Commit | Line | Data |
---|---|---|
92bda632 TC |
1 | #include "imager.h" |
2 | #include "imageri.h" | |
02d1d628 AMH |
3 | #include <stdlib.h> |
4 | #include <math.h> | |
5 | ||
6 | ||
7 | /* | |
8 | =head1 NAME | |
9 | ||
bea65b1f | 10 | filters.im - implements filters that operate on images |
02d1d628 AMH |
11 | |
12 | =head1 SYNOPSIS | |
13 | ||
14 | ||
15 | i_contrast(im, 0.8); | |
16 | i_hardinvert(im); | |
5558f899 | 17 | i_hardinvertall(im); |
b6381851 | 18 | i_unsharp_mask(im, 2.0, 1.0); |
5558f899 | 19 | ... and more |
02d1d628 AMH |
20 | |
21 | =head1 DESCRIPTION | |
22 | ||
23 | filters.c implements basic filters for Imager. These filters | |
24 | should be accessible from the filter interface as defined in | |
25 | the pod for Imager. | |
26 | ||
27 | =head1 FUNCTION REFERENCE | |
28 | ||
29 | Some of these functions are internal. | |
30 | ||
b8c2033e | 31 | =over |
02d1d628 AMH |
32 | |
33 | =cut | |
34 | */ | |
35 | ||
36 | ||
37 | ||
38 | ||
b2778574 AMH |
39 | /* |
40 | =item saturate(in) | |
41 | ||
42 | Clamps the input value between 0 and 255. (internal) | |
43 | ||
44 | in - input integer | |
45 | ||
46 | =cut | |
47 | */ | |
48 | ||
49 | static | |
50 | unsigned char | |
51 | saturate(int in) { | |
52 | if (in>255) { return 255; } | |
53 | else if (in>0) return in; | |
54 | return 0; | |
55 | } | |
02d1d628 AMH |
56 | |
57 | ||
58 | ||
59 | /* | |
60 | =item i_contrast(im, intensity) | |
61 | ||
62 | Scales the pixel values by the amount specified. | |
63 | ||
64 | im - image object | |
65 | intensity - scalefactor | |
66 | ||
67 | =cut | |
68 | */ | |
69 | ||
70 | void | |
71 | i_contrast(i_img *im, float intensity) { | |
8d14daab | 72 | i_img_dim x, y; |
02d1d628 AMH |
73 | unsigned char ch; |
74 | unsigned int new_color; | |
75 | i_color rcolor; | |
76 | ||
d03fd5a4 | 77 | mm_log((1,"i_contrast(im %p, intensity %f)\n", im, intensity)); |
02d1d628 AMH |
78 | |
79 | if(intensity < 0) return; | |
80 | ||
81 | for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) { | |
82 | i_gpix(im, x, y, &rcolor); | |
83 | ||
84 | for(ch = 0; ch < im->channels; ch++) { | |
85 | new_color = (unsigned int) rcolor.channel[ch]; | |
86 | new_color *= intensity; | |
87 | ||
88 | if(new_color > 255) { | |
89 | new_color = 255; | |
90 | } | |
91 | rcolor.channel[ch] = (unsigned char) new_color; | |
92 | } | |
93 | i_ppix(im, x, y, &rcolor); | |
94 | } | |
95 | } | |
96 | ||
97 | ||
5558f899 TC |
98 | static int |
99 | s_hardinvert_low(i_img *im, int all) { | |
8d14daab | 100 | i_img_dim x, y; |
bea65b1f | 101 | int ch; |
5558f899 | 102 | int invert_channels = all ? im->channels : i_img_color_channels(im); |
bea65b1f | 103 | |
d03fd5a4 | 104 | mm_log((1,"i_hardinvert(im %p)\n", im)); |
02d1d628 | 105 | |
bea65b1f TC |
106 | #code im->bits <= 8 |
107 | IM_COLOR *row, *entry; | |
02d1d628 | 108 | |
e310e5f9 | 109 | /* always rooms to allocate a single line of i_color */ |
bea65b1f | 110 | row = mymalloc(sizeof(IM_COLOR) * im->xsize); /* checked 17feb2005 tonyc */ |
02d1d628 AMH |
111 | |
112 | for(y = 0; y < im->ysize; y++) { | |
bea65b1f | 113 | IM_GLIN(im, 0, im->xsize, y, row); |
92bda632 | 114 | entry = row; |
02d1d628 | 115 | for(x = 0; x < im->xsize; x++) { |
5558f899 | 116 | for(ch = 0; ch < invert_channels; ch++) { |
bea65b1f | 117 | entry->channel[ch] = IM_SAMPLE_MAX - entry->channel[ch]; |
02d1d628 | 118 | } |
92bda632 | 119 | ++entry; |
02d1d628 | 120 | } |
bea65b1f | 121 | IM_PLIN(im, 0, im->xsize, y, row); |
02d1d628 | 122 | } |
92bda632 | 123 | myfree(row); |
bea65b1f | 124 | #/code |
5558f899 TC |
125 | |
126 | return 1; | |
127 | } | |
128 | ||
129 | /* | |
130 | =item i_hardinvert(im) | |
131 | ||
132 | Inverts the color channels of the input image. | |
133 | ||
134 | im - image object | |
135 | ||
136 | =cut | |
137 | */ | |
138 | ||
139 | void | |
140 | i_hardinvert(i_img *im) { | |
141 | s_hardinvert_low(im, 0); | |
02d1d628 AMH |
142 | } |
143 | ||
5558f899 TC |
144 | /* |
145 | =item i_hardinvertall(im) | |
02d1d628 | 146 | |
5558f899 TC |
147 | Inverts all channels of the input image. |
148 | ||
149 | im - image object | |
150 | ||
151 | =cut | |
152 | */ | |
153 | ||
154 | void | |
155 | i_hardinvertall(i_img *im) { | |
156 | s_hardinvert_low(im, 1); | |
157 | } | |
02d1d628 AMH |
158 | |
159 | /* | |
160 | =item i_noise(im, amount, type) | |
161 | ||
8d14daab TC |
162 | Adjusts the sample values randomly by the amount specified. |
163 | ||
164 | If type is 0, adjust all channels in a pixel by the same (random) | |
165 | amount amount, if non-zero adjust each sample independently. | |
02d1d628 AMH |
166 | |
167 | im - image object | |
168 | amount - deviation in pixel values | |
169 | type - noise individual for each channel if true | |
170 | ||
171 | =cut | |
172 | */ | |
173 | ||
8a00cb26 | 174 | #ifdef WIN32 |
02d1d628 AMH |
175 | /* random() is non-ASCII, even if it is better than rand() */ |
176 | #define random() rand() | |
177 | #endif | |
178 | ||
179 | void | |
180 | i_noise(i_img *im, float amount, unsigned char type) { | |
8d14daab | 181 | i_img_dim x, y; |
02d1d628 AMH |
182 | unsigned char ch; |
183 | int new_color; | |
184 | float damount = amount * 2; | |
185 | i_color rcolor; | |
186 | int color_inc = 0; | |
187 | ||
d03fd5a4 | 188 | mm_log((1,"i_noise(im %p, intensity %.2f\n", im, amount)); |
02d1d628 AMH |
189 | |
190 | if(amount < 0) return; | |
191 | ||
192 | for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) { | |
193 | i_gpix(im, x, y, &rcolor); | |
194 | ||
195 | if(type == 0) { | |
196 | color_inc = (amount - (damount * ((float)random() / RAND_MAX))); | |
197 | } | |
198 | ||
199 | for(ch = 0; ch < im->channels; ch++) { | |
200 | new_color = (int) rcolor.channel[ch]; | |
201 | ||
202 | if(type != 0) { | |
203 | new_color += (amount - (damount * ((float)random() / RAND_MAX))); | |
204 | } else { | |
205 | new_color += color_inc; | |
206 | } | |
207 | ||
208 | if(new_color < 0) { | |
209 | new_color = 0; | |
210 | } | |
211 | if(new_color > 255) { | |
212 | new_color = 255; | |
213 | } | |
214 | ||
215 | rcolor.channel[ch] = (unsigned char) new_color; | |
216 | } | |
217 | ||
218 | i_ppix(im, x, y, &rcolor); | |
219 | } | |
220 | } | |
221 | ||
02d1d628 AMH |
222 | /* |
223 | =item i_bumpmap(im, bump, channel, light_x, light_y, st) | |
224 | ||
225 | Makes a bumpmap on image im using the bump image as the elevation map. | |
226 | ||
227 | im - target image | |
228 | bump - image that contains the elevation info | |
229 | channel - to take the elevation information from | |
230 | light_x - x coordinate of light source | |
231 | light_y - y coordinate of light source | |
232 | st - length of shadow | |
233 | ||
234 | =cut | |
235 | */ | |
236 | ||
237 | void | |
8d14daab TC |
238 | i_bumpmap(i_img *im, i_img *bump, int channel, i_img_dim light_x, i_img_dim light_y, i_img_dim st) { |
239 | i_img_dim x, y; | |
240 | int ch; | |
241 | i_img_dim mx, my; | |
02d1d628 AMH |
242 | i_color x1_color, y1_color, x2_color, y2_color, dst_color; |
243 | double nX, nY; | |
244 | double tX, tY, tZ; | |
245 | double aX, aY, aL; | |
246 | double fZ; | |
247 | unsigned char px1, px2, py1, py2; | |
d03fd5a4 | 248 | |
02d1d628 AMH |
249 | i_img new_im; |
250 | ||
d03fd5a4 | 251 | mm_log((1, "i_bumpmap(im %p, add_im %p, channel %d, light(" i_DFp "), st %" i_DF ")\n", |
8d14daab | 252 | im, bump, channel, i_DFcp(light_x, light_y), i_DFc(st))); |
02d1d628 AMH |
253 | |
254 | ||
255 | if(channel >= bump->channels) { | |
d03fd5a4 | 256 | mm_log((1, "i_bumpmap: channel = %d while bump image only has %d channels\n", channel, bump->channels)); |
02d1d628 AMH |
257 | return; |
258 | } | |
b2778574 | 259 | |
02d1d628 AMH |
260 | mx = (bump->xsize <= im->xsize) ? bump->xsize : im->xsize; |
261 | my = (bump->ysize <= im->ysize) ? bump->ysize : im->ysize; | |
262 | ||
263 | i_img_empty_ch(&new_im, im->xsize, im->ysize, im->channels); | |
b2778574 | 264 | |
02d1d628 AMH |
265 | aX = (light_x > (mx >> 1)) ? light_x : mx - light_x; |
266 | aY = (light_y > (my >> 1)) ? light_y : my - light_y; | |
267 | ||
268 | aL = sqrt((aX * aX) + (aY * aY)); | |
269 | ||
270 | for(y = 1; y < my - 1; y++) { | |
271 | for(x = 1; x < mx - 1; x++) { | |
272 | i_gpix(bump, x + st, y, &x1_color); | |
273 | i_gpix(bump, x, y + st, &y1_color); | |
274 | i_gpix(bump, x - st, y, &x2_color); | |
275 | i_gpix(bump, x, y - st, &y2_color); | |
276 | ||
277 | i_gpix(im, x, y, &dst_color); | |
278 | ||
279 | px1 = x1_color.channel[channel]; | |
280 | py1 = y1_color.channel[channel]; | |
281 | px2 = x2_color.channel[channel]; | |
282 | py2 = y2_color.channel[channel]; | |
283 | ||
284 | nX = px1 - px2; | |
285 | nY = py1 - py2; | |
286 | ||
287 | nX += 128; | |
288 | nY += 128; | |
289 | ||
290 | fZ = (sqrt((nX * nX) + (nY * nY)) / aL); | |
291 | ||
8d14daab TC |
292 | tX = i_abs(x - light_x) / aL; |
293 | tY = i_abs(y - light_y) / aL; | |
02d1d628 AMH |
294 | |
295 | tZ = 1 - (sqrt((tX * tX) + (tY * tY)) * fZ); | |
296 | ||
297 | if(tZ < 0) tZ = 0; | |
298 | if(tZ > 2) tZ = 2; | |
299 | ||
300 | for(ch = 0; ch < im->channels; ch++) | |
301 | dst_color.channel[ch] = (unsigned char) (float)(dst_color.channel[ch] * tZ); | |
302 | ||
303 | i_ppix(&new_im, x, y, &dst_color); | |
304 | } | |
305 | } | |
306 | ||
8d14daab | 307 | i_copyto(im, &new_im, 0, 0, im->xsize, im->ysize, 0, 0); |
02d1d628 AMH |
308 | |
309 | i_img_exorcise(&new_im); | |
310 | } | |
311 | ||
312 | ||
313 | ||
b2778574 AMH |
314 | |
315 | typedef struct { | |
8d14daab | 316 | double x,y,z; |
b2778574 AMH |
317 | } fvec; |
318 | ||
319 | ||
320 | static | |
321 | float | |
322 | dotp(fvec *a, fvec *b) { | |
323 | return a->x*b->x+a->y*b->y+a->z*b->z; | |
324 | } | |
325 | ||
326 | static | |
327 | void | |
328 | normalize(fvec *a) { | |
329 | double d = sqrt(dotp(a,a)); | |
330 | a->x /= d; | |
331 | a->y /= d; | |
332 | a->z /= d; | |
333 | } | |
334 | ||
335 | ||
