch])/2; | |
1164 | } | |
1165 | i_ppix(new_img2,x,y,&dval1); | |
1166 | i_ppix(new_img2,x,y+fy,&dval2); | |
1167 | } | |
1168 | ||
1169 | i_img_destroy(new_img); | |
1170 | return new_img2; | |
1171 | } | |
1172 | ||
1173 | /* | |
1174 | =item i_count_colors(im, maxc) | |
1175 | ||
1176 | returns number of colors or -1 | |
1177 | to indicate that it was more than max colors | |
1178 | ||
1179 | =cut | |
1180 | */ | |
fe622da1 TC |
1181 | /* This function has been changed and is now faster. It's using |
1182 | * i_gsamp instead of i_gpix */ | |
02d1d628 AMH |
1183 | int |
1184 | i_count_colors(i_img *im,int maxc) { | |
1185 | struct octt *ct; | |
8d14daab | 1186 | i_img_dim x,y; |
02d1d628 | 1187 | int colorcnt; |
fe622da1 TC |
1188 | int channels[3]; |
1189 | int *samp_chans; | |
1190 | i_sample_t * samp; | |
8d14daab TC |
1191 | i_img_dim xsize = im->xsize; |
1192 | i_img_dim ysize = im->ysize; | |
a60905e4 TC |
1193 | int samp_cnt = 3 * xsize; |
1194 | ||
fe622da1 TC |
1195 | if (im->channels >= 3) { |
1196 | samp_chans = NULL; | |
1197 | } | |
1198 | else { | |
1199 | channels[0] = channels[1] = channels[2] = 0; | |
1200 | samp_chans = channels; | |
02d1d628 | 1201 | } |
a60905e4 | 1202 | |
fe622da1 TC |
1203 | ct = octt_new(); |
1204 | ||
1205 | samp = (i_sample_t *) mymalloc( xsize * 3 * sizeof(i_sample_t)); | |
1206 | ||
1207 | colorcnt = 0; | |
1208 | for(y = 0; y < ysize; ) { | |
1209 | i_gsamp(im, 0, xsize, y++, samp, samp_chans, 3); | |
1210 | for(x = 0; x < samp_cnt; ) { | |
1211 | colorcnt += octt_add(ct, samp[x], samp[x+1], samp[x+2]); | |
1212 | x += 3; | |
4e3e50e4 TC |
1213 | if (colorcnt > maxc) { |
1214 | myfree(samp); | |
fe622da1 TC |
1215 | octt_delete(ct); |
1216 | return -1; | |
1217 | } | |
1218 | } | |
1219 | } | |
1220 | myfree(samp); | |
02d1d628 AMH |
1221 | octt_delete(ct); |
1222 | return colorcnt; | |
1223 | } | |
1224 | ||
fe622da1 TC |
1225 | /* sorts the array ra[0..n-1] into increasing order using heapsort algorithm |
1226 | * (adapted from the Numerical Recipes) | |
1227 | */ | |
1228 | /* Needed by get_anonymous_color_histo */ | |
a60905e4 TC |
1229 | static void |
1230 | hpsort(unsigned int n, unsigned *ra) { | |
fe622da1 TC |
1231 | unsigned int i, |
1232 | ir, | |
1233 | j, | |
1234 | l, | |
1235 | rra; | |
1236 | ||
1237 | if (n < 2) return; | |
1238 | l = n >> 1; | |
1239 | ir = n - 1; | |
1240 | for(;;) { | |
1241 | if (l > 0) { | |
1242 | rra = ra[--l]; | |
1243 | } | |
1244 | else { | |
1245 | rra = ra[ir]; | |
1246 | ra[ir] = ra[0]; | |
1247 | if (--ir == 0) { | |
1248 | ra[0] = rra; | |
1249 | break; | |
1250 | } | |
1251 | } | |
1252 | i = l; | |
1253 | j = 2 * l + 1; | |
1254 | while (j <= ir) { | |
1255 | if (j < ir && ra[j] < ra[j+1]) j++; | |
1256 | if (rra < ra[j]) { | |
1257 | ra[i] = ra[j]; | |
1258 | i = j; | |
1259 | j++; j <<= 1; j--; | |
1260 | } | |
1261 | else break; | |
1262 | } | |
1263 | ra[i] = rra; | |
1264 | } | |
1265 | } | |
1266 | ||
1267 | /* This function constructs an ordered list which represents how much the | |
1268 | * different colors are used. So for instance (100, 100, 500) means that one | |
