Commit | Line | Data |
---|---|---|
02d1d628 AMH |
1 | #include "image.h" |
2 | #include <stdlib.h> | |
3 | #include <math.h> | |
4 | ||
5 | ||
6 | /* | |
7 | =head1 NAME | |
8 | ||
9 | filters.c - implements filters that operate on images | |
10 | ||
11 | =head1 SYNOPSIS | |
12 | ||
13 | ||
14 | i_contrast(im, 0.8); | |
15 | i_hardinvert(im); | |
16 | // and more | |
17 | ||
18 | =head1 DESCRIPTION | |
19 | ||
20 | filters.c implements basic filters for Imager. These filters | |
21 | should be accessible from the filter interface as defined in | |
22 | the pod for Imager. | |
23 | ||
24 | =head1 FUNCTION REFERENCE | |
25 | ||
26 | Some of these functions are internal. | |
27 | ||
28 | =over 4 | |
29 | ||
30 | =cut | |
31 | */ | |
32 | ||
33 | ||
34 | ||
35 | ||
36 | ||
37 | ||
38 | ||
39 | /* | |
40 | =item i_contrast(im, intensity) | |
41 | ||
42 | Scales the pixel values by the amount specified. | |
43 | ||
44 | im - image object | |
45 | intensity - scalefactor | |
46 | ||
47 | =cut | |
48 | */ | |
49 | ||
50 | void | |
51 | i_contrast(i_img *im, float intensity) { | |
52 | int x, y; | |
53 | unsigned char ch; | |
54 | unsigned int new_color; | |
55 | i_color rcolor; | |
56 | ||
57 | mm_log((1,"i_contrast(im %p, intensity %f)\n", im, intensity)); | |
58 | ||
59 | if(intensity < 0) return; | |
60 | ||
61 | for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) { | |
62 | i_gpix(im, x, y, &rcolor); | |
63 | ||
64 | for(ch = 0; ch < im->channels; ch++) { | |
65 | new_color = (unsigned int) rcolor.channel[ch]; | |
66 | new_color *= intensity; | |
67 | ||
68 | if(new_color > 255) { | |
69 | new_color = 255; | |
70 | } | |
71 | rcolor.channel[ch] = (unsigned char) new_color; | |
72 | } | |
73 | i_ppix(im, x, y, &rcolor); | |
74 | } | |
75 | } | |
76 | ||
77 | ||
78 | /* | |
79 | =item i_hardinvert(im) | |
80 | ||
81 | Inverts the pixel values of the input image. | |
82 | ||
83 | im - image object | |
84 | ||
85 | =cut | |
86 | */ | |
87 | ||
88 | void | |
89 | i_hardinvert(i_img *im) { | |
90 | int x, y; | |
91 | unsigned char ch; | |
92 | ||
93 | i_color rcolor; | |
94 | ||
95 | mm_log((1,"i_hardinvert(im %p)\n", im)); | |
96 | ||
97 | for(y = 0; y < im->ysize; y++) { | |
98 | for(x = 0; x < im->xsize; x++) { | |
99 | i_gpix(im, x, y, &rcolor); | |
100 | ||
101 | for(ch = 0; ch < im->channels; ch++) { | |
102 | rcolor.channel[ch] = 255 - rcolor.channel[ch]; | |
103 | } | |
104 | ||
105 | i_ppix(im, x, y, &rcolor); | |
106 | } | |
107 | } | |
108 | } | |
109 | ||
110 | ||
111 | ||
112 | /* | |
113 | =item i_noise(im, amount, type) | |
114 | ||
115 | Inverts the pixel values by the amount specified. | |
116 | ||
117 | im - image object | |
118 | amount - deviation in pixel values | |
119 | type - noise individual for each channel if true | |
120 | ||
121 | =cut | |
122 | */ | |
123 | ||
124 | #ifdef _MSC_VER | |
125 | /* random() is non-ASCII, even if it is better than rand() */ | |
126 | #define random() rand() | |
127 | #endif | |
128 | ||
129 | void | |
130 | i_noise(i_img *im, float amount, unsigned char type) { | |
131 | int x, y; | |
132 | unsigned char ch; | |
133 | int new_color; | |
134 | float damount = amount * 2; | |
135 | i_color rcolor; | |
136 | int color_inc = 0; | |
137 | ||
138 | mm_log((1,"i_noise(im %p, intensity %.2f\n", im, amount)); | |
139 | ||
140 | if(amount < 0) return; | |
141 | ||
142 | for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) { | |