336 | /* | |
337 | positive directions: | |
338 | ||
339 | x - right, | |
340 | y - down | |
341 | z - out of the plane | |
342 | ||
343 | I = Ia + Ip*( cd*Scol(N.L) + cs*(R.V)^n ) | |
344 | ||
345 | Here, the variables are: | |
346 | ||
347 | * Ia - ambient colour | |
348 | * Ip - intensity of the point light source | |
349 | * cd - diffuse coefficient | |
350 | * Scol - surface colour | |
351 | * cs - specular coefficient | |
352 | * n - objects shinyness | |
353 | * N - normal vector | |
354 | * L - lighting vector | |
355 | * R - reflection vector | |
356 | * V - vision vector | |
357 | ||
358 | static void fvec_dump(fvec *x) { | |
359 | printf("(%.2f %.2f %.2f)", x->x, x->y, x->z); | |
360 | } | |
361 | */ | |
362 | ||
363 | /* XXX: Should these return a code for success? */ | |
364 | ||
365 | ||
366 | ||
367 | ||
368 | /* | |
369 | =item i_bumpmap_complex(im, bump, channel, tx, ty, Lx, Ly, Lz, Ip, cd, cs, n, Ia, Il, Is) | |
370 | ||
371 | Makes a bumpmap on image im using the bump image as the elevation map. | |
372 | ||
373 | im - target image | |
374 | bump - image that contains the elevation info | |
375 | channel - to take the elevation information from | |
376 | tx - shift in x direction of where to start applying bumpmap | |
377 | ty - shift in y direction of where to start applying bumpmap | |
378 | Lx - x position/direction of light | |
379 | Ly - y position/direction of light | |
380 | Lz - z position/direction of light | |
381 | Ip - light intensity | |
382 | cd - diffuse coefficient | |
383 | cs - specular coefficient | |
384 | n - surface shinyness | |
385 | Ia - ambient colour | |
386 | Il - light colour | |
387 | Is - specular colour | |
388 | ||
389 | if z<0 then the L is taken to be the direction the light is shining in. Otherwise | |
390 | the L is taken to be the position of the Light, Relative to the image. | |
391 | ||
392 | =cut | |
393 | */ | |
394 | ||
395 | ||
396 | void | |
397 | i_bumpmap_complex(i_img *im, | |
398 | i_img *bump, | |
399 | int channel, | |
8d14daab TC |
400 | i_img_dim tx, |
401 | i_img_dim ty, | |
402 | double Lx, | |
403 | double Ly, | |
404 | double Lz, | |
b2778574 AMH |
405 | float cd, |
406 | float cs, | |
407 | float n, | |
408 | i_color *Ia, | |
409 | i_color *Il, | |
410 | i_color *Is) { | |
411 | i_img new_im; | |
412 | ||
413 | int inflight; | |
8d14daab TC |
414 | i_img_dim x, y; |
415 | int ch; | |
416 | i_img_dim mx, Mx, my, My; | |
b2778574 AMH |
417 | |
418 | float cdc[MAXCHANNELS]; | |
419 | float csc[MAXCHANNELS]; | |
420 | ||
421 | i_color x1_color, y1_color, x2_color, y2_color; | |
422 | ||
423 | i_color Scol; /* Surface colour */ | |
424 | ||
425 | fvec L; /* Light vector */ | |
426 | fvec N; /* surface normal */ | |
427 | fvec R; /* Reflection vector */ | |
428 | fvec V; /* Vision vector */ | |
429 | ||
d03fd5a4 | 430 | mm_log((1, "i_bumpmap_complex(im %p, bump %p, channel %d, t(" i_DFp |
8d14daab TC |
431 | "), Lx %.2f, Ly %.2f, Lz %.2f, cd %.2f, cs %.2f, n %.2f, Ia %p, Il %p, Is %p)\n", |
432 | im, bump, channel, i_DFcp(tx, ty), Lx, Ly, Lz, cd, cs, n, Ia, Il, Is)); | |
b2778574 AMH |
433 | |
434 | if (channel >= bump->channels) { | |
d03fd5a4 | 435 | mm_log((1, "i_bumpmap_complex: channel = %d while bump image only has %d channels\n", channel, bump->channels)); |
b2778574 AMH |
436 | return; |
437 | } | |
438 | ||
439 | for(ch=0; ch<im->channels; ch++) { | |
440 | cdc[ch] = (float)Il->channel[ch]*cd/255.f; | |
441 | csc[ch] = (float)Is->channel[ch]*cs/255.f; | |
442 | } | |
443 | ||
444 | mx = 1; | |
445 | my = 1; | |
446 | Mx = bump->xsize-1; | |
447 | My = bump->ysize-1; | |
448 | ||
449 | V.x = 0; | |
450 | V.y = 0; | |
451 | V.z = 1; | |
452 | ||
453 | if (Lz < 0) { /* Light specifies a direction vector, reverse it to get the vector from surface to light */ | |
454 | L.x = -Lx; | |
455 | L.y = -Ly; | |
456 | L.z = -Lz; | |
457 | normalize(&L); | |
458 | } else { /* Light is the position of the light source */ | |
459 | inflight = 0; | |
460 | L.x = -0.2; | |
461 | L.y = -0.4; | |
462 | L.z = 1; | |
463 | normalize(&L); | |
464 | } | |
465 | ||
466 | i_img_empty_ch(&new_im, im->xsize, im->ysize, im->channels); | |
467 | ||
468 | for(y = 0; y < im->ysize; y++) { | |
469 | for(x = 0; x < im->xsize; x++) { | |
470 | double dp1, dp2; | |
471 | double dx = 0, dy = 0; | |
472 | ||
473 | /* Calculate surface normal */ | |
474 | if (mx<x && x<Mx && my<y && y<My) { | |
475 | i_gpix(bump, x + 1, y, &x1_color); | |
476 | i_gpix(bump, x - 1, y, &x2_color); | |
477 | i_gpix(bump, x, y + 1, &y1_color); | |
478 | i_gpix(bump, x, y - 1, &y2_color); | |
479 | dx = x2_color.channel[channel] - x1_color.channel[channel]; | |
480 | dy = y2_color.channel[channel] - y1_color.channel[channel]; | |
481 | } else { | |
482 | dx = 0; | |
483 | dy = 0; | |
484 | } | |
485 | N.x = -dx * 0.015; | |
486 | N.y = -dy * 0.015; | |
487 | N.z = 1; | |
488 | normalize(&N); | |
489 | ||
490 | /* Calculate Light vector if needed */ | |
491 | if (Lz>=0) { | |
492 | L.x = Lx - x; | |
493 | L.y = Ly - y; | |
494 | L.z = Lz; | |
495 | normalize(&L); | |
496 | } | |
497 | ||
498 | dp1 = dotp(&L,&N); | |
499 | R.x = -L.x + 2*dp1*N.x; | |
500 | R.y = -L.y + 2*dp1*N.y; | |
501 | R.z = -L.z + 2*dp1*N.z; | |
502 | ||
503 | dp2 = dotp(&R,&V); | |
504 | ||
505 | dp1 = dp1<0 ?0 : dp1; | |
506 | dp2 = pow(dp2<0 ?0 : dp2,n); | |
507 | ||
508 | i_gpix(im, x, y, &Scol); | |
509 | ||
510 | for(ch = 0; ch < im->channels; ch++) | |
511 | Scol.channel[ch] = | |
512 | saturate( Ia->channel[ch] + cdc[ch]*Scol.channel[ch]*dp1 + csc[ch]*dp2 ); | |
513 | ||
514 | i_ppix(&new_im, x, y, &Scol); | |
515 | } | |
516 | } | |
517 | ||
8d14daab | 518 | i_copyto(im, &new_im, 0, 0, im->xsize, im->ysize, 0, 0); |
b2778574 AMH |
519 | i_img_exorcise(&new_im); |
520 | } | |
521 | ||
522 | ||
02d1d628 AMH |
523 | /* |
524 | =item i_postlevels(im, levels) | |
525 | ||
526 | Quantizes Images to fewer levels. | |
527 | ||
528 | im - target image | |
529 | levels - number of levels | |
530 | ||
531 | =cut | |
532 | */ | |
533 | ||
534 | void | |
535 | i_postlevels(i_img *im, int levels) { | |
8d14daab TC |
536 | i_img_dim x, y; |
537 | int ch; | |
02d1d628 AMH |
538 | float pv; |
539 | int rv; | |
540 | float av; | |
541 | ||
542 | i_color rcolor; | |
543 | ||
544 | rv = (int) ((float)(256 / levels)); | |
545 | av = (float)levels; | |
546 | ||
547 | for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) { | |
548 | i_gpix(im, x, y, &rcolor); | |
549 | ||
550 | for(ch = 0; ch < im->channels; ch++) { | |
551 | pv = (((float)rcolor.channel[ch] / 255)) * av; | |
552 | pv = (int) ((int)pv * rv); | |
553 | ||
554 | if(pv < 0) pv = 0; | |
555 | else if(pv > 255) pv = 255; | |
556 | ||
557 | rcolor.channel[ch] = (unsigned char) pv; | |
558 | } | |
559 | i_ppix(im, x, y, &rcolor); | |
560 | } | |
561 | } | |
562 | ||
563 | ||
564 | /* | |
565 | =item i_mosaic(im, size) | |
566 | ||
567 | Makes an image looks like a mosaic with tilesize of size | |
568 | ||
569 | im - target image | |
570 | size - size of tiles | |
571 | ||
572 | =cut | |
573 | */ | |
574 | ||
575 | void | |
8d14daab TC |
576 | i_mosaic(i_img *im, i_img_dim size) { |
577 | i_img_dim x, y; | |
578 | int ch, z; | |
579 | i_img_dim lx, ly; | |
02d1d628 AMH |
580 | long sqrsize; |
581 | ||
582 | i_color rcolor; | |
583 | long col[256]; | |
584 | ||
585 | sqrsize = size * size; | |
586 | ||
587 | for(y = 0; y < im->ysize; y += size) for(x = 0; x < im->xsize; x += size) { | |
588 | for(z = 0; z < 256; z++) col[z] = 0; | |
589 | ||
590 | for(lx = 0; lx < size; lx++) { | |
591 | for(ly = 0; ly < size; ly++) { | |
592 | i_gpix(im, (x + lx), (y + ly), &rcolor); | |
593 | ||
594 | for(ch = 0; ch < im->channels; ch++) { | |
595 | col[ch] += rcolor.channel[ch]; | |
596 | } | |
597 | } | |
598 | } | |
599 | ||
600 | for(ch = 0; ch < im->channels; ch++) | |
601 | rcolor.channel[ch] = (int) ((float)col[ch] / sqrsize); | |
602 | ||
603 | ||
604 | for(lx = 0; lx < size; lx++) | |
605 | for(ly = 0; ly < size; ly++) | |
606 | i_ppix(im, (x + lx), (y + ly), &rcolor); | |
607 | ||
608 | } | |
609 | } | |
610 | ||
02d1d628 AMH |
611 | |
612 | /* | |
613 | =item i_watermark(im, wmark, tx, ty, pixdiff) | |
614 | ||
615 | Applies a watermark to the target image | |
616 | ||
617 | im - target image | |
618 | wmark - watermark image | |
619 | tx - x coordinate of where watermark should be applied | |
620 | ty - y coordinate of where watermark should be applied | |
621 | pixdiff - the magnitude of the watermark, controls how visible it is | |
622 | ||
623 | =cut | |
624 | */ | |
625 | ||
626 | void | |
8d14daab TC |
627 | i_watermark(i_img *im, i_img *wmark, i_img_dim tx, i_img_dim ty, int pixdiff) { |
628 | i_img_dim vx, vy; | |
629 | int ch; | |
02d1d628 AMH |
630 | i_color val, wval; |
631 | ||
8d14daab TC |
632 | i_img_dim mx = wmark->xsize; |
633 | i_img_dim my = wmark->ysize; | |
985ffb60 AMH |
634 | |
635 | for(vx=0;vx<mx;vx++) for(vy=0;vy<my;vy++) { | |
02d1d628 AMH |
636 | |
637 | i_gpix(im, tx+vx, ty+vy,&val ); | |
638 | i_gpix(wmark, vx, vy, &wval); | |
639 | ||
640 | for(ch=0;ch<im->channels;ch++) | |
641 | val.channel[ch] = saturate( val.channel[ch] + (pixdiff* (wval.channel[0]-128) )/128 ); | |
642 | ||
643 | i_ppix(im,tx+vx,ty+vy,&val); | |
644 | } | |
645 | } | |
646 | ||
647 | ||
648 | /* | |
649 | =item i_autolevels(im, lsat, usat, skew) | |
650 | ||
651 | Scales and translates each color such that it fills the range completely. | |
652 | Skew is not implemented yet - purpose is to control the color skew that can | |
653 | occur when changing the contrast. | |
654 | ||
655 | im - target image | |
656 | lsat - fraction of pixels that will be truncated at the lower end of the spectrum | |
657 | usat - fraction of pixels that will be truncated at the higher end of the spectrum | |
658 | skew - not used yet | |
659 | ||
660 | =cut | |
661 | */ | |
662 | ||
663 | void | |