1269 | * color is used for 500 pixels, another for 100 pixels and another for 100 | |
1270 | * pixels. It's tuned for performance. You might not like the way I've hardcoded | |
1271 | * the maxc ;-) and you might want to change the name... */ | |
1272 | /* Uses octt_histo */ | |
1273 | int | |
a60905e4 TC |
1274 | i_get_anonymous_color_histo(i_img *im, unsigned int **col_usage, int maxc) { |
1275 | struct octt *ct; | |
8d14daab | 1276 | i_img_dim x,y; |
a60905e4 TC |
1277 | int colorcnt; |
1278 | unsigned int *col_usage_it; | |
1279 | i_sample_t * samp; | |
1280 | int channels[3]; | |
1281 | int *samp_chans; | |
1282 | ||
8d14daab TC |
1283 | i_img_dim xsize = im->xsize; |
1284 | i_img_dim ysize = im->ysize; | |
a60905e4 TC |
1285 | int samp_cnt = 3 * xsize; |
1286 | ct = octt_new(); | |
1287 | ||
1288 | samp = (i_sample_t *) mymalloc( xsize * 3 * sizeof(i_sample_t)); | |
1289 | ||
1290 | if (im->channels >= 3) { | |
1291 | samp_chans = NULL; | |
1292 | } | |
1293 | else { | |
1294 | channels[0] = channels[1] = channels[2] = 0; | |
1295 | samp_chans = channels; | |
1296 | } | |
1297 | ||
1298 | colorcnt = 0; | |
1299 | for(y = 0; y < ysize; ) { | |
1300 | i_gsamp(im, 0, xsize, y++, samp, samp_chans, 3); | |
1301 | for(x = 0; x < samp_cnt; ) { | |
1302 | colorcnt += octt_add(ct, samp[x], samp[x+1], samp[x+2]); | |
1303 | x += 3; | |
1304 | if (colorcnt > maxc) { | |
0e265bc0 TC |
1305 | octt_delete(ct); |
1306 | myfree(samp); | |
a60905e4 TC |
1307 | return -1; |
1308 | } | |
fe622da1 | 1309 | } |
a60905e4 TC |
1310 | } |
1311 | myfree(samp); | |
1312 | /* Now that we know the number of colours... */ | |
1313 | col_usage_it = *col_usage = (unsigned int *) mymalloc(colorcnt * sizeof(unsigned int)); | |
1314 | octt_histo(ct, &col_usage_it); | |
1315 | hpsort(colorcnt, *col_usage); | |
1316 | octt_delete(ct); | |
1317 | return colorcnt; | |
fe622da1 TC |
1318 | } |
1319 | ||
02d1d628 | 1320 | /* |
faa9b3e7 TC |
1321 | =back |
1322 | ||
faa9b3e7 TC |
1323 | =head2 Image method wrappers |
1324 | ||
1325 | These functions provide i_fsample_t functions in terms of their | |
1326 | i_sample_t versions. | |
1327 | ||
1328 | =over | |
1329 | ||
8d14daab | 1330 | =item i_ppixf_fp(i_img *im, i_img_dim x, i_img_dim y, i_fcolor *pix) |
faa9b3e7 TC |
1331 | |
1332 | =cut | |
1333 | */ | |
1334 | ||
8d14daab | 1335 | int i_ppixf_fp(i_img *im, i_img_dim x, i_img_dim y, const i_fcolor *pix) { |
faa9b3e7 TC |
1336 | i_color temp; |
1337 | int ch; | |
1338 | ||
1339 | for (ch = 0; ch < im->channels; ++ch) | |
1340 | temp.channel[ch] = SampleFTo8(pix->channel[ch]); | |
1341 | ||
1342 | return i_ppix(im, x, y, &temp); | |
1343 | } | |
1344 | ||
1345 | /* | |
8d14daab | 1346 | =item i_gpixf_fp(i_img *im, i_img_dim x, i_img_dim y, i_fcolor *pix) |
faa9b3e7 TC |
1347 | |
1348 | =cut | |
1349 | */ | |
8d14daab | 1350 | int i_gpixf_fp(i_img *im, i_img_dim x, i_img_dim y, i_fcolor *pix) { |
faa9b3e7 TC |
1351 | i_color temp; |
1352 | int ch; | |
1353 | ||
93eab01e | 1354 | if (i_gpix(im, x, y, &temp) == 0) { |
faa9b3e7 TC |
1355 | for (ch = 0; ch < im->channels; ++ch) |