143 | i_gpix(im, x, y, &rcolor); | |
144 | ||
145 | if(type == 0) { | |
146 | color_inc = (amount - (damount * ((float)random() / RAND_MAX))); | |
147 | } | |
148 | ||
149 | for(ch = 0; ch < im->channels; ch++) { | |
150 | new_color = (int) rcolor.channel[ch]; | |
151 | ||
152 | if(type != 0) { | |
153 | new_color += (amount - (damount * ((float)random() / RAND_MAX))); | |
154 | } else { | |
155 | new_color += color_inc; | |
156 | } | |
157 | ||
158 | if(new_color < 0) { | |
159 | new_color = 0; | |
160 | } | |
161 | if(new_color > 255) { | |
162 | new_color = 255; | |
163 | } | |
164 | ||
165 | rcolor.channel[ch] = (unsigned char) new_color; | |
166 | } | |
167 | ||
168 | i_ppix(im, x, y, &rcolor); | |
169 | } | |
170 | } | |
171 | ||
172 | ||
173 | /* | |
174 | =item i_noise(im, amount, type) | |
175 | ||
176 | Inverts the pixel values by the amount specified. | |
177 | ||
178 | im - image object | |
179 | amount - deviation in pixel values | |
180 | type - noise individual for each channel if true | |
181 | ||
182 | =cut | |
183 | */ | |
184 | ||
185 | ||
186 | /* | |
187 | =item i_applyimage(im, add_im, mode) | |
188 | ||
189 | Apply's an image to another image | |
190 | ||
191 | im - target image | |
192 | add_im - image that is applied to target | |
193 | mode - what method is used in applying: | |
194 | ||
195 | 0 Normal | |
196 | 1 Multiply | |
197 | 2 Screen | |
198 | 3 Overlay | |
199 | 4 Soft Light | |
200 | 5 Hard Light | |
201 | 6 Color dodge | |
202 | 7 Color Burn | |
203 | 8 Darker | |
204 | 9 Lighter | |
205 | 10 Add | |
206 | 11 Subtract | |
207 | 12 Difference | |
208 | 13 Exclusion | |
209 | ||
210 | =cut | |
211 | */ | |
212 | ||
213 | void i_applyimage(i_img *im, i_img *add_im, unsigned char mode) { | |
214 | int x, y; | |
215 | int mx, my; | |
216 | ||
217 | mm_log((1, "i_applyimage(im %p, add_im %p, mode %d", im, add_im, mode)); | |
218 | ||
219 | mx = (add_im->xsize <= im->xsize) ? add_im->xsize : add_im->xsize; | |
220 | my = (add_im->ysize <= im->ysize) ? add_im->ysize : add_im->ysize; | |
221 | ||
222 | for(x = 0; x < mx; x++) { | |
223 | for(y = 0; y < my; y++) { | |
224 | } | |
225 | } | |
226 | } | |
227 | ||
228 | ||
229 | /* | |
230 | =item i_bumpmap(im, bump, channel, light_x, light_y, st) | |
231 | ||
232 | Makes a bumpmap on image im using the bump image as the elevation map. | |
233 | ||
234 | im - target image | |
235 | bump - image that contains the elevation info | |
236 | channel - to take the elevation information from | |
237 | light_x - x coordinate of light source | |
238 | light_y - y coordinate of light source | |
239 | st - length of shadow | |
240 | ||
241 | =cut | |
242 | */ | |
243 | ||
244 | void | |
245 | i_bumpmap(i_img *im, i_img *bump, int channel, int light_x, int light_y, int st) { | |
246 | int x, y, ch; | |
247 | int mx, my; | |
248 | i_color x1_color, y1_color, x2_color, y2_color, dst_color; | |
249 | double nX, nY; | |
250 | double tX, tY, tZ; | |
251 | double aX, aY, aL; | |
252 | double fZ; | |
253 | unsigned char px1, px2, py1, py2; | |
254 | ||
255 | i_img new_im; | |
256 | ||
257 | mm_log((1, "i_bumpmap(im %p, add_im %p, channel %d, light_x %d, light_y %d, st %d)\n", | |
258 | im, bump, channel, light_x, light_y, st)); | |
259 | ||
260 | ||
261 | if(channel >= bump->channels) { | |
262 | mm_log((1, "i_bumpmap: channel = %d while bump image only has %d channels\n", channel, bump->channels)); | |