664 | i_autolevels(i_img *im, float lsat, float usat, float skew) { | |
665 | i_color val; | |
8d14daab TC |
666 | i_img_dim i, x, y, rhist[256], ghist[256], bhist[256]; |
667 | i_img_dim rsum, rmin, rmax; | |
668 | i_img_dim gsum, gmin, gmax; | |
669 | i_img_dim bsum, bmin, bmax; | |
670 | i_img_dim rcl, rcu, gcl, gcu, bcl, bcu; | |
02d1d628 | 671 | |
d03fd5a4 | 672 | mm_log((1,"i_autolevels(im %p, lsat %f,usat %f,skew %f)\n", im, lsat,usat,skew)); |
02d1d628 AMH |
673 | |
674 | rsum=gsum=bsum=0; | |
675 | for(i=0;i<256;i++) rhist[i]=ghist[i]=bhist[i] = 0; | |
676 | /* create histogram for each channel */ | |
677 | for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) { | |
678 | i_gpix(im, x, y, &val); | |
679 | rhist[val.channel[0]]++; | |
680 | ghist[val.channel[1]]++; | |
681 | bhist[val.channel[2]]++; | |
682 | } | |
683 | ||
684 | for(i=0;i<256;i++) { | |
685 | rsum+=rhist[i]; | |
686 | gsum+=ghist[i]; | |
687 | bsum+=bhist[i]; | |
688 | } | |
689 | ||
690 | rmin = gmin = bmin = 0; | |
691 | rmax = gmax = bmax = 255; | |
692 | ||
693 | rcu = rcl = gcu = gcl = bcu = bcl = 0; | |
694 | ||
695 | for(i=0; i<256; i++) { | |
696 | rcl += rhist[i]; if ( (rcl<rsum*lsat) ) rmin=i; | |
697 | rcu += rhist[255-i]; if ( (rcu<rsum*usat) ) rmax=255-i; | |
698 | ||
699 | gcl += ghist[i]; if ( (gcl<gsum*lsat) ) gmin=i; | |
700 | gcu += ghist[255-i]; if ( (gcu<gsum*usat) ) gmax=255-i; | |
701 | ||
702 | bcl += bhist[i]; if ( (bcl<bsum*lsat) ) bmin=i; | |
703 | bcu += bhist[255-i]; if ( (bcu<bsum*usat) ) bmax=255-i; | |
704 | } | |
705 | ||
706 | for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) { | |
707 | i_gpix(im, x, y, &val); | |
708 | val.channel[0]=saturate((val.channel[0]-rmin)*255/(rmax-rmin)); | |
709 | val.channel[1]=saturate((val.channel[1]-gmin)*255/(gmax-gmin)); | |
710 | val.channel[2]=saturate((val.channel[2]-bmin)*255/(bmax-bmin)); | |
711 | i_ppix(im, x, y, &val); | |
712 | } | |
713 | } | |
714 | ||
715 | /* | |
716 | =item Noise(x,y) | |
717 | ||
718 | Pseudo noise utility function used to generate perlin noise. (internal) | |
719 | ||
720 | x - x coordinate | |
721 | y - y coordinate | |
722 | ||
723 | =cut | |
724 | */ | |
725 | ||
726 | static | |
8d14daab TC |
727 | double |
728 | Noise(i_img_dim x, i_img_dim y) { | |
729 | i_img_dim n = x + y * 57; | |
02d1d628 AMH |
730 | n = (n<<13) ^ n; |
731 | return ( 1.0 - ( (n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824.0); | |
732 | } | |
733 | ||
734 | /* | |
735 | =item SmoothedNoise1(x,y) | |
736 | ||
737 | Pseudo noise utility function used to generate perlin noise. (internal) | |
738 | ||
739 | x - x coordinate | |
740 | y - y coordinate | |
741 | ||
742 | =cut | |
743 | */ | |
744 | ||
745 | static | |
8d14daab TC |
746 | double |
747 | SmoothedNoise1(double x, double y) { | |
748 | double corners = ( Noise(x-1, y-1)+Noise(x+1, y-1)+Noise(x-1, y+1)+Noise(x+1, y+1) ) / 16; | |
749 | double sides = ( Noise(x-1, y) +Noise(x+1, y) +Noise(x, y-1) +Noise(x, y+1) ) / 8; | |
750 | double center = Noise(x, y) / 4; | |
02d1d628 AMH |
751 | return corners + sides + center; |
752 | } | |
753 | ||
754 | ||
755 | /* | |
756 | =item G_Interpolate(a, b, x) | |
757 | ||
758 | Utility function used to generate perlin noise. (internal) | |
759 | ||
760 | =cut | |
761 | */ | |
762 | ||
763 | static | |
8d14daab TC |
764 | double |
765 | C_Interpolate(double a, double b, double x) { | |
02d1d628 | 766 | /* float ft = x * 3.1415927; */ |
8d14daab TC |
767 | double ft = x * PI; |
768 | double f = (1 - cos(ft)) * .5; | |
02d1d628 AMH |
769 | return a*(1-f) + b*f; |
770 | } | |
771 | ||
772 | ||
773 | /* | |
774 | =item InterpolatedNoise(x, y) | |
775 | ||
776 | Utility function used to generate perlin noise. (internal) | |
777 | ||
778 | =cut | |
779 | */ | |
780 | ||
781 | static | |
8d14daab TC |
782 | double |
783 | InterpolatedNoise(double x, double y) { | |
02d1d628 | 784 | |
8d14daab TC |
785 | i_img_dim integer_X = x; |
786 | double fractional_X = x - integer_X; | |
787 | i_img_dim integer_Y = y; | |
788 | double fractional_Y = y - integer_Y; | |
02d1d628 | 789 | |
8d14daab TC |
790 | double v1 = SmoothedNoise1(integer_X, integer_Y); |
791 | double v2 = SmoothedNoise1(integer_X + 1, integer_Y); | |
792 | double v3 = SmoothedNoise1(integer_X, integer_Y + 1); | |
793 | double v4 = SmoothedNoise1(integer_X + 1, integer_Y + 1); | |
02d1d628 | 794 | |
8d14daab TC |
795 | double i1 = C_Interpolate(v1 , v2 , fractional_X); |
796 | double i2 = C_Interpolate(v3 , v4 , fractional_X); | |
02d1d628 AMH |
797 | |
798 | return C_Interpolate(i1 , i2 , fractional_Y); | |
799 | } | |
800 | ||
801 | ||
802 | ||
803 | /* | |
804 | =item PerlinNoise_2D(x, y) | |
805 | ||
806 | Utility function used to generate perlin noise. (internal) | |
807 | ||
808 | =cut | |
809 | */ | |
810 | ||
811 | static | |
812 | float | |
813 | PerlinNoise_2D(float x, float y) { | |
814 | int i,frequency; | |
8d14daab TC |
815 | double amplitude; |
816 | double total = 0; | |
02d1d628 AMH |
817 | int Number_Of_Octaves=6; |
818 | int n = Number_Of_Octaves - 1; | |
819 | ||
820 | for(i=0;i<n;i++) { | |
821 | frequency = 2*i; | |
822 | amplitude = PI; | |
823 | total = total + InterpolatedNoise(x * frequency, y * frequency) * amplitude; | |
824 | } | |
825 | ||
826 | return total; | |
827 | } | |
828 | ||
829 | ||
830 | /* | |
831 | =item i_radnoise(im, xo, yo, rscale, ascale) | |
832 | ||
833 | Perlin-like radial noise. | |
834 | ||
835 | im - target image | |
836 | xo - x coordinate of center | |
837 | yo - y coordinate of center | |
838 | rscale - radial scale | |
839 | ascale - angular scale | |
840 | ||
841 | =cut | |
842 | */ | |
843 | ||
844 | void | |
8d14daab TC |
845 | i_radnoise(i_img *im, i_img_dim xo, i_img_dim yo, double rscale, double ascale) { |
846 | i_img_dim x, y; | |
847 | int ch; | |
02d1d628 AMH |
848 | i_color val; |
849 | unsigned char v; | |
8d14daab | 850 | double xc, yc, r; |
02d1d628 AMH |
851 | double a; |
852 | ||
853 | for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) { | |
8d14daab TC |
854 | xc = (double)x-xo+0.5; |
855 | yc = (double)y-yo+0.5; | |
02d1d628 AMH |
856 | r = rscale*sqrt(xc*xc+yc*yc)+1.2; |
857 | a = (PI+atan2(yc,xc))*ascale; | |
858 | v = saturate(128+100*(PerlinNoise_2D(a,r))); | |
859 | /* v=saturate(120+12*PerlinNoise_2D(xo+(float)x/scale,yo+(float)y/scale)); Good soft marble */ | |
860 | for(ch=0; ch<im->channels; ch++) val.channel[ch]=v; | |
861 | i_ppix(im, x, y, &val); | |
862 | } | |
863 | } | |
864 | ||
865 | ||
866 | /* | |
867 | =item i_turbnoise(im, xo, yo, scale) | |
868 | ||
869 | Perlin-like 2d noise noise. | |
870 | ||
871 | im - target image | |
872 | xo - x coordinate translation | |
873 | yo - y coordinate translation | |
874 | scale - scale of noise | |
875 | ||
876 | =cut | |
877 | */ | |
878 | ||
879 | void | |
8d14daab TC |
880 | i_turbnoise(i_img *im, double xo, double yo, double scale) { |
881 | i_img_dim x,y; | |
882 | int ch; | |
02d1d628 AMH |
883 | unsigned char v; |
884 | i_color val; | |
885 | ||
886 | for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) { | |
887 | /* v=saturate(125*(1.0+PerlinNoise_2D(xo+(float)x/scale,yo+(float)y/scale))); */ | |
8d14daab | 888 | v = saturate(120*(1.0+sin(xo+(double)x/scale+PerlinNoise_2D(xo+(double)x/scale,yo+(float)y/scale)))); |
02d1d628 AMH |
889 | for(ch=0; ch<im->channels; ch++) val.channel[ch] = v; |
890 | i_ppix(im, x, y, &val); | |
891 | } | |
892 | } | |
893 | ||
894 | ||
895 | ||
896 | /* | |
897 | =item i_gradgen(im, num, xo, yo, ival, dmeasure) | |
898 | ||
899 | Gradient generating function. | |
900 | ||
901 | im - target image | |
902 | num - number of points given | |
903 | xo - array of x coordinates | |
904 | yo - array of y coordinates | |
905 | ival - array of i_color objects | |
906 | dmeasure - distance measure to be used. | |
907 | 0 = Euclidean | |
908 | 1 = Euclidean squared | |
909 | 2 = Manhattan distance | |
910 | ||
911 | =cut | |
912 | */ | |
913 | ||
914 | ||
915 | void | |
8d14daab | 916 | i_gradgen(i_img *im, int num, i_img_dim *xo, i_img_dim *yo, i_color *ival, int dmeasure) { |
02d1d628 AMH |
917 | |
918 | i_color val; | |
8d14daab TC |
919 | int p, ch; |
920 | i_img_dim x, y; | |
02d1d628 | 921 | int channels = im->channels; |
8d14daab TC |
922 | i_img_dim xsize = im->xsize; |
923 | i_img_dim ysize = im->ysize; | |
924 | size_t bytes; | |
02d1d628 | 925 | |
8d14daab | 926 | double *fdist; |
02d1d628 | 927 | |
d03fd5a4 | 928 | mm_log((1,"i_gradgen(im %p, num %d, xo %p, yo %p, ival %p, dmeasure %d)\n", im, num, xo, yo, ival, dmeasure)); |
02d1d628 AMH |
929 | |
930 | for(p = 0; p<num; p++) { | |
d03fd5a4 | 931 | mm_log((1,"i_gradgen: p%d(" i_DFp ")\n", p, i_DFcp(xo[p], yo[p]))); |
02d1d628 AMH |
932 | ICL_info(&ival[p]); |
933 | } | |
934 | ||
f0960b14 TC |
935 | /* on the systems I have sizeof(float) == sizeof(int) and thus |
936 | this would be same size as the arrays xo and yo point at, but this | |
937 | may not be true for other systems | |
938 | ||
939 | since the arrays here are caller controlled, I assume that on | |
940 | overflow is a programming error rather than an end-user error, so | |
941 | calling exit() is justified. | |
942 | */ | |
8d14daab TC |
943 | bytes = sizeof(double) * num; |
944 | if (bytes / num != sizeof(double)) { | |
f0960b14 TC |
945 | fprintf(stderr, "integer overflow calculating memory allocation"); |
946 | exit(1); | |
947 | } | |
948 | fdist = mymalloc( bytes ); /* checked 14jul05 tonyc */ | |
02d1d628 AMH |
949 | |
950 | for(y = 0; y<ysize; y++) for(x = 0; x<xsize; x++) { | |
8d14daab TC |
951 | double cs = 0; |
952 | double csd = 0; | |
02d1d628 | 953 | for(p = 0; p<num; p++) { |
8d14daab TC |
954 | i_img_dim xd = x-xo[p]; |
955 | i_img_dim yd = y-yo[p]; | |
02d1d628 AMH |
956 | switch (dmeasure) { |
957 | case 0: /* euclidean */ | |
958 | fdist[p] = sqrt(xd*xd + yd*yd); /* euclidean distance */ | |