1356 | pix->channel[ch] = Sample8ToF(temp.channel[ch]); | |
1357 | return 0; | |
1358 | } | |
1359 | else | |
1360 | return -1; | |
1361 | } | |
1362 | ||
1363 | /* | |
8d14daab | 1364 | =item i_plinf_fp(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, i_fcolor *pix) |
faa9b3e7 TC |
1365 | |
1366 | =cut | |
1367 | */ | |
8d14daab TC |
1368 | i_img_dim |
1369 | i_plinf_fp(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, const i_fcolor *pix) { | |
faa9b3e7 TC |
1370 | i_color *work; |
1371 | ||
1372 | if (y >= 0 && y < im->ysize && l < im->xsize && l >= 0) { | |
1373 | if (r > im->xsize) | |
1374 | r = im->xsize; | |
1375 | if (r > l) { | |
8d14daab TC |
1376 | i_img_dim ret; |
1377 | i_img_dim i; | |
1378 | int ch; | |
faa9b3e7 TC |
1379 | work = mymalloc(sizeof(i_color) * (r-l)); |
1380 | for (i = 0; i < r-l; ++i) { | |
1381 | for (ch = 0; ch < im->channels; ++ch) | |
1382 | work[i].channel[ch] = SampleFTo8(pix[i].channel[ch]); | |
1383 | } | |
1384 | ret = i_plin(im, l, r, y, work); | |
1385 | myfree(work); | |
1386 | ||
1387 | return ret; | |
1388 | } | |
1389 | else { | |
1390 | return 0; | |
1391 | } | |
1392 | } | |
1393 | else { | |
1394 | return 0; | |
1395 | } | |
1396 | } | |
1397 | ||
1398 | /* | |
8d14daab | 1399 | =item i_glinf_fp(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, i_fcolor *pix) |
faa9b3e7 TC |
1400 | |
1401 | =cut | |
1402 | */ | |
8d14daab TC |
1403 | i_img_dim |
1404 | i_glinf_fp(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, i_fcolor *pix) { | |
faa9b3e7 TC |
1405 | i_color *work; |
1406 | ||
1407 | if (y >= 0 && y < im->ysize && l < im->xsize && l >= 0) { | |
1408 | if (r > im->xsize) | |
1409 | r = im->xsize; | |
1410 | if (r > l) { | |
8d14daab TC |
1411 | i_img_dim ret; |
1412 | i_img_dim i; | |
1413 | int ch; | |
faa9b3e7 TC |
1414 | work = mymalloc(sizeof(i_color) * (r-l)); |
1415 | ret = i_plin(im, l, r, y, work); | |
1416 | for (i = 0; i < r-l; ++i) { | |
1417 | for (ch = 0; ch < im->channels; ++ch) | |
1418 | pix[i].channel[ch] = Sample8ToF(work[i].channel[ch]); | |
1419 | } | |
1420 | myfree(work); | |
1421 | ||
1422 | return ret; | |
1423 | } | |
1424 | else { | |
1425 | return 0; | |
1426 | } | |
1427 | } | |
1428 | else { | |
1429 | return 0; | |
1430 | } | |
1431 | } | |
1432 | ||
1433 | /* | |
8d14daab | 1434 | =item i_gsampf_fp(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, i_fsample_t *samp, int *chans, int chan_count) |
faa9b3e7 TC |
1435 | |
1436 | =cut | |
1437 | */ | |
8d14daab TC |
1438 | |
1439 | i_img_dim | |
1440 | i_gsampf_fp(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, i_fsample_t *samp, | |
18accb2a | 1441 | int const *chans, int chan_count) { |
faa9b3e7 TC |
1442 | i_sample_t *work; |
1443 | ||
1444 | if (y >= 0 && y < im->ysize && l < im->xsize && l >= 0) { | |
1445 | if (r > im->xsize) | |
1446 | r = im->xsize; | |
1447 | if (r > l) { | |
8d14daab TC |
1448 | i_img_dim ret; |
1449 | i_img_dim i; | |
faa9b3e7 TC |
1450 | work = mymalloc(sizeof(i_sample_t) * (r-l)); |
1451 | ret = i_gsamp(im, l, r, y, work, chans, chan_count); | |
1452 | for (i = 0; i < ret; ++i) { | |