263 | return; | |
264 | } | |
265 | ||
266 | mx = (bump->xsize <= im->xsize) ? bump->xsize : im->xsize; | |
267 | my = (bump->ysize <= im->ysize) ? bump->ysize : im->ysize; | |
268 | ||
269 | i_img_empty_ch(&new_im, im->xsize, im->ysize, im->channels); | |
270 | ||
271 | aX = (light_x > (mx >> 1)) ? light_x : mx - light_x; | |
272 | aY = (light_y > (my >> 1)) ? light_y : my - light_y; | |
273 | ||
274 | aL = sqrt((aX * aX) + (aY * aY)); | |
275 | ||
276 | for(y = 1; y < my - 1; y++) { | |
277 | for(x = 1; x < mx - 1; x++) { | |
278 | i_gpix(bump, x + st, y, &x1_color); | |
279 | i_gpix(bump, x, y + st, &y1_color); | |
280 | i_gpix(bump, x - st, y, &x2_color); | |
281 | i_gpix(bump, x, y - st, &y2_color); | |
282 | ||
283 | i_gpix(im, x, y, &dst_color); | |
284 | ||
285 | px1 = x1_color.channel[channel]; | |
286 | py1 = y1_color.channel[channel]; | |
287 | px2 = x2_color.channel[channel]; | |
288 | py2 = y2_color.channel[channel]; | |
289 | ||
290 | nX = px1 - px2; | |
291 | nY = py1 - py2; | |
292 | ||
293 | nX += 128; | |
294 | nY += 128; | |
295 | ||
296 | fZ = (sqrt((nX * nX) + (nY * nY)) / aL); | |
297 | ||
298 | tX = abs(x - light_x) / aL; | |
299 | tY = abs(y - light_y) / aL; | |
300 | ||
301 | tZ = 1 - (sqrt((tX * tX) + (tY * tY)) * fZ); | |
302 | ||
303 | if(tZ < 0) tZ = 0; | |
304 | if(tZ > 2) tZ = 2; | |
305 | ||
306 | for(ch = 0; ch < im->channels; ch++) | |
307 | dst_color.channel[ch] = (unsigned char) (float)(dst_color.channel[ch] * tZ); | |
308 | ||
309 | i_ppix(&new_im, x, y, &dst_color); | |
310 | } | |
311 | } | |
312 | ||
313 | i_copyto(im, &new_im, 0, 0, (int)im->xsize, (int)im->ysize, 0, 0); | |
314 | ||
315 | i_img_exorcise(&new_im); | |
316 | } | |
317 | ||
318 | ||
319 | ||
320 | /* | |
321 | =item i_postlevels(im, levels) | |
322 | ||
323 | Quantizes Images to fewer levels. | |
324 | ||
325 | im - target image | |
326 | levels - number of levels | |
327 | ||
328 | =cut | |
329 | */ | |
330 | ||
331 | void | |
332 | i_postlevels(i_img *im, int levels) { | |
333 | int x, y, ch; | |
334 | float pv; | |
335 | int rv; | |
336 | float av; | |
337 | ||
338 | i_color rcolor; | |
339 | ||
340 | rv = (int) ((float)(256 / levels)); | |
341 | av = (float)levels; | |
342 | ||
343 | for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) { | |
344 | i_gpix(im, x, y, &rcolor); | |
345 | ||
346 | for(ch = 0; ch < im->channels; ch++) { | |
347 | pv = (((float)rcolor.channel[ch] / 255)) * av; | |
348 | pv = (int) ((int)pv * rv); | |
349 | ||
350 | if(pv < 0) pv = 0; | |
351 | else if(pv > 255) pv = 255; | |
352 | ||
353 | rcolor.channel[ch] = (unsigned char) pv; | |
354 | } | |
355 | i_ppix(im, x, y, &rcolor); | |
356 | } | |
357 | } | |
358 | ||
359 | ||
360 | /* | |
361 | =item i_mosaic(im, size) | |
362 | ||
363 | Makes an image looks like a mosaic with tilesize of size | |
364 | ||
365 | im - target image | |
366 | size - size of tiles | |
367 | ||
368 | =cut | |
369 | */ | |
370 | ||
371 | void | |
372 | i_mosaic(i_img *im, int size) { | |
373 | int x, y, ch; | |
374 | int lx, ly, z; | |
375 | long sqrsize; | |
376 | ||
377 | i_color rcolor; | |
378 | long col[256]; | |
379 | ||
380 | sqrsize = size * size; | |
381 | ||
382 | for(y = 0; y < im->ysize; y += size) for(x = 0; x < im->xsize; x += size) { | |
383 | for(z = 0; z < 256; z++) col[z] = 0; | |
384 | ||
385 | for(lx = 0; lx < size; lx++) { | |