959 | break; | |
960 | case 1: /* euclidean squared */ | |
961 | fdist[p] = xd*xd + yd*yd; /* euclidean distance */ | |
962 | break; | |
963 | case 2: /* euclidean squared */ | |
b33c08f8 | 964 | fdist[p] = i_max(xd*xd, yd*yd); /* manhattan distance */ |
02d1d628 AMH |
965 | break; |
966 | default: | |
d03fd5a4 | 967 | i_fatal(3,"i_gradgen: Unknown distance measure\n"); |
02d1d628 AMH |
968 | } |
969 | cs += fdist[p]; | |
970 | } | |
971 | ||
972 | csd = 1/((num-1)*cs); | |
973 | ||
974 | for(p = 0; p<num; p++) fdist[p] = (cs-fdist[p])*csd; | |
975 | ||
976 | for(ch = 0; ch<channels; ch++) { | |
977 | int tres = 0; | |
978 | for(p = 0; p<num; p++) tres += ival[p].channel[ch] * fdist[p]; | |
979 | val.channel[ch] = saturate(tres); | |
980 | } | |
981 | i_ppix(im, x, y, &val); | |
982 | } | |
a73aeb5f | 983 | myfree(fdist); |
02d1d628 AMH |
984 | |
985 | } | |
986 | ||
02d1d628 | 987 | void |
8d14daab | 988 | i_nearest_color_foo(i_img *im, int num, i_img_dim *xo, i_img_dim *yo, i_color *ival, int dmeasure) { |
02d1d628 | 989 | |
8d14daab TC |
990 | int p; |
991 | i_img_dim x, y; | |
992 | i_img_dim xsize = im->xsize; | |
993 | i_img_dim ysize = im->ysize; | |
02d1d628 | 994 | |
d03fd5a4 | 995 | mm_log((1,"i_gradgen(im %p, num %d, xo %p, yo %p, ival %p, dmeasure %d)\n", im, num, xo, yo, ival, dmeasure)); |
02d1d628 AMH |
996 | |
997 | for(p = 0; p<num; p++) { | |
d03fd5a4 | 998 | mm_log((1,"i_gradgen: p%d(" i_DFp ")\n", p, i_DFcp(xo[p], yo[p]))); |
02d1d628 AMH |
999 | ICL_info(&ival[p]); |
1000 | } | |
1001 | ||
1002 | for(y = 0; y<ysize; y++) for(x = 0; x<xsize; x++) { | |
8d14daab TC |
1003 | int midx = 0; |
1004 | double mindist = 0; | |
1005 | double curdist = 0; | |
02d1d628 | 1006 | |
8d14daab TC |
1007 | i_img_dim xd = x-xo[0]; |
1008 | i_img_dim yd = y-yo[0]; | |
02d1d628 AMH |
1009 | |
1010 | switch (dmeasure) { | |
1011 | case 0: /* euclidean */ | |
1012 | mindist = sqrt(xd*xd + yd*yd); /* euclidean distance */ | |
1013 | break; | |
1014 | case 1: /* euclidean squared */ | |
1015 | mindist = xd*xd + yd*yd; /* euclidean distance */ | |
1016 | break; | |
1017 | case 2: /* euclidean squared */ | |
b33c08f8 | 1018 | mindist = i_max(xd*xd, yd*yd); /* manhattan distance */ |
02d1d628 AMH |
1019 | break; |
1020 | default: | |
d03fd5a4 | 1021 | i_fatal(3,"i_nearest_color: Unknown distance measure\n"); |
02d1d628 AMH |
1022 | } |
1023 | ||
1024 | for(p = 1; p<num; p++) { | |
1025 | xd = x-xo[p]; | |
1026 | yd = y-yo[p]; | |
1027 | switch (dmeasure) { | |
1028 | case 0: /* euclidean */ | |
1029 | curdist = sqrt(xd*xd + yd*yd); /* euclidean distance */ | |
1030 | break; | |
1031 | case 1: /* euclidean squared */ | |
1032 | curdist = xd*xd + yd*yd; /* euclidean distance */ | |
1033 | break; | |
1034 | case 2: /* euclidean squared */ | |
b33c08f8 | 1035 | curdist = i_max(xd*xd, yd*yd); /* manhattan distance */ |
02d1d628 AMH |
1036 | break; |
1037 | default: | |
d03fd5a4 | 1038 | i_fatal(3,"i_nearest_color: Unknown distance measure\n"); |
02d1d628 AMH |
1039 | } |
1040 | if (curdist < mindist) { | |
1041 | mindist = curdist; | |
1042 | midx = p; | |
1043 | } | |
1044 | } | |
1045 | i_ppix(im, x, y, &ival[midx]); | |
1046 | } | |
1047 | } | |
1048 | ||
f0960b14 TC |
1049 | /* |
1050 | =item i_nearest_color(im, num, xo, yo, oval, dmeasure) | |
1051 | ||
1052 | This wasn't document - quoth Addi: | |
1053 | ||
1054 | An arty type of filter | |
1055 | ||
1056 | FIXME: check IRC logs for actual text. | |
1057 | ||
1058 | Inputs: | |
1059 | ||
1060 | =over | |
1061 | ||
1062 | =item * | |
1063 | ||
1064 | i_img *im - image to render on. | |
1065 | ||
1066 | =item * | |
1067 | ||
1068 | int num - number of points/colors in xo, yo, oval | |
1069 | ||
1070 | =item * | |
1071 | ||
8d14daab | 1072 | i_img_dim *xo - array of I<num> x positions |
f0960b14 TC |
1073 | |
1074 | =item * | |
1075 | ||
8d14daab | 1076 | i_img_dim *yo - array of I<num> y positions |
f0960b14 TC |
1077 | |
1078 | =item * | |
1079 | ||
1080 | i_color *oval - array of I<num> colors | |
1081 | ||
1082 | xo, yo, oval correspond to each other, the point xo[i], yo[i] has a | |
1083 | color something like oval[i], at least closer to that color than other | |
1084 | points. | |
1085 | ||
1086 | =item * | |
1087 | ||
1088 | int dmeasure - how we measure the distance from some point P(x,y) to | |
1089 | any (xo[i], yo[i]). | |
1090 | ||
1091 | Valid values are: | |
1092 | ||
1093 | =over | |
1094 | ||
1095 | =item 0 | |
1096 | ||
1097 | euclidean distance: sqrt((x2-x1)**2 + (y2-y1)**2) | |
1098 | ||
1099 | =item 1 | |
1100 | ||
1101 | square of euclidean distance: ((x2-x1)**2 + (y2-y1)**2) | |
1102 | ||
1103 | =item 2 | |
1104 | ||
1105 | manhattan distance: max((y2-y1)**2, (x2-x1)**2) | |
1106 | ||
1107 | =back | |
1108 | ||
1109 | An invalid value causes an error exit (the program is aborted). | |
1110 | ||
1111 | =back | |
1112 | ||
1113 | =cut | |
1114 | */ | |
e310e5f9 TC |
1115 | |
1116 | int | |
8d14daab | 1117 | i_nearest_color(i_img *im, int num, i_img_dim *xo, i_img_dim *yo, i_color *oval, int dmeasure) { |
02d1d628 AMH |
1118 | i_color *ival; |
1119 | float *tval; | |
8d14daab | 1120 | double c1, c2; |
02d1d628 | 1121 | i_color val; |
8d14daab TC |
1122 | int p, ch; |
1123 | i_img_dim x, y; | |
1124 | i_img_dim xsize = im->xsize; | |
1125 | i_img_dim ysize = im->ysize; | |
02d1d628 | 1126 | int *cmatch; |
8d14daab | 1127 | size_t ival_bytes, tval_bytes; |
02d1d628 | 1128 | |
d03fd5a4 | 1129 | mm_log((1,"i_nearest_color(im %p, num %d, xo %p, yo %p, oval %p, dmeasure %d)\n", im, num, xo, yo, oval, dmeasure)); |
02d1d628 | 1130 | |
e310e5f9 TC |
1131 | i_clear_error(); |
1132 | ||
1133 | if (num <= 0) { | |
1134 | i_push_error(0, "no points supplied to nearest_color filter"); | |
1135 | return 0; | |
1136 | } | |
1137 | ||
1138 | if (dmeasure < 0 || dmeasure > i_dmeasure_limit) { | |
1139 | i_push_error(0, "distance measure invalid"); | |
1140 | return 0; | |
1141 | } | |
1142 | ||
1143 | tval_bytes = sizeof(float)*num*im->channels; | |
1144 | if (tval_bytes / num != sizeof(float) * im->channels) { | |
1145 | i_push_error(0, "integer overflow calculating memory allocation"); | |
1146 | return 0; | |
1147 | } | |
1148 | ival_bytes = sizeof(i_color) * num; | |
1149 | if (ival_bytes / sizeof(i_color) != num) { | |
1150 | i_push_error(0, "integer overflow calculating memory allocation"); | |
1151 | return 0; | |
1152 | } | |
1153 | tval = mymalloc( tval_bytes ); /* checked 17feb2005 tonyc */ | |
1154 | ival = mymalloc( ival_bytes ); /* checked 17feb2005 tonyc */ | |
1155 | cmatch = mymalloc( sizeof(int)*num ); /* checked 17feb2005 tonyc */ | |
02d1d628 AMH |
1156 | |
1157 | for(p = 0; p<num; p++) { | |
1158 | for(ch = 0; ch<im->channels; ch++) tval[ p * im->channels + ch] = 0; | |
1159 | cmatch[p] = 0; | |
1160 | } | |
1161 | ||
1162 | ||
1163 | for(y = 0; y<ysize; y++) for(x = 0; x<xsize; x++) { | |
1164 | int midx = 0; | |
8d14daab TC |
1165 | double mindist = 0; |
1166 | double curdist = 0; | |
02d1d628 | 1167 | |
8d14daab TC |
1168 | i_img_dim xd = x-xo[0]; |
1169 | i_img_dim yd = y-yo[0]; | |
02d1d628 AMH |
1170 | |
1171 | switch (dmeasure) { | |
1172 | case 0: /* euclidean */ | |
1173 | mindist = sqrt(xd*xd + yd*yd); /* euclidean distance */ | |
1174 | break; | |
1175 | case 1: /* euclidean squared */ | |
1176 | mindist = xd*xd + yd*yd; /* euclidean distance */ | |
1177 | break; | |
e310e5f9 | 1178 | case 2: /* manhatten distance */ |
b33c08f8 | 1179 | mindist = i_max(xd*xd, yd*yd); /* manhattan distance */ |
02d1d628 AMH |
1180 | break; |
1181 | default: | |
d03fd5a4 | 1182 | i_fatal(3,"i_nearest_color: Unknown distance measure\n"); |
02d1d628 AMH |
1183 | } |
1184 | ||
1185 | for(p = 1; p<num; p++) { | |
1186 | xd = x-xo[p]; | |
1187 | yd = y-yo[p]; | |
1188 | switch (dmeasure) { | |
1189 | case 0: /* euclidean */ | |
1190 | curdist = sqrt(xd*xd + yd*yd); /* euclidean distance */ | |
1191 | break; | |
1192 | case 1: /* euclidean squared */ | |
1193 | curdist = xd*xd + yd*yd; /* euclidean distance */ | |
1194 | break; | |
1195 | case 2: /* euclidean squared */ | |
b33c08f8 | 1196 | curdist = i_max(xd*xd, yd*yd); /* manhattan distance */ |
02d1d628 AMH |
1197 | break; |
1198 | default: | |
d03fd5a4 | 1199 | i_fatal(3,"i_nearest_color: Unknown distance measure\n"); |
02d1d628 AMH |
1200 | } |
1201 | if (curdist < mindist) { | |
1202 | mindist = curdist; | |
1203 | midx = p; | |
1204 | } | |
1205 | } | |
1206 | ||
1207 | cmatch[midx]++; | |
1208 | i_gpix(im, x, y, &val); | |
1209 | c2 = 1.0/(float)(cmatch[midx]); | |
1210 | c1 = 1.0-c2; | |
1211 | ||
02d1d628 | 1212 | for(ch = 0; ch<im->channels; ch++) |
f0960b14 TC |
1213 | tval[midx*im->channels + ch] = |
1214 | c1*tval[midx*im->channels + ch] + c2 * (float) val.channel[ch]; | |
3bb1c1f3 | 1215 | |
02d1d628 AMH |
1216 | } |
1217 | ||
8d14daab TC |
1218 | for(p = 0; p<num; p++) { |
1219 | for(ch = 0; ch<im->channels; ch++) | |
1220 | ival[p].channel[ch] = tval[p*im->channels + ch]; | |
1221 | ||
1222 | /* avoid uninitialized value messages from valgrind */ | |
1223 | while (ch < MAXCHANNELS) | |
1224 | ival[p].channel[ch++] = 0; | |
1225 | } | |
02d1d628 AMH |
1226 | |
1227 | i_nearest_color_foo(im, num, xo, yo, ival, dmeasure); | |
e310e5f9 TC |
1228 | |
1229 | return 1; | |
02d1d628 | 1230 | } |
6607600c | 1231 | |
b6381851 TC |
1232 | /* |
1233 | =item i_unsharp_mask(im, stddev, scale) | |
1234 | ||
1235 | Perform an usharp mask, which is defined as subtracting the blurred | |
1236 | image from double the original. | |
1237 | ||
1238 | =cut | |
1239 | */ | |
e310e5f9 TC |
1240 | |
1241 | void | |
1242 | i_unsharp_mask(i_img *im, double stddev, double scale) { | |
92bda632 | 1243 | i_img *copy; |
8d14daab TC |
1244 | i_img_dim x, y; |
1245 | int ch; | |
b6381851 TC |
1246 | |
1247 | if (scale < 0) | |
1248 | return; | |
1249 | /* it really shouldn't ever be more than 1.0, but maybe ... */ | |
1250 | if (scale > 100) | |