1453 | samp[i] = Sample8ToF(work[i]); | |
1454 | } | |
1455 | myfree(work); | |
1456 | ||
1457 | return ret; | |
1458 | } | |
1459 | else { | |
1460 | return 0; | |
1461 | } | |
1462 | } | |
1463 | else { | |
1464 | return 0; | |
1465 | } | |
1466 | } | |
1467 | ||
1468 | /* | |
1469 | =back | |
1470 | ||
1471 | =head2 Palette wrapper functions | |
1472 | ||
1473 | Used for virtual images, these forward palette calls to a wrapped image, | |
1474 | assuming the wrapped image is the first pointer in the structure that | |
1475 | im->ext_data points at. | |
1476 | ||
1477 | =over | |
1478 | ||
97ac0a96 | 1479 | =item i_addcolors_forward(i_img *im, const i_color *colors, int count) |
faa9b3e7 TC |
1480 | |
1481 | =cut | |
1482 | */ | |
97ac0a96 | 1483 | int i_addcolors_forward(i_img *im, const i_color *colors, int count) { |
faa9b3e7 TC |
1484 | return i_addcolors(*(i_img **)im->ext_data, colors, count); |
1485 | } | |
1486 | ||
1487 | /* | |
1488 | =item i_getcolors_forward(i_img *im, int i, i_color *color, int count) | |
1489 | ||
1490 | =cut | |
1491 | */ | |
1492 | int i_getcolors_forward(i_img *im, int i, i_color *color, int count) { | |
1493 | return i_getcolors(*(i_img **)im->ext_data, i, color, count); | |
1494 | } | |
1495 | ||
1496 | /* | |
97ac0a96 | 1497 | =item i_setcolors_forward(i_img *im, int i, const i_color *color, int count) |
faa9b3e7 TC |
1498 | |
1499 | =cut | |
1500 | */ | |
97ac0a96 | 1501 | int i_setcolors_forward(i_img *im, int i, const i_color *color, int count) { |
faa9b3e7 TC |
1502 | return i_setcolors(*(i_img **)im->ext_data, i, color, count); |
1503 | } | |
1504 | ||
1505 | /* | |
1506 | =item i_colorcount_forward(i_img *im) | |
1507 | ||
1508 | =cut | |
1509 | */ | |
1510 | int i_colorcount_forward(i_img *im) { | |
1511 | return i_colorcount(*(i_img **)im->ext_data); | |
1512 | } | |
1513 | ||
1514 | /* | |
1515 | =item i_maxcolors_forward(i_img *im) | |
1516 | ||
1517 | =cut | |
1518 | */ | |
1519 | int i_maxcolors_forward(i_img *im) { | |
1520 | return i_maxcolors(*(i_img **)im->ext_data); | |
1521 | } | |
1522 | ||
1523 | /* | |
97ac0a96 | 1524 | =item i_findcolor_forward(i_img *im, const i_color *color, i_palidx *entry) |
faa9b3e7 TC |
1525 | |
1526 | =cut | |
1527 | */ | |
97ac0a96 | 1528 | int i_findcolor_forward(i_img *im, const i_color *color, i_palidx *entry) { |
faa9b3e7 TC |
1529 | return i_findcolor(*(i_img **)im->ext_data, color, entry); |
1530 | } | |
1531 | ||
1532 | /* | |
1533 | =back | |
1534 | ||
bd8052a6 TC |
1535 | =head2 Fallback handler |
1536 | ||
1537 | =over | |
1538 | ||
1539 | =item i_gsamp_bits_fb | |
1540 | ||
1541 | =cut | |
1542 | */ | |
1543 | ||
8d14daab TC |
1544 | i_img_dim |
1545 | i_gsamp_bits_fb(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, unsigned *samps, | |
bd8052a6 | 1546 | const int *chans, int chan_count, int bits) { |
696cb85d TC |
1547 | dIMCTXim(im); |
1548 | ||
bd8052a6 TC |
1549 | if (bits < 1 || bits > 32) { |
1550 | i_push_error(0, "Invalid bits, must be 1..32"); | |
1551 | return -1; | |
1552 | } | |
1553 | ||
1554 | if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) { | |