386 | for(ly = 0; ly < size; ly++) { | |
387 | i_gpix(im, (x + lx), (y + ly), &rcolor); | |
388 | ||
389 | for(ch = 0; ch < im->channels; ch++) { | |
390 | col[ch] += rcolor.channel[ch]; | |
391 | } | |
392 | } | |
393 | } | |
394 | ||
395 | for(ch = 0; ch < im->channels; ch++) | |
396 | rcolor.channel[ch] = (int) ((float)col[ch] / sqrsize); | |
397 | ||
398 | ||
399 | for(lx = 0; lx < size; lx++) | |
400 | for(ly = 0; ly < size; ly++) | |
401 | i_ppix(im, (x + lx), (y + ly), &rcolor); | |
402 | ||
403 | } | |
404 | } | |
405 | ||
406 | /* | |
407 | =item saturate(in) | |
408 | ||
409 | Clamps the input value between 0 and 255. (internal) | |
410 | ||
411 | in - input integer | |
412 | ||
413 | =cut | |
414 | */ | |
415 | ||
416 | static | |
417 | unsigned char | |
418 | saturate(int in) { | |
419 | if (in>255) { return 255; } | |
420 | else if (in>0) return in; | |
421 | return 0; | |
422 | } | |
423 | ||
424 | ||
425 | /* | |
426 | =item i_watermark(im, wmark, tx, ty, pixdiff) | |
427 | ||
428 | Applies a watermark to the target image | |
429 | ||
430 | im - target image | |
431 | wmark - watermark image | |
432 | tx - x coordinate of where watermark should be applied | |
433 | ty - y coordinate of where watermark should be applied | |
434 | pixdiff - the magnitude of the watermark, controls how visible it is | |
435 | ||
436 | =cut | |
437 | */ | |
438 | ||
439 | void | |
440 | i_watermark(i_img *im, i_img *wmark, int tx, int ty, int pixdiff) { | |
441 | int vx, vy, ch; | |
442 | i_color val, wval; | |
443 | ||
444 | for(vx=0;vx<128;vx++) for(vy=0;vy<110;vy++) { | |
445 | ||
446 | i_gpix(im, tx+vx, ty+vy,&val ); | |
447 | i_gpix(wmark, vx, vy, &wval); | |
448 | ||
449 | for(ch=0;ch<im->channels;ch++) | |
450 | val.channel[ch] = saturate( val.channel[ch] + (pixdiff* (wval.channel[0]-128) )/128 ); | |
451 | ||
452 | i_ppix(im,tx+vx,ty+vy,&val); | |
453 | } | |
454 | } | |
455 | ||
456 | ||
457 | /* | |
458 | =item i_autolevels(im, lsat, usat, skew) | |
459 | ||
460 | Scales and translates each color such that it fills the range completely. | |
461 | Skew is not implemented yet - purpose is to control the color skew that can | |
462 | occur when changing the contrast. | |
463 | ||
464 | im - target image | |
465 | lsat - fraction of pixels that will be truncated at the lower end of the spectrum | |
466 | usat - fraction of pixels that will be truncated at the higher end of the spectrum | |
467 | skew - not used yet | |
468 | ||
469 | =cut | |
470 | */ | |
471 | ||
472 | void | |
473 | i_autolevels(i_img *im, float lsat, float usat, float skew) { | |
474 | i_color val; | |
475 | int i, x, y, rhist[256], ghist[256], bhist[256]; | |
476 | int rsum, rmin, rmax; | |
477 | int gsum, gmin, gmax; | |
478 | int bsum, bmin, bmax; | |
479 | int rcl, rcu, gcl, gcu, bcl, bcu; | |
480 | ||
481 | mm_log((1,"i_autolevels(im %p, lsat %f,usat %f,skew %f)\n", im, lsat,usat,skew)); | |
482 | ||
483 | rsum=gsum=bsum=0; | |
484 | for(i=0;i<256;i++) rhist[i]=ghist[i]=bhist[i] = 0; | |
485 | /* create histogram for each channel */ | |
486 | for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) { | |
487 | i_gpix(im, x, y, &val); | |
488 | rhist[val.channel[0]]++; | |
489 | ghist[val.channel[1]]++; | |
490 | bhist[val.channel[2]]++; | |
491 | } | |
492 | ||
493 | for(i=0;i<256;i++) { | |
494 | rsum+=rhist[i]; | |
495 | gsum+=ghist[i]; | |
496 | bsum+=bhist[i]; | |
497 | } | |