1251 | scale = 100; | |
1252 | ||
92bda632 TC |
1253 | copy = i_copy(im); |
1254 | i_gaussian(copy, stddev); | |
b6381851 | 1255 | if (im->bits == i_8_bits) { |
e310e5f9 TC |
1256 | i_color *blur = mymalloc(im->xsize * sizeof(i_color)); /* checked 17feb2005 tonyc */ |
1257 | i_color *out = mymalloc(im->xsize * sizeof(i_color)); /* checked 17feb2005 tonyc */ | |
b6381851 TC |
1258 | |
1259 | for (y = 0; y < im->ysize; ++y) { | |
92bda632 | 1260 | i_glin(copy, 0, copy->xsize, y, blur); |
b6381851 TC |
1261 | i_glin(im, 0, im->xsize, y, out); |
1262 | for (x = 0; x < im->xsize; ++x) { | |
1263 | for (ch = 0; ch < im->channels; ++ch) { | |
1264 | /*int temp = out[x].channel[ch] + | |
1265 | scale * (out[x].channel[ch] - blur[x].channel[ch]);*/ | |
1266 | int temp = out[x].channel[ch] * 2 - blur[x].channel[ch]; | |
1267 | if (temp < 0) | |
1268 | temp = 0; | |
1269 | else if (temp > 255) | |
1270 | temp = 255; | |
1271 | out[x].channel[ch] = temp; | |
1272 | } | |
1273 | } | |
1274 | i_plin(im, 0, im->xsize, y, out); | |
1275 | } | |
1276 | ||
1277 | myfree(blur); | |
e310e5f9 | 1278 | myfree(out); |
b6381851 TC |
1279 | } |
1280 | else { | |
e310e5f9 TC |
1281 | i_fcolor *blur = mymalloc(im->xsize * sizeof(i_fcolor)); /* checked 17feb2005 tonyc */ |
1282 | i_fcolor *out = mymalloc(im->xsize * sizeof(i_fcolor)); /* checked 17feb2005 tonyc */ | |
b6381851 TC |
1283 | |
1284 | for (y = 0; y < im->ysize; ++y) { | |
92bda632 | 1285 | i_glinf(copy, 0, copy->xsize, y, blur); |
b6381851 TC |
1286 | i_glinf(im, 0, im->xsize, y, out); |
1287 | for (x = 0; x < im->xsize; ++x) { | |
1288 | for (ch = 0; ch < im->channels; ++ch) { | |
1289 | double temp = out[x].channel[ch] + | |
1290 | scale * (out[x].channel[ch] - blur[x].channel[ch]); | |
1291 | if (temp < 0) | |
1292 | temp = 0; | |
1293 | else if (temp > 1.0) | |
1294 | temp = 1.0; | |
1295 | out[x].channel[ch] = temp; | |
1296 | } | |
1297 | } | |
1298 | i_plinf(im, 0, im->xsize, y, out); | |
1299 | } | |
1300 | ||
1301 | myfree(blur); | |
e310e5f9 | 1302 | myfree(out); |
b6381851 | 1303 | } |
92bda632 | 1304 | i_img_destroy(copy); |
b6381851 TC |
1305 | } |
1306 | ||
dff75dee | 1307 | /* |
01b84320 | 1308 | =item i_diff_image(im1, im2, mindist) |
dff75dee TC |
1309 | |
1310 | Creates a new image that is transparent, except where the pixel in im2 | |
1311 | is different from im1, where it is the pixel from im2. | |
1312 | ||
1313 | The samples must differ by at least mindiff to be considered different. | |
1314 | ||
1315 | =cut | |
1316 | */ | |
1317 | ||
1318 | i_img * | |
01b84320 | 1319 | i_diff_image(i_img *im1, i_img *im2, double mindist) { |
dff75dee TC |
1320 | i_img *out; |
1321 | int outchans, diffchans; | |
8d14daab | 1322 | i_img_dim xsize, ysize; |
dff75dee TC |
1323 | |
1324 | i_clear_error(); | |
1325 | if (im1->channels != im2->channels) { | |
1326 | i_push_error(0, "different number of channels"); | |
1327 | return NULL; | |
1328 | } | |
1329 | ||
1330 | outchans = diffchans = im1->channels; | |
1331 | if (outchans == 1 || outchans == 3) | |
1332 | ++outchans; | |
1333 | ||
b33c08f8 TC |
1334 | xsize = i_min(im1->xsize, im2->xsize); |
1335 | ysize = i_min(im1->ysize, im2->ysize); | |
dff75dee TC |
1336 | |
1337 | out = i_sametype_chans(im1, xsize, ysize, outchans); | |
1338 | ||
1339 | if (im1->bits == i_8_bits && im2->bits == i_8_bits) { | |
e310e5f9 TC |
1340 | i_color *line1 = mymalloc(xsize * sizeof(*line1)); /* checked 17feb2005 tonyc */ |
1341 | i_color *line2 = mymalloc(xsize * sizeof(*line1)); /* checked 17feb2005 tonyc */ | |
dff75dee | 1342 | i_color empty; |
8d14daab TC |
1343 | i_img_dim x, y; |
1344 | int ch; | |
01b84320 | 1345 | int imindist = (int)mindist; |
dff75dee TC |
1346 | |
1347 | for (ch = 0; ch < MAXCHANNELS; ++ch) | |
1348 | empty.channel[ch] = 0; | |
1349 | ||
1350 | for (y = 0; y < ysize; ++y) { | |
1351 | i_glin(im1, 0, xsize, y, line1); | |
1352 | i_glin(im2, 0, xsize, y, line2); | |
35342ea0 TC |
1353 | if (outchans != diffchans) { |
1354 | /* give the output an alpha channel since it doesn't have one */ | |
1355 | for (x = 0; x < xsize; ++x) | |
1356 | line2[x].channel[diffchans] = 255; | |
1357 | } | |
dff75dee TC |
1358 | for (x = 0; x < xsize; ++x) { |
1359 | int diff = 0; | |
1360 | for (ch = 0; ch < diffchans; ++ch) { | |
1361 | if (line1[x].channel[ch] != line2[x].channel[ch] | |
01b84320 | 1362 | && abs(line1[x].channel[ch] - line2[x].channel[ch]) > imindist) { |
dff75dee TC |
1363 | diff = 1; |
1364 | break; | |
1365 | } | |
1366 | } | |
1367 | if (!diff) | |
1368 | line2[x] = empty; | |
1369 | } | |
1370 | i_plin(out, 0, xsize, y, line2); | |
1371 | } | |
1372 | myfree(line1); | |
e310e5f9 | 1373 | myfree(line2); |
dff75dee TC |
1374 | } |
1375 | else { | |
e310e5f9 TC |
1376 | i_fcolor *line1 = mymalloc(xsize * sizeof(*line1)); /* checked 17feb2005 tonyc */ |
1377 | i_fcolor *line2 = mymalloc(xsize * sizeof(*line2)); /* checked 17feb2005 tonyc */ | |
dff75dee | 1378 | i_fcolor empty; |
8d14daab TC |
1379 | i_img_dim x, y; |
1380 | int ch; | |
01b84320 | 1381 | double dist = mindist / 255.0; |
dff75dee TC |
1382 | |
1383 | for (ch = 0; ch < MAXCHANNELS; ++ch) | |
1384 | empty.channel[ch] = 0; | |
1385 | ||
1386 | for (y = 0; y < ysize; ++y) { | |
1387 | i_glinf(im1, 0, xsize, y, line1); | |
1388 | i_glinf(im2, 0, xsize, y, line2); | |
35342ea0 TC |
1389 | if (outchans != diffchans) { |
1390 | /* give the output an alpha channel since it doesn't have one */ | |
1391 | for (x = 0; x < xsize; ++x) | |
1392 | line2[x].channel[diffchans] = 1.0; | |
1393 | } | |
dff75dee TC |
1394 | for (x = 0; x < xsize; ++x) { |
1395 | int diff = 0; | |
1396 | for (ch = 0; ch < diffchans; ++ch) { | |
1397 | if (line1[x].channel[ch] != line2[x].channel[ch] | |
01b84320 | 1398 | && fabs(line1[x].channel[ch] - line2[x].channel[ch]) > dist) { |
dff75dee TC |
1399 | diff = 1; |
1400 | break; | |
1401 | } | |
1402 | } | |
1403 | if (!diff) | |
1404 | line2[x] = empty; | |
1405 | } | |
1406 | i_plinf(out, 0, xsize, y, line2); | |
1407 | } | |
1408 | myfree(line1); | |
e310e5f9 | 1409 | myfree(line2); |
dff75dee TC |
1410 | } |
1411 | ||
1412 | return out; | |
1413 | } | |
1414 | ||
f1ac5027 | 1415 | struct fount_state; |
6607600c TC |
1416 | static double linear_fount_f(double x, double y, struct fount_state *state); |
1417 | static double bilinear_fount_f(double x, double y, struct fount_state *state); | |
1418 | static double radial_fount_f(double x, double y, struct fount_state *state); | |
1419 | static double square_fount_f(double x, double y, struct fount_state *state); | |
1420 | static double revolution_fount_f(double x, double y, | |
1421 | struct fount_state *state); | |
1422 | static double conical_fount_f(double x, double y, struct fount_state *state); | |
1423 | ||
1424 | typedef double (*fount_func)(double, double, struct fount_state *); | |
1425 | static fount_func fount_funcs[] = | |
1426 | { | |
1427 | linear_fount_f, | |
1428 | bilinear_fount_f, | |
1429 | radial_fount_f, | |
1430 | square_fount_f, | |
1431 | revolution_fount_f, | |
1432 | conical_fount_f, | |
1433 | }; | |
1434 | ||
1435 | static double linear_interp(double pos, i_fountain_seg *seg); | |
1436 | static double sine_interp(double pos, i_fountain_seg *seg); | |
1437 | static double sphereup_interp(double pos, i_fountain_seg *seg); | |
1438 | static double spheredown_interp(double pos, i_fountain_seg *seg); | |
1439 | typedef double (*fount_interp)(double pos, i_fountain_seg *seg); | |
1440 | static fount_interp fount_interps[] = | |
1441 | { | |
1442 | linear_interp, | |
1443 | linear_interp, | |
1444 | sine_interp, | |
1445 | sphereup_interp, | |
1446 | spheredown_interp, | |
1447 | }; | |
1448 | ||
1449 | static void direct_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg); | |
1450 | static void hue_up_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg); | |
1451 | static void hue_down_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg); | |
1452 | typedef void (*fount_cinterp)(i_fcolor *out, double pos, i_fountain_seg *seg); | |
1453 | static fount_cinterp fount_cinterps[] = | |
1454 | { | |
1455 | direct_cinterp, | |
1456 | hue_up_cinterp, | |
1457 | hue_down_cinterp, | |
1458 | }; | |
1459 | ||
1460 | typedef double (*fount_repeat)(double v); | |
1461 | static double fount_r_none(double v); | |
1462 | static double fount_r_sawtooth(double v); | |
1463 | static double fount_r_triangle(double v); | |
1464 | static double fount_r_saw_both(double v); | |
1465 | static double fount_r_tri_both(double v); | |
1466 | static fount_repeat fount_repeats[] = | |
1467 | { | |
1468 | fount_r_none, | |
1469 | fount_r_sawtooth, | |
1470 | fount_r_triangle, | |
1471 | fount_r_saw_both, | |
1472 | fount_r_tri_both, | |
1473 | }; | |
1474 | ||
f1ac5027 TC |
1475 | static int simple_ssample(i_fcolor *out, double x, double y, |
1476 | struct fount_state *state); | |
1477 | static int random_ssample(i_fcolor *out, double x, double y, | |
1478 | struct fount_state *state); | |
1479 | static int circle_ssample(i_fcolor *out, double x, double y, | |
1480 | struct fount_state *state); | |
1481 | typedef int (*fount_ssample)(i_fcolor *out, double x, double y, | |
1482 | struct fount_state *state); | |
6607600c TC |
1483 | static fount_ssample fount_ssamples[] = |
1484 | { | |
1485 | NULL, | |
1486 | simple_ssample, | |
1487 | random_ssample, | |
1488 | circle_ssample, | |
1489 | }; | |
1490 | ||
1491 | static int | |
f1ac5027 TC |
1492 | fount_getat(i_fcolor *out, double x, double y, struct fount_state *state); |
1493 | ||
1494 | /* | |
1495 | Keep state information used by each type of fountain fill | |
1496 | */ | |
1497 | struct fount_state { | |
1498 | /* precalculated for the equation of the line perpendicular to the line AB */ | |
1499 | double lA, lB, lC; | |
1500 | double AB; | |
1501 | double sqrtA2B2; | |
1502 | double mult; | |
1503 | double cos; | |