1555 | double scale; | |
8d14daab TC |
1556 | int ch; |
1557 | i_img_dim count, i, w; | |
bd8052a6 TC |
1558 | |
1559 | if (bits == 32) | |
1560 | scale = 4294967295.0; | |
1561 | else | |
1562 | scale = (double)(1 << bits) - 1; | |
1563 | ||
1564 | if (r > im->xsize) | |
1565 | r = im->xsize; | |
1566 | w = r - l; | |
1567 | count = 0; | |
1568 | ||
1569 | if (chans) { | |
1570 | /* make sure we have good channel numbers */ | |
1571 | for (ch = 0; ch < chan_count; ++ch) { | |
1572 | if (chans[ch] < 0 || chans[ch] >= im->channels) { | |
23d3b73e | 1573 | im_push_errorf(aIMCTX, 0, "No channel %d in this image", chans[ch]); |
bd8052a6 TC |
1574 | return -1; |
1575 | } | |
1576 | } | |
1577 | for (i = 0; i < w; ++i) { | |
1578 | i_fcolor c; | |
1579 | i_gpixf(im, l+i, y, &c); | |
1580 | for (ch = 0; ch < chan_count; ++ch) { | |
1581 | *samps++ = (unsigned)(c.channel[ch] * scale + 0.5); | |
1582 | ++count; | |
1583 | } | |
1584 | } | |
1585 | } | |
1586 | else { | |
1587 | if (chan_count <= 0 || chan_count > im->channels) { | |
1588 | i_push_error(0, "Invalid channel count"); | |
1589 | return -1; | |
1590 | } | |
1591 | for (i = 0; i < w; ++i) { | |
1592 | i_fcolor c; | |
1593 | i_gpixf(im, l+i, y, &c); | |
1594 | for (ch = 0; ch < chan_count; ++ch) { | |
1595 | *samps++ = (unsigned)(c.channel[ch] * scale + 0.5); | |
1596 | ++count; | |
1597 | } | |
1598 | } | |
1599 | } | |
1600 | ||
1601 | return count; | |
1602 | } | |
1603 | else { | |
1604 | i_push_error(0, "Image position outside of image"); | |
1605 | return -1; | |
1606 | } | |
1607 | } | |
1608 | ||
8b302e44 TC |
1609 | struct magic_entry { |
1610 | unsigned char *magic; | |
1611 | size_t magic_size; | |
1612 | char *name; | |
1613 | unsigned char *mask; | |
1614 | }; | |
1615 | ||
1616 | static int | |
1617 | test_magic(unsigned char *buffer, size_t length, struct magic_entry const *magic) { | |
8b302e44 TC |
1618 | if (length < magic->magic_size) |
1619 | return 0; | |
1620 | if (magic->mask) { | |
1621 | int i; | |
1622 | unsigned char *bufp = buffer, | |
1623 | *maskp = magic->mask, | |
1624 | *magicp = magic->magic; | |
e10bf46e | 1625 | |
8b302e44 TC |
1626 | for (i = 0; i < magic->magic_size; ++i) { |
1627 | int mask = *maskp == 'x' ? 0xFF : *maskp == ' ' ? 0 : *maskp; | |
1628 | ++maskp; | |
1629 | ||
1630 | if ((*bufp++ & mask) != (*magicp++ & mask)) | |
1631 | return 0; | |
1632 | } | |
1633 | ||
1634 | return 1; | |
1635 | } | |
1636 | else { | |
1637 | return !memcmp(magic->magic, buffer, magic->magic_size); | |
1638 | } | |
1639 | } | |
e10bf46e | 1640 | |
84e51293 AMH |
1641 | /* |
1642 | =item i_test_format_probe(io_glue *data, int length) | |
1643 | ||
676d5bb5 | 1644 | Check the beginning of the supplied file for a 'magic number' |
84e51293 AMH |
1645 | |
1646 | =cut | |
1647 | */ | |
e10bf46e | 1648 | |
db7a8754 TC |
1649 | #define FORMAT_ENTRY(magic, type) \ |
1650 | { (unsigned char *)(magic ""), sizeof(magic)-1, type } | |
8b302e44 | 1651 | #define FORMAT_ENTRY2(magic, type, mask) \ |
c0f79ae6 | 1652 | { (unsigned char *)(magic ""), sizeof(magic)-1, type, (unsigned char *)(mask) } |
ea1136fc TC |