498 | ||
499 | rmin = gmin = bmin = 0; | |
500 | rmax = gmax = bmax = 255; | |
501 | ||
502 | rcu = rcl = gcu = gcl = bcu = bcl = 0; | |
503 | ||
504 | for(i=0; i<256; i++) { | |
505 | rcl += rhist[i]; if ( (rcl<rsum*lsat) ) rmin=i; | |
506 | rcu += rhist[255-i]; if ( (rcu<rsum*usat) ) rmax=255-i; | |
507 | ||
508 | gcl += ghist[i]; if ( (gcl<gsum*lsat) ) gmin=i; | |
509 | gcu += ghist[255-i]; if ( (gcu<gsum*usat) ) gmax=255-i; | |
510 | ||
511 | bcl += bhist[i]; if ( (bcl<bsum*lsat) ) bmin=i; | |
512 | bcu += bhist[255-i]; if ( (bcu<bsum*usat) ) bmax=255-i; | |
513 | } | |
514 | ||
515 | for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) { | |
516 | i_gpix(im, x, y, &val); | |
517 | val.channel[0]=saturate((val.channel[0]-rmin)*255/(rmax-rmin)); | |
518 | val.channel[1]=saturate((val.channel[1]-gmin)*255/(gmax-gmin)); | |
519 | val.channel[2]=saturate((val.channel[2]-bmin)*255/(bmax-bmin)); | |
520 | i_ppix(im, x, y, &val); | |
521 | } | |
522 | } | |
523 | ||
524 | /* | |
525 | =item Noise(x,y) | |
526 | ||
527 | Pseudo noise utility function used to generate perlin noise. (internal) | |
528 | ||
529 | x - x coordinate | |
530 | y - y coordinate | |
531 | ||
532 | =cut | |
533 | */ | |
534 | ||
535 | static | |
536 | float | |
537 | Noise(int x, int y) { | |
538 | int n = x + y * 57; | |
539 | n = (n<<13) ^ n; | |
540 | return ( 1.0 - ( (n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824.0); | |
541 | } | |
542 | ||
543 | /* | |
544 | =item SmoothedNoise1(x,y) | |
545 | ||
546 | Pseudo noise utility function used to generate perlin noise. (internal) | |
547 | ||
548 | x - x coordinate | |
549 | y - y coordinate | |
550 | ||
551 | =cut | |
552 | */ | |
553 | ||
554 | static | |
555 | float | |
556 | SmoothedNoise1(float x, float y) { | |
557 | float corners = ( Noise(x-1, y-1)+Noise(x+1, y-1)+Noise(x-1, y+1)+Noise(x+1, y+1) ) / 16; | |
558 | float sides = ( Noise(x-1, y) +Noise(x+1, y) +Noise(x, y-1) +Noise(x, y+1) ) / 8; | |
559 | float center = Noise(x, y) / 4; | |
560 | return corners + sides + center; | |
561 | } | |
562 | ||
563 | ||
564 | /* | |
565 | =item G_Interpolate(a, b, x) | |
566 | ||
567 | Utility function used to generate perlin noise. (internal) | |
568 | ||
569 | =cut | |
570 | */ | |
571 | ||
572 | static | |
573 | float C_Interpolate(float a, float b, float x) { | |
574 | /* float ft = x * 3.1415927; */ | |
575 | float ft = x * PI; | |
576 | float f = (1 - cos(ft)) * .5; | |
577 | return a*(1-f) + b*f; | |
578 | } | |
579 | ||
580 | ||
581 | /* | |
582 | =item InterpolatedNoise(x, y) | |
583 | ||
584 | Utility function used to generate perlin noise. (internal) | |
585 | ||
586 | =cut | |
587 | */ | |
588 | ||
589 | static | |
590 | float | |
591 | InterpolatedNoise(float x, float y) { | |
592 | ||
593 | int integer_X = x; | |
594 | float fractional_X = x - integer_X; | |
595 | int integer_Y = y; | |
596 | float fractional_Y = y - integer_Y; | |
597 | ||
598 | float v1 = SmoothedNoise1(integer_X, integer_Y); | |
599 | float v2 = SmoothedNoise1(integer_X + 1, integer_Y); | |
600 | float v3 = SmoothedNoise1(integer_X, integer_Y + 1); | |
601 | float v4 = SmoothedNoise1(integer_X + 1, integer_Y + 1); | |
602 | ||
603 | float i1 = C_Interpolate(v1 , v2 , fractional_X); | |
604 | float i2 = C_Interpolate(v3 , v4 , fractional_X); | |
605 | ||
606 | return C_Interpolate(i1 , i2 , fractional_Y); | |
607 | } | |
608 | ||