1504 | double sin; | |
1505 | double theta; | |
8d14daab | 1506 | i_img_dim xa, ya; |
f1ac5027 TC |
1507 | void *ssample_data; |
1508 | fount_func ffunc; | |
1509 | fount_repeat rpfunc; | |
1510 | fount_ssample ssfunc; | |
1511 | double parm; | |
1512 | i_fountain_seg *segs; | |
1513 | int count; | |
1514 | }; | |
1515 | ||
1516 | static void | |
1517 | fount_init_state(struct fount_state *state, double xa, double ya, | |
1518 | double xb, double yb, i_fountain_type type, | |
1519 | i_fountain_repeat repeat, int combine, int super_sample, | |
1520 | double ssample_param, int count, i_fountain_seg *segs); | |
1521 | ||
1522 | static void | |
1523 | fount_finish_state(struct fount_state *state); | |
6607600c TC |
1524 | |
1525 | #define EPSILON (1e-6) | |
1526 | ||
1527 | /* | |
1528 | =item i_fountain(im, xa, ya, xb, yb, type, repeat, combine, super_sample, ssample_param, count, segs) | |
1529 | ||
1530 | Draws a fountain fill using A(xa, ya) and B(xb, yb) as reference points. | |
1531 | ||
1532 | I<type> controls how the reference points are used: | |
1533 | ||
1534 | =over | |
1535 | ||
1536 | =item i_ft_linear | |
1537 | ||
1538 | linear, where A is 0 and B is 1. | |
1539 | ||
1540 | =item i_ft_bilinear | |
1541 | ||
1542 | linear in both directions from A. | |
1543 | ||
1544 | =item i_ft_radial | |
1545 | ||
1546 | circular, where A is the centre of the fill, and B is a point | |
1547 | on the radius. | |
1548 | ||
1549 | =item i_ft_radial_square | |
1550 | ||
1551 | where A is the centre of the fill and B is the centre of | |
1552 | one side of the square. | |
1553 | ||
1554 | =item i_ft_revolution | |
1555 | ||
1556 | where A is the centre of the fill and B defines the 0/1.0 | |
1557 | angle of the fill. | |
1558 | ||
1559 | =item i_ft_conical | |
1560 | ||
1561 | similar to i_ft_revolution, except that the revolution goes in both | |
1562 | directions | |
1563 | ||
1564 | =back | |
1565 | ||
1566 | I<repeat> can be one of: | |
1567 | ||
1568 | =over | |
1569 | ||
1570 | =item i_fr_none | |
1571 | ||
1572 | values < 0 are treated as zero, values > 1 are treated as 1. | |
1573 | ||
1574 | =item i_fr_sawtooth | |
1575 | ||
1576 | negative values are treated as 0, positive values are modulo 1.0 | |
1577 | ||
1578 | =item i_fr_triangle | |
1579 | ||
1580 | negative values are treated as zero, if (int)value is odd then the value is treated as 1-(value | |
1581 | mod 1.0), otherwise the same as for sawtooth. | |
1582 | ||
1583 | =item i_fr_saw_both | |
1584 | ||
1585 | like i_fr_sawtooth, except that the sawtooth pattern repeats into | |
1586 | negative values. | |
1587 | ||
1588 | =item i_fr_tri_both | |
1589 | ||
1590 | Like i_fr_triangle, except that negative values are handled as their | |
1591 | absolute values. | |
1592 | ||
1593 | =back | |
1594 | ||
1595 | If combine is non-zero then non-opaque values are combined with the | |
1596 | underlying color. | |
1597 | ||
1598 | I<super_sample> controls super sampling, if any. At some point I'll | |
1599 | probably add a adaptive super-sampler. Current possible values are: | |
1600 | ||
1601 | =over | |
1602 | ||
1603 | =item i_fts_none | |
1604 | ||
1605 | No super-sampling is done. | |
1606 | ||
1607 | =item i_fts_grid | |
1608 | ||
1609 | A square grid of points withing the pixel are sampled. | |
1610 | ||
1611 | =item i_fts_random | |
1612 | ||
1613 | Random points within the pixel are sampled. | |
1614 | ||
1615 | =item i_fts_circle | |
1616 | ||
1617 | Points on the radius of a circle are sampled. This produces fairly | |
1618 | good results, but is fairly slow since sin() and cos() are evaluated | |
1619 | for each point. | |
1620 | ||
1621 | =back | |
1622 | ||
1623 | I<ssample_param> is intended to be roughly the number of points | |
1624 | sampled within the pixel. | |
1625 | ||
1626 | I<count> and I<segs> define the segments of the fill. | |
1627 | ||
1628 | =cut | |
1629 | ||
1630 | */ | |
1631 | ||
e310e5f9 | 1632 | int |
6607600c TC |
1633 | i_fountain(i_img *im, double xa, double ya, double xb, double yb, |
1634 | i_fountain_type type, i_fountain_repeat repeat, | |
1635 | int combine, int super_sample, double ssample_param, | |
1636 | int count, i_fountain_seg *segs) { | |
1637 | struct fount_state state; | |
8d14daab | 1638 | i_img_dim x, y; |
e310e5f9 | 1639 | i_fcolor *line = NULL; |
efdc2568 | 1640 | i_fcolor *work = NULL; |
8d14daab | 1641 | size_t line_bytes; |
f1ac5027 | 1642 | i_fountain_seg *my_segs; |
efdc2568 TC |
1643 | i_fill_combine_f combine_func = NULL; |
1644 | i_fill_combinef_f combinef_func = NULL; | |
1645 | ||
e310e5f9 TC |
1646 | i_clear_error(); |
1647 | ||
1648 | /* i_fountain() allocates floating colors even for 8-bit images, | |
1649 | so we need to do this check */ | |
1650 | line_bytes = sizeof(i_fcolor) * im->xsize; | |
1651 | if (line_bytes / sizeof(i_fcolor) != im->xsize) { | |
1652 | i_push_error(0, "integer overflow calculating memory allocation"); | |
1653 | return 0; | |
1654 | } | |
1655 | ||
1656 | line = mymalloc(line_bytes); /* checked 17feb2005 tonyc */ | |
1657 | ||
efdc2568 TC |
1658 | i_get_combine(combine, &combine_func, &combinef_func); |
1659 | if (combinef_func) | |
e310e5f9 | 1660 | work = mymalloc(line_bytes); /* checked 17feb2005 tonyc */ |
f1ac5027 TC |
1661 | |
1662 | fount_init_state(&state, xa, ya, xb, yb, type, repeat, combine, | |
e4330a7b | 1663 | super_sample, ssample_param, count, segs); |
f1ac5027 TC |
1664 | my_segs = state.segs; |
1665 | ||
1666 | for (y = 0; y < im->ysize; ++y) { | |
1667 | i_glinf(im, 0, im->xsize, y, line); | |
1668 | for (x = 0; x < im->xsize; ++x) { | |
1669 | i_fcolor c; | |
1670 | int got_one; | |
f1ac5027 TC |
1671 | if (super_sample == i_fts_none) |
1672 | got_one = fount_getat(&c, x, y, &state); | |
1673 | else | |
1674 | got_one = state.ssfunc(&c, x, y, &state); | |
1675 | if (got_one) { | |
efdc2568 TC |
1676 | if (combine) |
1677 | work[x] = c; | |
f1ac5027 TC |
1678 | else |
1679 | line[x] = c; | |
1680 | } | |
1681 | } | |
efdc2568 TC |
1682 | if (combine) |
1683 | combinef_func(line, work, im->channels, im->xsize); | |
f1ac5027 TC |
1684 | i_plinf(im, 0, im->xsize, y, line); |
1685 | } | |
1686 | fount_finish_state(&state); | |
a73aeb5f | 1687 | if (work) myfree(work); |
f1ac5027 | 1688 | myfree(line); |
e310e5f9 TC |
1689 | |
1690 | return 1; | |
f1ac5027 TC |
1691 | } |
1692 | ||
1693 | typedef struct { | |
1694 | i_fill_t base; | |
1695 | struct fount_state state; | |
1696 | } i_fill_fountain_t; | |
1697 | ||
1698 | static void | |
50c75381 | 1699 | fill_fountf(i_fill_t *fill, i_img_dim x, i_img_dim y, i_img_dim width, int channels, |
43c5dacb | 1700 | i_fcolor *data); |
f1ac5027 TC |
1701 | static void |
1702 | fount_fill_destroy(i_fill_t *fill); | |
1703 | ||
9b1ec2b8 TC |
1704 | static i_fill_fountain_t |
1705 | fount_fill_proto = | |
1706 | { | |
1707 | { | |
1708 | NULL, | |
1709 | fill_fountf, | |
1710 | fount_fill_destroy | |
1711 | } | |
1712 | }; | |
1713 | ||
1714 | ||
f1ac5027 | 1715 | /* |
5715f7c3 | 1716 | =item i_new_fill_fount(C<xa>, C<ya>, C<xb>, C<yb>, C<type>, C<repeat>, C<combine>, C<super_sample>, C<ssample_param>, C<count>, C<segs>) |
92bda632 TC |
1717 | |
1718 | =category Fills | |
1719 | =synopsis fill = i_new_fill_fount(0, 0, 100, 100, i_ft_linear, i_ft_linear, | |
1720 | =synopsis i_fr_triangle, 0, i_fts_grid, 9, 1, segs); | |
1721 | ||
f1ac5027 | 1722 | |
773bc121 TC |
1723 | Creates a new general fill which fills with a fountain fill. |
1724 | ||
f1ac5027 TC |
1725 | =cut |
1726 | */ | |
1727 | ||
1728 | i_fill_t * | |
1729 | i_new_fill_fount(double xa, double ya, double xb, double yb, | |
1730 | i_fountain_type type, i_fountain_repeat repeat, | |
1731 | int combine, int super_sample, double ssample_param, | |
1732 | int count, i_fountain_seg *segs) { | |
1733 | i_fill_fountain_t *fill = mymalloc(sizeof(i_fill_fountain_t)); | |
1734 | ||
9b1ec2b8 | 1735 | *fill = fount_fill_proto; |
efdc2568 TC |
1736 | if (combine) |
1737 | i_get_combine(combine, &fill->base.combine, &fill->base.combinef); | |
1738 | else { | |
1739 | fill->base.combine = NULL; | |
1740 | fill->base.combinef = NULL; | |
1741 | } | |
f1ac5027 TC |
1742 | fount_init_state(&fill->state, xa, ya, xb, yb, type, repeat, combine, |
1743 | super_sample, ssample_param, count, segs); | |
1744 | ||
1745 | return &fill->base; | |
1746 | } | |
1747 | ||
1748 | /* | |
1749 | =back | |
1750 | ||
1751 | =head1 INTERNAL FUNCTIONS | |
1752 | ||
1753 | =over | |
1754 | ||
1755 | =item fount_init_state(...) | |
1756 | ||
1757 | Used by both the fountain fill filter and the fountain fill. | |
1758 | ||
1759 | =cut | |
1760 | */ | |
1761 | ||
1762 | static void | |
1763 | fount_init_state(struct fount_state *state, double xa, double ya, | |
1764 | double xb, double yb, i_fountain_type type, | |
1765 | i_fountain_repeat repeat, int combine, int super_sample, | |
1766 | double ssample_param, int count, i_fountain_seg *segs) { | |
6607600c | 1767 | int i, j; |
8d14daab | 1768 | size_t bytes; |
d3d01aeb | 1769 | i_fountain_seg *my_segs = mymalloc(sizeof(i_fountain_seg) * count); /* checked 2jul06 - duplicating original */ |
f1ac5027 | 1770 | /*int have_alpha = im->channels == 2 || im->channels == 4;*/ |
f1ac5027 TC |
1771 | |
1772 | memset(state, 0, sizeof(*state)); | |
6607600c TC |
1773 | /* we keep a local copy that we can adjust for speed */ |
1774 | for (i = 0; i < count; ++i) { | |
1775 | i_fountain_seg *seg = my_segs + i; | |
1776 | ||
1777 | *seg = segs[i]; | |
4c033fd4 TC |
1778 | if (seg->type < 0 || seg->type >= i_fst_end) |
1779 | seg->type = i_fst_linear; | |
6607600c TC |
1780 | if (seg->color < 0 || seg->color >= i_fc_end) |
1781 | seg->color = i_fc_direct; | |
1782 | if (seg->color == i_fc_hue_up || seg->color == i_fc_hue_down) { | |
1783 | /* so we don't have to translate to HSV on each request, do it here */ | |
1784 | for (j = 0; j < 2; ++j) { | |
1785 | i_rgb_to_hsvf(seg->c+j); | |