1653 | |
1654 | const char * | |
1655 | i_test_format_probe(io_glue *data, int length) { | |
8b302e44 | 1656 | static const struct magic_entry formats[] = { |
db7a8754 TC |
1657 | FORMAT_ENTRY("\xFF\xD8", "jpeg"), |
1658 | FORMAT_ENTRY("GIF87a", "gif"), | |
1659 | FORMAT_ENTRY("GIF89a", "gif"), | |
1660 | FORMAT_ENTRY("MM\0*", "tiff"), | |
1661 | FORMAT_ENTRY("II*\0", "tiff"), | |
1662 | FORMAT_ENTRY("BM", "bmp"), | |
1663 | FORMAT_ENTRY("\x89PNG\x0d\x0a\x1a\x0a", "png"), | |
1664 | FORMAT_ENTRY("P1", "pnm"), | |
1665 | FORMAT_ENTRY("P2", "pnm"), | |
1666 | FORMAT_ENTRY("P3", "pnm"), | |
1667 | FORMAT_ENTRY("P4", "pnm"), | |
1668 | FORMAT_ENTRY("P5", "pnm"), | |
1669 | FORMAT_ENTRY("P6", "pnm"), | |
8b302e44 TC |
1670 | FORMAT_ENTRY("/* XPM", "xpm"), |
1671 | FORMAT_ENTRY("\x8aMNG", "mng"), | |
1672 | FORMAT_ENTRY("\x8aJNG", "jng"), | |
1673 | /* SGI RGB - with various possible parameters to avoid false positives | |
1674 | on similar files | |
1675 | values are: 2 byte magic, rle flags (0 or 1), bytes/sample (1 or 2) | |
1676 | */ | |
d5477d3d TC |
1677 | FORMAT_ENTRY("\x01\xDA\x00\x01", "sgi"), |
1678 | FORMAT_ENTRY("\x01\xDA\x00\x02", "sgi"), | |
1679 | FORMAT_ENTRY("\x01\xDA\x01\x01", "sgi"), | |
1680 | FORMAT_ENTRY("\x01\xDA\x01\x02", "sgi"), | |
8b302e44 TC |
1681 | |
1682 | FORMAT_ENTRY2("FORM ILBM", "ilbm", "xxxx xxxx"), | |
1683 | ||
1684 | /* different versions of PCX format | |
1685 | http://www.fileformat.info/format/pcx/ | |
1686 | */ | |
1687 | FORMAT_ENTRY("\x0A\x00\x01", "pcx"), | |
681d28fc | 1688 | FORMAT_ENTRY("\x0A\x02\x01", "pcx"), |
8b302e44 TC |
1689 | FORMAT_ENTRY("\x0A\x03\x01", "pcx"), |
1690 | FORMAT_ENTRY("\x0A\x04\x01", "pcx"), | |
1691 | FORMAT_ENTRY("\x0A\x05\x01", "pcx"), | |
1692 | ||
1693 | /* FITS - http://fits.gsfc.nasa.gov/ */ | |
1694 | FORMAT_ENTRY("SIMPLE =", "fits"), | |
1695 | ||
1696 | /* PSD - Photoshop */ | |
1697 | FORMAT_ENTRY("8BPS\x00\x01", "psd"), | |
1698 | ||
1699 | /* EPS - Encapsulated Postscript */ | |
1700 | /* only reading 18 chars, so we don't include the F in EPSF */ | |
1701 | FORMAT_ENTRY("%!PS-Adobe-2.0 EPS", "eps"), | |
681d28fc TC |
1702 | |
1703 | /* Utah RLE */ | |
1704 | FORMAT_ENTRY("\x52\xCC", "utah"), | |
33fc0c9e TC |
1705 | |
1706 | /* GZIP compressed, only matching deflate for now */ | |
1707 | FORMAT_ENTRY("\x1F\x8B\x08", "gzip"), | |
1708 | ||
1709 | /* bzip2 compressed */ | |
1710 | FORMAT_ENTRY("BZh", "bzip2"), | |
bca6a3d5 TC |
1711 | |
1712 | /* WEBP | |
1713 | http://code.google.com/speed/webp/docs/riff_container.html */ | |
1714 | FORMAT_ENTRY2("RIFF WEBP", "webp", "xxxx xxxx"), | |
1715 | ||
1716 | /* JPEG 2000 | |
1717 | This might match a little loosely */ | |
1718 | FORMAT_ENTRY("\x00\x00\x00\x0CjP \x0D\x0A\x87\x0A", "jp2"), | |
1facb357 TC |
1719 | |
1720 | /* FLIF - Free Lossless Image Format - https://flif.info/spec.html */ | |
1721 | FORMAT_ENTRY("FLIF", "flif") | |
e10bf46e | 1722 | }; |
8b302e44 | 1723 | static const struct magic_entry more_formats[] = { |
681d28fc TC |
1724 | /* these were originally both listed as ico, but cur files can |
1725 | include hotspot information */ | |