609 | ||
610 | ||
611 | /* | |
612 | =item PerlinNoise_2D(x, y) | |
613 | ||
614 | Utility function used to generate perlin noise. (internal) | |
615 | ||
616 | =cut | |
617 | */ | |
618 | ||
619 | static | |
620 | float | |
621 | PerlinNoise_2D(float x, float y) { | |
622 | int i,frequency; | |
623 | float amplitude; | |
624 | float total = 0; | |
625 | int Number_Of_Octaves=6; | |
626 | int n = Number_Of_Octaves - 1; | |
627 | ||
628 | for(i=0;i<n;i++) { | |
629 | frequency = 2*i; | |
630 | amplitude = PI; | |
631 | total = total + InterpolatedNoise(x * frequency, y * frequency) * amplitude; | |
632 | } | |
633 | ||
634 | return total; | |
635 | } | |
636 | ||
637 | ||
638 | /* | |
639 | =item i_radnoise(im, xo, yo, rscale, ascale) | |
640 | ||
641 | Perlin-like radial noise. | |
642 | ||
643 | im - target image | |
644 | xo - x coordinate of center | |
645 | yo - y coordinate of center | |
646 | rscale - radial scale | |
647 | ascale - angular scale | |
648 | ||
649 | =cut | |
650 | */ | |
651 | ||
652 | void | |
653 | i_radnoise(i_img *im, int xo, int yo, float rscale, float ascale) { | |
654 | int x, y, ch; | |
655 | i_color val; | |
656 | unsigned char v; | |
657 | float xc, yc, r; | |
658 | double a; | |
659 | ||
660 | for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) { | |
661 | xc = (float)x-xo+0.5; | |
662 | yc = (float)y-yo+0.5; | |
663 | r = rscale*sqrt(xc*xc+yc*yc)+1.2; | |
664 | a = (PI+atan2(yc,xc))*ascale; | |
665 | v = saturate(128+100*(PerlinNoise_2D(a,r))); | |
666 | /* v=saturate(120+12*PerlinNoise_2D(xo+(float)x/scale,yo+(float)y/scale)); Good soft marble */ | |
667 | for(ch=0; ch<im->channels; ch++) val.channel[ch]=v; | |
668 | i_ppix(im, x, y, &val); | |
669 | } | |
670 | } | |
671 | ||
672 | ||
673 | /* | |
674 | =item i_turbnoise(im, xo, yo, scale) | |
675 | ||
676 | Perlin-like 2d noise noise. | |
677 | ||
678 | im - target image | |
679 | xo - x coordinate translation | |
680 | yo - y coordinate translation | |
681 | scale - scale of noise | |
682 | ||
683 | =cut | |
684 | */ | |
685 | ||
686 | void | |
687 | i_turbnoise(i_img *im, float xo, float yo, float scale) { | |
688 | int x,y,ch; | |
689 | unsigned char v; | |
690 | i_color val; | |
691 | ||
692 | for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) { | |
693 | /* v=saturate(125*(1.0+PerlinNoise_2D(xo+(float)x/scale,yo+(float)y/scale))); */ | |
694 | v = saturate(120*(1.0+sin(xo+(float)x/scale+PerlinNoise_2D(xo+(float)x/scale,yo+(float)y/scale)))); | |
695 | for(ch=0; ch<im->channels; ch++) val.channel[ch] = v; | |
696 | i_ppix(im, x, y, &val); | |
697 | } | |
698 | } | |
699 | ||
700 | ||
701 | ||
702 | /* | |
703 | =item i_gradgen(im, num, xo, yo, ival, dmeasure) | |
704 | ||
705 | Gradient generating function. | |
706 | ||
707 | im - target image | |
708 | num - number of points given | |
709 | xo - array of x coordinates | |
710 | yo - array of y coordinates | |
711 | ival - array of i_color objects | |
712 | dmeasure - distance measure to be used. | |
713 | 0 = Euclidean | |
714 | 1 = Euclidean squared | |
715 | 2 = Manhattan distance | |
716 | ||
717 | =cut | |
718 | */ | |
719 | ||
720 | ||
721 | void | |
722 | i_gradgen(i_img *im, int num, int *xo, int *yo, i_color *ival, int dmeasure) { | |
723 | ||
724 | i_color val; | |
725 | int p, x, y, ch; | |
726 | int channels = im->channels; | |
727 | int xsize = im->xsize; | |
728 | int ysize = im->ysize; | |