1786 | } | |
1787 | if (seg->color == i_fc_hue_up) { | |
1788 | if (seg->c[1].channel[0] <= seg->c[0].channel[0]) | |
1789 | seg->c[1].channel[0] += 1.0; | |
1790 | } | |
1791 | else { | |
1792 | if (seg->c[0].channel[0] <= seg->c[0].channel[1]) | |
1793 | seg->c[0].channel[0] += 1.0; | |
1794 | } | |
1795 | } | |
1796 | /*printf("start %g mid %g end %g c0(%g,%g,%g,%g) c1(%g,%g,%g,%g) type %d color %d\n", | |
1797 | seg->start, seg->middle, seg->end, seg->c[0].channel[0], | |
1798 | seg->c[0].channel[1], seg->c[0].channel[2], seg->c[0].channel[3], | |
1799 | seg->c[1].channel[0], seg->c[1].channel[1], seg->c[1].channel[2], | |
1800 | seg->c[1].channel[3], seg->type, seg->color);*/ | |
1801 | ||
1802 | } | |
1803 | ||
1804 | /* initialize each engine */ | |
1805 | /* these are so common ... */ | |
f1ac5027 TC |
1806 | state->lA = xb - xa; |
1807 | state->lB = yb - ya; | |
1808 | state->AB = sqrt(state->lA * state->lA + state->lB * state->lB); | |
1809 | state->xa = xa; | |
1810 | state->ya = ya; | |
6607600c TC |
1811 | switch (type) { |
1812 | default: | |
1813 | type = i_ft_linear; /* make the invalid value valid */ | |
1814 | case i_ft_linear: | |
1815 | case i_ft_bilinear: | |
f1ac5027 TC |
1816 | state->lC = ya * ya - ya * yb + xa * xa - xa * xb; |
1817 | state->mult = 1; | |
1818 | state->mult = 1/linear_fount_f(xb, yb, state); | |
6607600c TC |
1819 | break; |
1820 | ||
1821 | case i_ft_radial: | |
f1ac5027 TC |
1822 | state->mult = 1.0 / sqrt((double)(xb-xa)*(xb-xa) |
1823 | + (double)(yb-ya)*(yb-ya)); | |
6607600c TC |
1824 | break; |
1825 | ||
1826 | case i_ft_radial_square: | |
f1ac5027 TC |
1827 | state->cos = state->lA / state->AB; |
1828 | state->sin = state->lB / state->AB; | |
1829 | state->mult = 1.0 / state->AB; | |
6607600c TC |
1830 | break; |
1831 | ||
1832 | case i_ft_revolution: | |
f1ac5027 TC |
1833 | state->theta = atan2(yb-ya, xb-xa); |
1834 | state->mult = 1.0 / (PI * 2); | |
6607600c TC |
1835 | break; |
1836 | ||
1837 | case i_ft_conical: | |
f1ac5027 TC |
1838 | state->theta = atan2(yb-ya, xb-xa); |
1839 | state->mult = 1.0 / PI; | |
6607600c TC |
1840 | break; |
1841 | } | |
f1ac5027 | 1842 | state->ffunc = fount_funcs[type]; |
6607600c | 1843 | if (super_sample < 0 |
290bdf77 | 1844 | || super_sample >= (int)(sizeof(fount_ssamples)/sizeof(*fount_ssamples))) { |
6607600c TC |
1845 | super_sample = 0; |
1846 | } | |
f1ac5027 | 1847 | state->ssample_data = NULL; |
6607600c TC |
1848 | switch (super_sample) { |
1849 | case i_fts_grid: | |
1850 | ssample_param = floor(0.5 + sqrt(ssample_param)); | |
d3d01aeb TC |
1851 | bytes = ssample_param * ssample_param * sizeof(i_fcolor); |
1852 | if (bytes / sizeof(i_fcolor) == ssample_param * ssample_param) { | |
1853 | state->ssample_data = mymalloc(sizeof(i_fcolor) * ssample_param * ssample_param); /* checked 1jul06 tonyc */ | |
1854 | } | |
1855 | else { | |
1856 | super_sample = i_fts_none; | |
1857 | } | |
6607600c TC |
1858 | break; |
1859 | ||
1860 | case i_fts_random: | |
1861 | case i_fts_circle: | |
1862 | ssample_param = floor(0.5+ssample_param); | |
d3d01aeb TC |
1863 | bytes = sizeof(i_fcolor) * ssample_param; |
1864 | if (bytes / sizeof(i_fcolor) == ssample_param) { | |
1865 | state->ssample_data = mymalloc(sizeof(i_fcolor) * ssample_param); | |
1866 | } | |
1867 | else { | |
1868 | super_sample = i_fts_none; | |
1869 | } | |
6607600c TC |
1870 | break; |
1871 | } | |
f1ac5027 TC |
1872 | state->parm = ssample_param; |
1873 | state->ssfunc = fount_ssamples[super_sample]; | |
6607600c TC |
1874 | if (repeat < 0 || repeat >= (sizeof(fount_repeats)/sizeof(*fount_repeats))) |
1875 | repeat = 0; | |
f1ac5027 TC |
1876 | state->rpfunc = fount_repeats[repeat]; |
1877 | state->segs = my_segs; | |
1878 | state->count = count; | |
6607600c TC |
1879 | } |
1880 | ||
f1ac5027 TC |
1881 | static void |
1882 | fount_finish_state(struct fount_state *state) { | |
1883 | if (state->ssample_data) | |
1884 | myfree(state->ssample_data); | |
1885 | myfree(state->segs); | |
1886 | } | |
6607600c | 1887 | |
6607600c | 1888 | |
f1ac5027 | 1889 | /* |
6607600c TC |
1890 | =item fount_getat(out, x, y, ffunc, rpfunc, state, segs, count) |
1891 | ||
1892 | Evaluates the fountain fill at the given point. | |
1893 | ||
1894 | This is called by both the non-super-sampling and super-sampling code. | |
1895 | ||
1896 | You might think that it would make sense to sample the fill parameter | |
1897 | instead, and combine those, but this breaks badly. | |
1898 | ||
1899 | =cut | |
1900 | */ | |
1901 | ||
1902 | static int | |
f1ac5027 TC |
1903 | fount_getat(i_fcolor *out, double x, double y, struct fount_state *state) { |
1904 | double v = (state->rpfunc)((state->ffunc)(x, y, state)); | |
6607600c TC |
1905 | int i; |
1906 | ||
1907 | i = 0; | |
f1ac5027 TC |
1908 | while (i < state->count |
1909 | && (v < state->segs[i].start || v > state->segs[i].end)) { | |
6607600c TC |
1910 | ++i; |
1911 | } | |
f1ac5027 TC |
1912 | if (i < state->count) { |
1913 | v = (fount_interps[state->segs[i].type])(v, state->segs+i); | |
1914 | (fount_cinterps[state->segs[i].color])(out, v, state->segs+i); | |
6607600c TC |
1915 | return 1; |
1916 | } | |
1917 | else | |
1918 | return 0; | |
1919 | } | |
1920 | ||
1921 | /* | |
1922 | =item linear_fount_f(x, y, state) | |
1923 | ||
1924 | Calculate the fill parameter for a linear fountain fill. | |
1925 | ||
1926 | Uses the point to line distance function, with some precalculation | |
1927 | done in i_fountain(). | |
1928 | ||
1929 | =cut | |
1930 | */ | |
1931 | static double | |
1932 | linear_fount_f(double x, double y, struct fount_state *state) { | |
1933 | return (state->lA * x + state->lB * y + state->lC) / state->AB * state->mult; | |
1934 | } | |
1935 | ||
1936 | /* | |
1937 | =item bilinear_fount_f(x, y, state) | |
1938 | ||
1939 | Calculate the fill parameter for a bi-linear fountain fill. | |
1940 | ||
1941 | =cut | |
1942 | */ | |
1943 | static double | |
1944 | bilinear_fount_f(double x, double y, struct fount_state *state) { | |
1945 | return fabs((state->lA * x + state->lB * y + state->lC) / state->AB * state->mult); | |
1946 | } | |
1947 | ||
1948 | /* | |
1949 | =item radial_fount_f(x, y, state) | |
1950 | ||
1951 | Calculate the fill parameter for a radial fountain fill. | |
1952 | ||
1953 | Simply uses the distance function. | |
1954 | ||
1955 | =cut | |
1956 | */ | |
1957 | static double | |
1958 | radial_fount_f(double x, double y, struct fount_state *state) { | |
1959 | return sqrt((double)(state->xa-x)*(state->xa-x) | |
1960 | + (double)(state->ya-y)*(state->ya-y)) * state->mult; | |
1961 | } | |
1962 | ||
1963 | /* | |
1964 | =item square_fount_f(x, y, state) | |
1965 | ||
1966 | Calculate the fill parameter for a square fountain fill. | |
1967 | ||
1968 | Works by rotating the reference co-ordinate around the centre of the | |
1969 | square. | |
1970 | ||
1971 | =cut | |
1972 | */ | |
1973 | static double | |
1974 | square_fount_f(double x, double y, struct fount_state *state) { | |
8d14daab | 1975 | i_img_dim xc, yc; /* centred on A */ |
6607600c TC |
1976 | double xt, yt; /* rotated by theta */ |
1977 | xc = x - state->xa; | |
1978 | yc = y - state->ya; | |
1979 | xt = fabs(xc * state->cos + yc * state->sin); | |
1980 | yt = fabs(-xc * state->sin + yc * state->cos); | |
1981 | return (xt > yt ? xt : yt) * state->mult; | |
1982 | } | |
1983 | ||
1984 | /* | |
1985 | =item revolution_fount_f(x, y, state) | |
1986 | ||
1987 | Calculates the fill parameter for the revolution fountain fill. | |
1988 | ||
1989 | =cut | |
1990 | */ | |
1991 | static double | |
1992 | revolution_fount_f(double x, double y, struct fount_state *state) { | |
1993 | double angle = atan2(y - state->ya, x - state->xa); | |
1994 | ||
1995 | angle -= state->theta; | |
1996 | if (angle < 0) { | |
1997 | angle = fmod(angle+ PI * 4, PI*2); | |
1998 | } | |
1999 | ||
2000 | return angle * state->mult; | |
2001 | } | |
2002 | ||
2003 | /* | |
2004 | =item conical_fount_f(x, y, state) | |
2005 | ||
2006 | Calculates the fill parameter for the conical fountain fill. | |
2007 | ||
2008 | =cut | |
2009 | */ | |
2010 | static double | |
2011 | conical_fount_f(double x, double y, struct fount_state *state) { | |
2012 | double angle = atan2(y - state->ya, x - state->xa); | |
2013 | ||
2014 | angle -= state->theta; | |
2015 | if (angle < -PI) | |
2016 | angle += PI * 2; | |
2017 | else if (angle > PI) | |
2018 | angle -= PI * 2; | |
2019 | ||
2020 | return fabs(angle) * state->mult; | |
2021 | } | |
2022 | ||
2023 | /* | |
2024 | =item linear_interp(pos, seg) | |
2025 | ||
2026 | Calculates linear interpolation on the fill parameter. Breaks the | |
2027 | segment into 2 regions based in the I<middle> value. | |
2028 | ||
2029 | =cut | |
2030 | */ | |
2031 | static double | |
2032 | linear_interp(double pos, i_fountain_seg *seg) { | |
2033 | if (pos < seg->middle) { | |
2034 | double len = seg->middle - seg->start; | |
2035 | if (len < EPSILON) | |
2036 | return 0.0; | |
2037 | else | |
2038 | return (pos - seg->start) / len / 2; | |
2039 | } | |
2040 | else { | |
2041 | double len = seg->end - seg->middle; | |
2042 | if (len < EPSILON) | |
2043 | return 1.0; | |
2044 | else | |
2045 | return 0.5 + (pos - seg->middle) / len / 2; | |
2046 | } | |
2047 | } | |
2048 | ||
2049 | /* | |
2050 | =item sine_interp(pos, seg) | |
2051 | ||
2052 | Calculates sine function interpolation on the fill parameter. | |
2053 | ||
2054 | =cut | |
2055 | */ | |
2056 | static double | |
2057 | sine_interp(double pos, i_fountain_seg *seg) { | |
2058 | /* I wonder if there's a simple way to smooth the transition for this */ | |
2059 | double work = linear_interp(pos, seg); | |
2060 | ||
2061 | return (1-cos(work * PI))/2; | |
2062 | } | |
2063 | ||
2064 | /* | |
2065 | =item sphereup_interp(pos, seg) | |
2066 | ||
2067 | Calculates spherical interpolation on the fill parameter, with the cusp | |