1726 | FORMAT_ENTRY("\x00\x00\x01\x00", "ico"), /* Windows icon */ | |
1727 | FORMAT_ENTRY("\x00\x00\x02\x00", "cur"), /* Windows cursor */ | |
603dfac7 TC |
1728 | FORMAT_ENTRY2("\x00\x00\x00\x00\x00\x00\x00\x07", |
1729 | "xwd", " xxxx"), /* X Windows Dump */ | |
ea1136fc | 1730 | }; |
db7a8754 | 1731 | |
e10bf46e | 1732 | unsigned int i; |
db7a8754 | 1733 | unsigned char head[18]; |
84e51293 | 1734 | ssize_t rc; |
e10bf46e | 1735 | |
6d5c85a2 | 1736 | rc = i_io_peekn(data, head, 18); |
84e51293 | 1737 | if (rc == -1) return NULL; |
6d5c85a2 TC |
1738 | #if 0 |
1739 | { | |
1740 | int i; | |
1741 | fprintf(stderr, "%d bytes -", (int)rc); | |
1742 | for (i = 0; i < rc; ++i) | |
1743 | fprintf(stderr, " %02x", head[i]); | |
1744 | fprintf(stderr, "\n"); | |
1745 | } | |
1746 | #endif | |
e10bf46e AMH |
1747 | |
1748 | for(i=0; i<sizeof(formats)/sizeof(formats[0]); i++) { | |
8b302e44 TC |
1749 | struct magic_entry const *entry = formats + i; |
1750 | ||
1751 | if (test_magic(head, rc, entry)) | |
1752 | return entry->name; | |
e10bf46e AMH |
1753 | } |
1754 | ||
ea1136fc | 1755 | if ((rc == 18) && |
db7a8754 TC |
1756 | tga_header_verify(head)) |
1757 | return "tga"; | |
1758 | ||
ea1136fc | 1759 | for(i=0; i<sizeof(more_formats)/sizeof(more_formats[0]); i++) { |
8b302e44 TC |
1760 | struct magic_entry const *entry = more_formats + i; |
1761 | ||
1762 | if (test_magic(head, rc, entry)) | |
1763 | return entry->name; | |
ea1136fc TC |
1764 | } |
1765 | ||
1766 | return NULL; | |
e10bf46e AMH |
1767 | } |
1768 | ||
9c106321 TC |
1769 | /* |
1770 | =item i_img_is_monochrome(img, &zero_is_white) | |
1771 | ||
e5ee047b TC |
1772 | =category Image Information |
1773 | ||
9c106321 TC |
1774 | Tests an image to check it meets our monochrome tests. |
1775 | ||
1776 | The idea is that a file writer can use this to test where it should | |
e5ee047b TC |
1777 | write the image in whatever bi-level format it uses, eg. C<pbm> for |
1778 | C<pnm>. | |
9c106321 TC |
1779 | |
1780 | For performance of encoders we require monochrome images: | |
1781 | ||
1782 | =over | |
1783 | ||
1784 | =item * | |
e10bf46e | 1785 | |
9c106321 | 1786 | be paletted |
e10bf46e | 1787 | |
9c106321 TC |
1788 | =item * |
1789 | ||
e5ee047b TC |
1790 | have a palette of two colors, containing only C<(0,0,0)> and |
1791 | C<(255,255,255)> in either order. | |
9c106321 TC |
1792 | |
1793 | =back | |
1794 | ||
e5ee047b | 1795 | C<zero_is_white> is set to non-zero if the first palette entry is white. |
9c106321 TC |
1796 | |
1797 | =cut | |
1798 | */ | |
1799 | ||
1800 | int | |
1801 | i_img_is_monochrome(i_img *im, int *zero_is_white) { | |
1802 | if (im->type == i_palette_type | |
1803 | && i_colorcount(im) == 2) { | |
1804 | i_color colors[2]; | |
1805 | i_getcolors(im, 0, colors, 2); | |
1806 | if (im->channels == 3) { | |
1807 | if (colors[0].rgb.r == 255 && | |
1808 | colors[0].rgb.g == 255 && | |
1809 | colors[0].rgb.b == 255 && | |
1810 | colors[1].rgb.r == 0 && | |
1811 | colors[1].rgb.g == 0 && | |
1812 | colors[1].rgb.b == 0) { | |
bd8052a6 | 1813 | *zero_is_white = 1; |
9c106321 TC |