729 | ||
730 | float *fdist; | |
731 | ||
732 | mm_log((1,"i_gradgen(im %p, num %d, xo %p, yo %p, ival %p, dmeasure %d)\n", im, num, xo, yo, ival, dmeasure)); | |
733 | ||
734 | for(p = 0; p<num; p++) { | |
735 | mm_log((1,"i_gradgen: (%d, %d)\n", xo[p], yo[p])); | |
736 | ICL_info(&ival[p]); | |
737 | } | |
738 | ||
739 | fdist = mymalloc( sizeof(float) * num ); | |
740 | ||
741 | for(y = 0; y<ysize; y++) for(x = 0; x<xsize; x++) { | |
742 | float cs = 0; | |
743 | float csd = 0; | |
744 | for(p = 0; p<num; p++) { | |
745 | int xd = x-xo[p]; | |
746 | int yd = y-yo[p]; | |
747 | switch (dmeasure) { | |
748 | case 0: /* euclidean */ | |
749 | fdist[p] = sqrt(xd*xd + yd*yd); /* euclidean distance */ | |
750 | break; | |
751 | case 1: /* euclidean squared */ | |
752 | fdist[p] = xd*xd + yd*yd; /* euclidean distance */ | |
753 | break; | |
754 | case 2: /* euclidean squared */ | |
755 | fdist[p] = max(xd*xd, yd*yd); /* manhattan distance */ | |
756 | break; | |
757 | default: | |
758 | m_fatal(3,"i_gradgen: Unknown distance measure\n"); | |
759 | } | |
760 | cs += fdist[p]; | |
761 | } | |
762 | ||
763 | csd = 1/((num-1)*cs); | |
764 | ||
765 | for(p = 0; p<num; p++) fdist[p] = (cs-fdist[p])*csd; | |
766 | ||
767 | for(ch = 0; ch<channels; ch++) { | |
768 | int tres = 0; | |
769 | for(p = 0; p<num; p++) tres += ival[p].channel[ch] * fdist[p]; | |
770 | val.channel[ch] = saturate(tres); | |
771 | } | |
772 | i_ppix(im, x, y, &val); | |
773 | } | |
774 | ||
775 | } | |
776 | ||
777 | ||
778 | ||
779 | ||
780 | ||
781 | ||
782 | ||
783 | ||
784 | ||
785 | ||
786 | ||
787 | ||
788 | ||
789 | ||
790 | ||
791 | ||
792 | void | |
793 | i_nearest_color_foo(i_img *im, int num, int *xo, int *yo, i_color *ival, int dmeasure) { | |
794 | ||
795 | i_color val; | |
796 | int p, x, y, ch; | |
797 | int channels = im->channels; | |
798 | int xsize = im->xsize; | |
799 | int ysize = im->ysize; | |
800 | ||
801 | mm_log((1,"i_gradgen(im %p, num %d, xo %p, yo %p, ival %p, dmeasure %d)\n", im, num, xo, yo, ival, dmeasure)); | |
802 | ||
803 | for(p = 0; p<num; p++) { | |
804 | mm_log((1,"i_gradgen: (%d, %d)\n", xo[p], yo[p])); | |
805 | ICL_info(&ival[p]); | |
806 | } | |
807 | ||
808 | for(y = 0; y<ysize; y++) for(x = 0; x<xsize; x++) { | |
809 | int midx = 0; | |
810 | float mindist = 0; | |
811 | float curdist = 0; | |
812 | ||
813 | int xd = x-xo[0]; | |
814 | int yd = y-yo[0]; | |
815 | ||
816 | switch (dmeasure) { | |
817 | case 0: /* euclidean */ | |
818 | mindist = sqrt(xd*xd + yd*yd); /* euclidean distance */ | |
819 | break; | |
820 | case 1: /* euclidean squared */ | |
821 | mindist = xd*xd + yd*yd; /* euclidean distance */ | |
822 | break; | |
823 | case 2: /* euclidean squared */ | |
824 | mindist = max(xd*xd, yd*yd); /* manhattan distance */ | |
825 | break; | |
826 | default: | |
827 | m_fatal(3,"i_nearest_color: Unknown distance measure\n"); | |
828 | } | |
829 | ||
830 | for(p = 1; p<num; p++) { | |
831 | xd = x-xo[p]; | |
832 | yd = y-yo[p]; | |
833 | switch (dmeasure) { | |
834 | case 0: /* euclidean */ | |
835 | curdist = sqrt(xd*xd + yd*yd); /* euclidean distance */ | |
836 | break; | |
837 | case 1: /* euclidean squared */ | |
838 | curdist = xd*xd + yd*yd; /* euclidean distance */ | |
839 | break; | |
840 | case 2: /* euclidean squared */ | |
841 | curdist = max(xd*xd, yd*yd); /* manhattan distance */ | |
842 | break; | |
843 | default: | |