2068 | at the low-end. | |
2069 | ||
2070 | =cut | |
2071 | */ | |
2072 | static double | |
2073 | sphereup_interp(double pos, i_fountain_seg *seg) { | |
2074 | double work = linear_interp(pos, seg); | |
2075 | ||
2076 | return sqrt(1.0 - (1-work) * (1-work)); | |
2077 | } | |
2078 | ||
2079 | /* | |
2080 | =item spheredown_interp(pos, seg) | |
2081 | ||
2082 | Calculates spherical interpolation on the fill parameter, with the cusp | |
2083 | at the high-end. | |
2084 | ||
2085 | =cut | |
2086 | */ | |
2087 | static double | |
2088 | spheredown_interp(double pos, i_fountain_seg *seg) { | |
2089 | double work = linear_interp(pos, seg); | |
2090 | ||
2091 | return 1-sqrt(1.0 - work * work); | |
2092 | } | |
2093 | ||
2094 | /* | |
2095 | =item direct_cinterp(out, pos, seg) | |
2096 | ||
2097 | Calculates the fountain color based on direct scaling of the channels | |
2098 | of the color channels. | |
2099 | ||
2100 | =cut | |
2101 | */ | |
2102 | static void | |
2103 | direct_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg) { | |
2104 | int ch; | |
2105 | for (ch = 0; ch < MAXCHANNELS; ++ch) { | |
2106 | out->channel[ch] = seg->c[0].channel[ch] * (1 - pos) | |
2107 | + seg->c[1].channel[ch] * pos; | |
2108 | } | |
2109 | } | |
2110 | ||
2111 | /* | |
2112 | =item hue_up_cinterp(put, pos, seg) | |
2113 | ||
2114 | Calculates the fountain color based on scaling a HSV value. The hue | |
2115 | increases as the fill parameter increases. | |
2116 | ||
2117 | =cut | |
2118 | */ | |
2119 | static void | |
2120 | hue_up_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg) { | |
2121 | int ch; | |
2122 | for (ch = 0; ch < MAXCHANNELS; ++ch) { | |
2123 | out->channel[ch] = seg->c[0].channel[ch] * (1 - pos) | |
2124 | + seg->c[1].channel[ch] * pos; | |
2125 | } | |
2126 | i_hsv_to_rgbf(out); | |
2127 | } | |
2128 | ||
2129 | /* | |
2130 | =item hue_down_cinterp(put, pos, seg) | |
2131 | ||
2132 | Calculates the fountain color based on scaling a HSV value. The hue | |
2133 | decreases as the fill parameter increases. | |
2134 | ||
2135 | =cut | |
2136 | */ | |
2137 | static void | |
2138 | hue_down_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg) { | |
2139 | int ch; | |
2140 | for (ch = 0; ch < MAXCHANNELS; ++ch) { | |
2141 | out->channel[ch] = seg->c[0].channel[ch] * (1 - pos) | |
2142 | + seg->c[1].channel[ch] * pos; | |
2143 | } | |
2144 | i_hsv_to_rgbf(out); | |
2145 | } | |
2146 | ||
2147 | /* | |
2148 | =item simple_ssample(out, parm, x, y, state, ffunc, rpfunc, segs, count) | |
2149 | ||
2150 | Simple grid-based super-sampling. | |
2151 | ||
2152 | =cut | |
2153 | */ | |
2154 | static int | |
f1ac5027 | 2155 | simple_ssample(i_fcolor *out, double x, double y, struct fount_state *state) { |
6607600c | 2156 | i_fcolor *work = state->ssample_data; |
8d14daab | 2157 | i_img_dim dx, dy; |
f1ac5027 | 2158 | int grid = state->parm; |
6607600c TC |
2159 | double base = -0.5 + 0.5 / grid; |
2160 | double step = 1.0 / grid; | |
2161 | int ch, i; | |
2162 | int samp_count = 0; | |
2163 | ||
2164 | for (dx = 0; dx < grid; ++dx) { | |
2165 | for (dy = 0; dy < grid; ++dy) { | |
2166 | if (fount_getat(work+samp_count, x + base + step * dx, | |
f1ac5027 | 2167 | y + base + step * dy, state)) { |
6607600c TC |
2168 | ++samp_count; |
2169 | } | |
2170 | } | |
2171 | } | |
2172 | for (ch = 0; ch < MAXCHANNELS; ++ch) { | |
2173 | out->channel[ch] = 0; | |
2174 | for (i = 0; i < samp_count; ++i) { | |
2175 | out->channel[ch] += work[i].channel[ch]; | |
2176 | } | |
2177 | /* we divide by 4 rather than samp_count since if there's only one valid | |
2178 | sample it should be mostly transparent */ | |
2179 | out->channel[ch] /= grid * grid; | |
2180 | } | |
2181 | return samp_count; | |
2182 | } | |
2183 | ||
2184 | /* | |
2185 | =item random_ssample(out, parm, x, y, state, ffunc, rpfunc, segs, count) | |
2186 | ||
2187 | Random super-sampling. | |
2188 | ||
2189 | =cut | |
2190 | */ | |
2191 | static int | |
f1ac5027 TC |
2192 | random_ssample(i_fcolor *out, double x, double y, |
2193 | struct fount_state *state) { | |
6607600c TC |
2194 | i_fcolor *work = state->ssample_data; |
2195 | int i, ch; | |
f1ac5027 | 2196 | int maxsamples = state->parm; |
6607600c TC |
2197 | double rand_scale = 1.0 / RAND_MAX; |
2198 | int samp_count = 0; | |
2199 | for (i = 0; i < maxsamples; ++i) { | |
2200 | if (fount_getat(work+samp_count, x - 0.5 + rand() * rand_scale, | |
f1ac5027 | 2201 | y - 0.5 + rand() * rand_scale, state)) { |
6607600c TC |
2202 | ++samp_count; |
2203 | } | |
2204 | } | |
2205 | for (ch = 0; ch < MAXCHANNELS; ++ch) { | |
2206 | out->channel[ch] = 0; | |
2207 | for (i = 0; i < samp_count; ++i) { | |
2208 | out->channel[ch] += work[i].channel[ch]; | |
2209 | } | |
2210 | /* we divide by maxsamples rather than samp_count since if there's | |
2211 | only one valid sample it should be mostly transparent */ | |
2212 | out->channel[ch] /= maxsamples; | |
2213 | } | |
2214 | return samp_count; | |
2215 | } | |
2216 | ||
2217 | /* | |
2218 | =item circle_ssample(out, parm, x, y, state, ffunc, rpfunc, segs, count) | |
2219 | ||
2220 | Super-sampling around the circumference of a circle. | |
2221 | ||
2222 | I considered saving the sin()/cos() values and transforming step-size | |
2223 | around the circle, but that's inaccurate, though it may not matter | |
2224 | much. | |
2225 | ||
2226 | =cut | |
2227 | */ | |
2228 | static int | |
f1ac5027 TC |
2229 | circle_ssample(i_fcolor *out, double x, double y, |
2230 | struct fount_state *state) { | |
6607600c TC |
2231 | i_fcolor *work = state->ssample_data; |
2232 | int i, ch; | |
f1ac5027 | 2233 | int maxsamples = state->parm; |
6607600c TC |
2234 | double angle = 2 * PI / maxsamples; |
2235 | double radius = 0.3; /* semi-random */ | |
2236 | int samp_count = 0; | |
2237 | for (i = 0; i < maxsamples; ++i) { | |
2238 | if (fount_getat(work+samp_count, x + radius * cos(angle * i), | |
f1ac5027 | 2239 | y + radius * sin(angle * i), state)) { |
6607600c TC |
2240 | ++samp_count; |
2241 | } | |
2242 | } | |
2243 | for (ch = 0; ch < MAXCHANNELS; ++ch) { | |
2244 | out->channel[ch] = 0; | |
2245 | for (i = 0; i < samp_count; ++i) { | |
2246 | out->channel[ch] += work[i].channel[ch]; | |
2247 | } | |
2248 | /* we divide by maxsamples rather than samp_count since if there's | |
2249 | only one valid sample it should be mostly transparent */ | |
2250 | out->channel[ch] /= maxsamples; | |
2251 | } | |
2252 | return samp_count; | |
2253 | } | |
2254 | ||
2255 | /* | |
2256 | =item fount_r_none(v) | |
2257 | ||
2258 | Implements no repeats. Simply clamps the fill value. | |
2259 | ||
2260 | =cut | |
2261 | */ | |
2262 | static double | |
2263 | fount_r_none(double v) { | |
2264 | return v < 0 ? 0 : v > 1 ? 1 : v; | |
2265 | } | |
2266 | ||
2267 | /* | |
2268 | =item fount_r_sawtooth(v) | |
2269 | ||
2270 | Implements sawtooth repeats. Clamps negative values and uses fmod() | |
2271 | on others. | |
2272 | ||
2273 | =cut | |
2274 | */ | |
2275 | static double | |
2276 | fount_r_sawtooth(double v) { | |
2277 | return v < 0 ? 0 : fmod(v, 1.0); | |
2278 | } | |
2279 | ||
2280 | /* | |
2281 | =item fount_r_triangle(v) | |
2282 | ||
2283 | Implements triangle repeats. Clamps negative values, uses fmod to get | |
2284 | a range 0 through 2 and then adjusts values > 1. | |
2285 | ||
2286 | =cut | |
2287 | */ | |
2288 | static double | |
2289 | fount_r_triangle(double v) { | |
2290 | if (v < 0) | |
2291 | return 0; | |
2292 | else { | |
2293 | v = fmod(v, 2.0); | |
2294 | return v > 1.0 ? 2.0 - v : v; | |
2295 | } | |
2296 | } | |
2297 | ||
2298 | /* | |
2299 | =item fount_r_saw_both(v) | |
2300 | ||
2301 | Implements sawtooth repeats in the both postive and negative directions. | |
2302 | ||
2303 | Adjusts the value to be postive and then just uses fmod(). | |
2304 | ||
2305 | =cut | |
2306 | */ | |
2307 | static double | |
2308 | fount_r_saw_both(double v) { | |
2309 | if (v < 0) | |
2310 | v += 1+(int)(-v); | |
2311 | return fmod(v, 1.0); | |
2312 | } | |
2313 | ||
2314 | /* | |
2315 | =item fount_r_tri_both(v) | |
2316 | ||
2317 | Implements triangle repeats in the both postive and negative directions. | |
2318 | ||
2319 | Uses fmod on the absolute value, and then adjusts values > 1. | |
2320 | ||
2321 | =cut | |
2322 | */ | |
2323 | static double | |
2324 | fount_r_tri_both(double v) { | |
2325 | v = fmod(fabs(v), 2.0); | |
2326 | return v > 1.0 ? 2.0 - v : v; | |
2327 | } | |
2328 | ||
f1ac5027 TC |
2329 | /* |
2330 | =item fill_fountf(fill, x, y, width, channels, data) | |
2331 | ||
2332 | The fill function for fountain fills. | |
2333 | ||
2334 | =cut | |
2335 | */ | |
2336 | static void | |
50c75381 TC |
2337 | fill_fountf(i_fill_t *fill, i_img_dim x, i_img_dim y, i_img_dim width, |
2338 | int channels, i_fcolor *data) { | |
f1ac5027 | 2339 | i_fill_fountain_t *f = (i_fill_fountain_t *)fill; |
efdc2568 | 2340 | |
43c5dacb TC |
2341 | while (width--) { |
2342 | i_fcolor c; | |
2343 | int got_one; | |
2344 | ||
2345 | if (f->state.ssfunc) | |
2346 | got_one = f->state.ssfunc(&c, x, y, &f->state); | |
2347 | else | |
2348 | got_one = fount_getat(&c, x, y, &f->state); | |
2349 | ||
2350 | *data++ = c; | |
2351 | ||
2352 | ++x; | |
f1ac5027 TC |
2353 | } |
2354 | } | |
2355 | ||
2356 | /* | |
2357 | =item fount_fill_destroy(fill) | |
2358 | ||
2359 | =cut | |
2360 | */ | |
2361 | static void | |
2362 | fount_fill_destroy(i_fill_t *fill) { | |
2363 | i_fill_fountain_t *f = (i_fill_fountain_t *)fill; | |
2364 | fount_finish_state(&f->state); | |
2365 | } | |
2366 | ||
6607600c TC |
2367 | /* |
2368 | =back | |
2369 | ||
2370 | =head1 AUTHOR | |
2371 | ||
2372 | Arnar M. Hrafnkelsson <addi@umich.edu> | |
2373 | ||
2374 | Tony Cook <tony@develop-help.com> (i_fountain()) | |
2375 | ||
2376 | =head1 SEE ALSO | |
2377 | ||
2378 | Imager(3) | |
2379 | ||
2380 | =cut | |
2381 | */ |