1814 | return 1; |
1815 | } | |
1816 | else if (colors[0].rgb.r == 0 && | |
1817 | colors[0].rgb.g == 0 && | |
1818 | colors[0].rgb.b == 0 && | |
1819 | colors[1].rgb.r == 255 && | |
1820 | colors[1].rgb.g == 255 && | |
1821 | colors[1].rgb.b == 255) { | |
bd8052a6 | 1822 | *zero_is_white = 0; |
9c106321 TC |
1823 | return 1; |
1824 | } | |
1825 | } | |
1826 | else if (im->channels == 1) { | |
1827 | if (colors[0].channel[0] == 255 && | |
bd8052a6 TC |
1828 | colors[1].channel[0] == 0) { |
1829 | *zero_is_white = 1; | |
9c106321 TC |
1830 | return 1; |
1831 | } | |
1832 | else if (colors[0].channel[0] == 0 && | |
bd8052a6 TC |
1833 | colors[1].channel[0] == 255) { |
1834 | *zero_is_white = 0; | |
9c106321 TC |
1835 | return 1; |
1836 | } | |
1837 | } | |
1838 | } | |
1839 | ||
1840 | *zero_is_white = 0; | |
1841 | return 0; | |
1842 | } | |
e10bf46e | 1843 | |
6e4af7d4 TC |
1844 | /* |
1845 | =item i_get_file_background(im, &bg) | |
1846 | ||
797a9f9c TC |
1847 | =category Files |
1848 | ||
6e4af7d4 TC |
1849 | Retrieve the file write background color tag from the image. |
1850 | ||
594f5933 TC |
1851 | If not present, C<bg> is set to black. |
1852 | ||
1853 | Returns 1 if the C<i_background> tag was found and valid. | |
6e4af7d4 TC |
1854 | |
1855 | =cut | |
1856 | */ | |
1857 | ||
594f5933 | 1858 | int |
6e4af7d4 | 1859 | i_get_file_background(i_img *im, i_color *bg) { |
594f5933 TC |
1860 | int result = i_tags_get_color(&im->tags, "i_background", 0, bg); |
1861 | if (!result) { | |
6e4af7d4 TC |
1862 | /* black default */ |
1863 | bg->channel[0] = bg->channel[1] = bg->channel[2] = 0; | |
1864 | } | |
1865 | /* always full alpha */ | |
1866 | bg->channel[3] = 255; | |
594f5933 TC |
1867 | |
1868 | return result; | |
6e4af7d4 TC |
1869 | } |
1870 | ||
fa90de94 TC |
1871 | /* |
1872 | =item i_get_file_backgroundf(im, &bg) | |
1873 | ||
797a9f9c TC |
1874 | =category Files |
1875 | ||
fa90de94 TC |
1876 | Retrieve the file write background color tag from the image as a |
1877 | floating point color. | |
1878 | ||
1879 | Implemented in terms of i_get_file_background(). | |
1880 | ||
594f5933 TC |
1881 | If not present, C<bg> is set to black. |
1882 | ||
1883 | Returns 1 if the C<i_background> tag was found and valid. | |
fa90de94 TC |
1884 | |
1885 | =cut | |
1886 | */ | |
1887 | ||
594f5933 | 1888 | int |
fa90de94 TC |
1889 | i_get_file_backgroundf(i_img *im, i_fcolor *fbg) { |
1890 | i_color bg; | |
594f5933 | 1891 | int result = i_get_file_background(im, &bg); |
fa90de94 TC |
1892 | fbg->rgba.r = Sample8ToF(bg.rgba.r); |
1893 | fbg->rgba.g = Sample8ToF(bg.rgba.g); | |
1894 | fbg->rgba.b = Sample8ToF(bg.rgba.b); | |
1895 | fbg->rgba.a = 1.0; | |
594f5933 TC |
1896 | |
1897 | return result; | |
fa90de94 TC |
1898 | } |
1899 | ||
02d1d628 AMH |
1900 | /* |
1901 | =back | |
1902 | ||
b8c2033e AMH |
1903 | =head1 AUTHOR |
1904 | ||
1905 | Arnar M. Hrafnkelsson <addi@umich.edu> | |
1906 | ||
8d14daab | 1907 | Tony Cook <tonyc@cpan.org> |
b8c2033e | 1908 | |
02d1d628 AMH |
1909 | =head1 SEE ALSO |
1910 | ||
1911 | L<Imager>, L<gif.c> | |
1912 | ||
1913 | =cut | |
1914 | */ |