844 | m_fatal(3,"i_nearest_color: Unknown distance measure\n"); | |
845 | } | |
846 | if (curdist < mindist) { | |
847 | mindist = curdist; | |
848 | midx = p; | |
849 | } | |
850 | } | |
851 | i_ppix(im, x, y, &ival[midx]); | |
852 | } | |
853 | } | |
854 | ||
855 | ||
856 | ||
857 | ||
858 | ||
859 | ||
860 | ||
861 | ||
862 | ||
863 | ||
864 | ||
865 | void | |
866 | i_nearest_color(i_img *im, int num, int *xo, int *yo, i_color *oval, int dmeasure) { | |
867 | i_color *ival; | |
868 | float *tval; | |
869 | float c1, c2; | |
870 | i_color val; | |
871 | int p, x, y, ch; | |
872 | int channels = im->channels; | |
873 | int xsize = im->xsize; | |
874 | int ysize = im->ysize; | |
875 | int *cmatch; | |
876 | ||
877 | mm_log((1,"i_nearest_color(im %p, num %d, xo %p, yo %p, ival %p, dmeasure %d)\n", im, num, xo, yo, ival, dmeasure)); | |
878 | ||
879 | ||
880 | tval = mymalloc( sizeof(float)*num*im->channels ); | |
881 | ival = mymalloc( sizeof(i_color)*num ); | |
882 | cmatch = mymalloc( sizeof(int)*num ); | |
883 | ||
884 | for(p = 0; p<num; p++) { | |
885 | for(ch = 0; ch<im->channels; ch++) tval[ p * im->channels + ch] = 0; | |
886 | cmatch[p] = 0; | |
887 | } | |
888 | ||
889 | ||
890 | for(y = 0; y<ysize; y++) for(x = 0; x<xsize; x++) { | |
891 | int midx = 0; | |
892 | float mindist = 0; | |
893 | float curdist = 0; | |
894 | ||
895 | int xd = x-xo[0]; | |
896 | int yd = y-yo[0]; | |
897 | ||
898 | switch (dmeasure) { | |
899 | case 0: /* euclidean */ | |
900 | mindist = sqrt(xd*xd + yd*yd); /* euclidean distance */ | |
901 | break; | |
902 | case 1: /* euclidean squared */ | |
903 | mindist = xd*xd + yd*yd; /* euclidean distance */ | |
904 | break; | |
905 | case 2: /* euclidean squared */ | |
906 | mindist = max(xd*xd, yd*yd); /* manhattan distance */ | |
907 | break; | |
908 | default: | |
909 | m_fatal(3,"i_nearest_color: Unknown distance measure\n"); | |
910 | } | |
911 | ||
912 | for(p = 1; p<num; p++) { | |
913 | xd = x-xo[p]; | |
914 | yd = y-yo[p]; | |
915 | switch (dmeasure) { | |
916 | case 0: /* euclidean */ | |
917 | curdist = sqrt(xd*xd + yd*yd); /* euclidean distance */ | |
918 | break; | |
919 | case 1: /* euclidean squared */ | |
920 | curdist = xd*xd + yd*yd; /* euclidean distance */ | |
921 | break; | |
922 | case 2: /* euclidean squared */ | |
923 | curdist = max(xd*xd, yd*yd); /* manhattan distance */ | |
924 | break; | |
925 | default: | |
926 | m_fatal(3,"i_nearest_color: Unknown distance measure\n"); | |
927 | } | |
928 | if (curdist < mindist) { | |
929 | mindist = curdist; | |
930 | midx = p; | |
931 | } | |
932 | } | |
933 | ||
934 | cmatch[midx]++; | |
935 | i_gpix(im, x, y, &val); | |
936 | c2 = 1.0/(float)(cmatch[midx]); | |
937 | c1 = 1.0-c2; | |
938 | ||
939 | // printf("pixel [%d %d %d] c1+c2 = %f\n", val.channel[0], val.channel[1], val.channel[2], c1+c2); | |
940 | // printf("cmatch = %d, c1 = %f, c2 = %f tval=[%f %f %f]\n", cmatch[midx], c1, c2, tval[midx*im->channels], tval[midx*im->channels+1], tval[midx*im->channels+2] ); | |
941 | ||
942 | for(ch = 0; ch<im->channels; ch++) | |
943 | tval[midx*im->channels + ch] = c1*tval[midx*im->channels + ch] + c2 * (float) val.channel[ch]; | |
944 | ||
945 | ||
946 | } | |
947 | ||
948 | for(p = 0; p<num; p++) for(ch = 0; ch<im->channels; ch++) ival[p].channel[ch] = tval[p*im->channels + ch]; | |
949 | ||
950 | i_nearest_color_foo(im, num, xo, yo, ival, dmeasure); | |
951 | } |